(c) If he leaves the house at 8:35 A.M. and coffee is served at the office from 8:50 A.M. until 9:00 A.M., what is the probability that he misses coffee?
(d) Find the length of time above which we find the slowest 15% of the trips.
(e) Find the probability that 2 of the next 3 trips will take at least $1 / 2$ hour.
6.16 In the November 1990 issue of Chemical Engineering Progress, a study discussed the percent purity of oxygen from a certain supplier. Assume that the mean was 99.61 with a standard deviation of 0.08 . Assume that the distribution of percent purity was approximately normal.
(a) What percentage of the purity values would you expect to be between 99.5 and 99.7 ?
(b) What purity value would you expect to exceed exactly 5% of the population?
6.17 The average life of a certain type of small motor is 10 years with a standard deviation of 2 years. The manufacturer replaces free all motors that fail while under guarantee. If she is willing to replace only 3% of the motors that fail, how long a guarantee should be offered? Assume that the lifetime of a motor follows a normal distribution.
6.18 The heights of 1000 students are normally distributed with a mean of 174.5 centimeters and a standard deviation of 6.9 centimeters. Assuming that the heights are recorded to the nearest half-centimeter, how many of these students would you expect to have heights
(a) less than 160.0 centimeters?
(b) between 171.5 and 182.0 centimeters inclusive?
(c) equal to 175.0 centimeters?
(d) greater than or equal to 188.0 centimeters?
6.19 A company pays its employees an average wage of $\$ 15.90$ an hour with a standard deviation of $\$ 1.50$. If the wages are approximately normally distributed and paid to the nearest cent,
(a) what percentage of the workers receive wages between $\$ 13.75$ and $\$ 16.22$ an hour inclusive?
(b) the highest 5% of the employee hourly wages is greater than what amount?
6.20 The weights of a large number of miniature poodles are approximately normally distributed with a mean of 8 kilograms and a standard deviation of 0.9 kilogram. If measurements are recorded to the nearest tenth of a kilogram, find the fraction of these poodles with weights
(a) over 9.5 kilograms;
(b) of at most 8.6 kilograms;
(c) between 7.3 and 9.1 kilograms inclusive.
6.21 The tensile strength of a certain metal component is normally distributed with a mean of 10,000 kilograms per square centimeter and a standard deviation of 100 kilograms per square centimeter. Measurements are recorded to the nearest 50 kilograms per square centimeter.
(a) What proportion of these components exceed 10,150 kilograms per square centimeter in tensile strength?
(b) If specifications require that all components have tensile strength between 9800 and 10,200 kilograms per square centimeter inclusive, what proportion of pieces would we expect to scrap?
6.22 If a set of observations is normally distributed, what percent of these differ from the mean by
(a) more than 1.3σ ?
(b) less than 0.52σ ?
6.23 The IQs of 600 applicants to a certain college are approximately normally distributed with a mean of 115 and a standard deviation of 12 . If the college requires an IQ of at least 95 , how many of these students will be rejected on this basis of IQ, regardless of their other qualifications? Note that IQs are recorded to the nearest integers.

6.5 Normal Approximation to the Binomial

Probabilities associated with binomial experiments are readily obtainable from the formula $b(x ; n, p)$ of the binomial distribution or from Table A. 1 when n is small. In addition, binomial probabilities are readily available in many computer software packages. However, it is instructive to learn the relationship between the binomial and the normal distribution. In Section 5.5, we illustrated how the Poisson distribution can be used to approximate binomial probabilities when n is quite large and p is very close to 0 or 1 . Both the binomial and the Poisson distributions

