
Chapter 3
Statements

57

Copyright © 2003 by The McGraw-Hill Companies. Click here for terms of use.

58 C + + : T h e C o m p l e t e R e f e r e n c e

This chapter discusses the statement. In the most general sense, a statement is a
part of your program that can be executed. That is, a statement specifies an
action. C and C++ categorize statements into these groups:

■ Selection

■ Iteration

■ Jump

■ Label

■ Expression

■ Block

Included in the selection statements are if and switch. (The term conditional
statement is often used in place of "selection statement.") The iteration statements are
while, for, and do-while. These are also commonly called loop statements. The jump
statements are break, continue, goto, and return. The label statements include the
case and default statements (discussed along with the switch statement) and the label
statement (discussed with goto). Expression statements are statements composed
of a valid expression. Block statements are simply blocks of code. (Remember, a
block begins with a { and ends with a }.) Block statements are also referred to as
compound statements.

C++ adds two additional statement types: the try block (used by exception handling) and
the declaration statement. These are discussed in Part Two.

Since many statements rely upon the outcome of some conditional test, let's begin
by reviewing the concepts of true and false.

True and False in C and C++
Many C/C++ statements rely upon a conditional expression that determines what course
of action is to be taken. A conditional expression evaluates to either a true or false value.
In C, a true value is any nonzero value, including negative numbers. A false value is 0.
This approach to true and false allows a wide range of routines to be coded extremely
efficiently.

C++ fully supports the zero/nonzero definition of true and false just described. But
C++ also defines a Boolean data type called bool, which can have only the values true
and false. As explained in Chapter 2, in C++, a 0 value is automatically converted into
false and a nonzero value is automatically converted into true. The reverse also applies:
true converts to 1 and false converts to 0. In C++, the expression that controls a
conditional statement is technically of type bool. But since any nonzero value converts
to true and any zero value converts to false, there is no practical difference between C
and C++ on this point.

C99 has added a Boolean type called _Bool, but it is incompatible with C++. See Part
Two for a discussion on how to achieve compatibility between C99’s _Bool and C++’s
bool types.

Selection Statements
C/C++ supports two types of selection statements: if and switch. In addition, the ?
operator is an alternative to if in certain circumstances.

if
The general form of the if statement is

if (expression) statement;
else statement;

where a statement may consist of a single statement, a block of statements, or nothing
(in the case of empty statements). The else clause is optional.

If expression evaluates to true (anything other than 0), the statement or block that
forms the target of if is executed; otherwise, the statement or block that is the target
of else will be executed, if it exists. Remember, only the code associated with if or the
code associated with else executes, never both.

In C, the conditional statement controlling if must produce a scalar result. A scalar
is either an integer, character, pointer, or floating-point type. In C++, it may also be of
type bool. It is rare to use a floating-point number to control a conditional statement
because this slows execution time considerably. (It takes several instructions to perform
a floating-point operation. It takes relatively few instructions to perform an integer or
character operation.)

The following program contains an example of if. The program plays a very simple
version of the "guess the magic number" game. It prints the message ** Right ** when
the player guesses the magic number. It generates the magic number using the standard
random number generator rand(), which returns an arbitrary number between 0 and
RAND_MAX (which defines an integer value that is 32,767 or larger). rand() requires
the header file stdlib.h. (A C++ program may also use the new-style header <cstdlib>.)

/* Magic number program #1. */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int magic; /* magic number */

C h a p t e r 3 : S t a t e m e n t s 59

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

int guess; /* user's guess */

magic = rand(); /* generate the magic number */

printf("Guess the magic number: ");

scanf("%d", &guess);

if(guess == magic) printf("** Right **");

return 0;

}

Taking the magic number program further, the next version illustrates the use of the
else statement to print a message in response to the wrong number.

/* Magic number program #2. */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int magic; /* magic number */

int guess; /* user's guess */

magic = rand(); /* generate the magic number */

printf("Guess the magic number: ");

scanf("%d", &guess);

if(guess == magic) printf("** Right **");

else printf("Wrong");

return 0;

}

Nested ifs
A nested if is an if that is the target of another if or else. Nested ifs are very common in
programming. In a nested if, an else statement always refers to the nearest if statement
that is within the same block as the else and that is not already associated with an else.
For example,

60 C + + : T h e C o m p l e t e R e f e r e n c e

if(i)

{

if(j) statement 1;

if(k) statement 2; /* this if */

else statement 3; /* is associated with this else */

}

else statement 4; /* associated with if(i) */

As noted, the final else is not associated with if(j) because it is not in the same block.
Rather, the final else is associated with if(i). Also, the inner else is associated with if(k),
which is the nearest if.

The C language guarantees at least 15 levels of nesting. In practice, most compilers
allow substantially more. More importantly, Standard C++ suggests that at least 256 levels
of nested ifs be allowed in a C++ program. However, nesting beyond a few levels is seldom
necessary, and excessive nesting can quickly confuse the meaning of an algorithm.

You can use a nested if to further improve the magic number program by providing
the player with feedback about a wrong guess.

/* Magic number program #3. */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int magic; /* magic number */

int guess; /* user's guess */

magic = rand(); /* get a random number */

printf("Guess the magic number: ");

scanf("%d", &guess);

if (guess == magic) {

printf("** Right **");

printf(" %d is the magic number\n", magic);

}

else {

printf("Wrong, ");

if(guess > magic) printf("too high\n");

else printf("too low\n");

}

C h a p t e r 3 : S t a t e m e n t s 61

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

62 C + + : T h e C o m p l e t e R e f e r e n c e

return 0;

}

The if-else-if Ladder
A common programming construct is the if-else-if ladder, sometimes called the if-else-if
staircase because of its appearance. Its general form is

if (expression) statement;
else

if (expression) statement;
else

if (expression) statement;
.
.
.
else statement;

The conditions are evaluated from the top downward. As soon as a true condition
is found, the statement associated with it is executed and the rest of the ladder is
bypassed. If none of the conditions are true, the final else is executed. That is, if all
other conditional tests fail, the last else statement is performed. If the final else is not
present, no action takes place if all other conditions are false.

Although the indentation of the preceding if-else-if ladder is technically correct, it
can lead to overly deep indentation. For this reason, the if-else-if ladder is generally
indented like this:

if (expression)
statement;

else if (expression)
statement;

else if (expression)
statement;

.

.

.
else
statement;

Using an if-else-if ladder, the magic number program becomes

/* Magic number program #4. */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int magic; /* magic number */

int guess; /* user's guess */

magic = rand(); /* generate the magic number */

printf("Guess the magic number: ");

scanf("%d", &guess);

if(guess == magic) {

printf("** Right ** ");

printf("%d is the magic number", magic);

}

else if(guess > magic)

printf("Wrong, too high");

else printf("Wrong, too low");

return 0;

}

The ? Alternative
You can use the ? operator to replace if-else statements of the general form:

if(condition) expression;
else expression;

However, the target of both if and else must be a single expression—not another
statement.

The ? is called a ternary operator because it requires three operands. It takes the
general form

Exp1 ? Exp2 : Exp3

where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.
The value of a ? expression is determined as follows: Exp1 is evaluated. If it is true, Exp2

is evaluated and becomes the value of the entire ? expression. If Exp1 is false, then Exp3 is
evaluated and its value becomes the value of the expression. For example, consider

C h a p t e r 3 : S t a t e m e n t s 63

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

x = 10;

y = x>9 ? 100 : 200;

In this example, y is assigned the value 100. If x had been less than 9, y would have
received the value 200. The same code written with the if-else statement would be

x = 10;

if(x>9) y = 100;

else y = 200;

The following program uses the ? operator to square an integer value entered by
the user. However, this program preserves the sign (10 squared is 100 and −10 squared
is −100).

#include <stdio.h>

int main(void)

{

int isqrd, i;

printf("Enter a number: ");

scanf("%d", &i);

isqrd = i>0 ? i*i : -(i*i);

printf("%d squared is %d", i, isqrd);

return 0;

}

The use of the ? operator to replace if-else statements is not restricted to assignments
only. Remember, all functions (except those declared as void) return a value. Thus,
you can use one or more function calls in a ? expression. When the function's name
is encountered, the function is executed so that its return value may be determined.
Therefore, you can execute one or more function calls using the ? operator by placing
the calls in the expressions that form the ?'s operands. Here is an example.

#include <stdio.h>

int f1(int n);

int f2(void);

64 C + + : T h e C o m p l e t e R e f e r e n c e

int main(void)

{

int t;

printf("Enter a number: ");

scanf("%d", &t);

/* print proper message */

t ? f1(t) + f2() : printf("zero entered.\n");

return 0;

}

int f1(int n)

{

printf("%d ", n);

return 0;

}

int f2(void)

{

printf("entered.\n");

return 0;

}

Entering a 0 in this example calls the printf() function and displays the message zero
entered. If you enter any other number, both f1() and f2() execute. Note that the value
of the ? expression is discarded in this example. You don't need to assign it to anything.

A word of warning: Some C++ compilers rearrange the order of evaluation of an
expression in an attempt to optimize the object code. This could cause functions that
form the operands of the ? operator to execute in an unintended sequence.

Using the ? operator, you can rewrite the magic number program yet again.

/* Magic number program #5. */

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

int magic;

int guess;

C h a p t e r 3 : S t a t e m e n t s 65

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

66 C + + : T h e C o m p l e t e R e f e r e n c e

magic = rand(); /* generate the magic number */

printf("Guess the magic number: ");

scanf("%d", &guess);

if(guess == magic) {

printf("** Right ** ");

printf("%d is the magic number", magic);

}

else

guess > magic ? printf("High") : printf("Low");

return 0;

}

Here, the ? operator displays the proper message based on the outcome of the test
guess > magic.

The Conditional Expression
Sometimes newcomers to C/C++ are confused by the fact that you can use any
valid expression to control the if or the ? operator. That is, you are not restricted to
expressions involving the relational and logical operators (as is the case in languages
like BASIC or Pascal). The expression must simply evaluate to either a true or false
(zero or nonzero) value. For example, the following program reads two integers from
the keyboard and displays the quotient. It uses an if statement, controlled by the
second number, to avoid a divide-by-zero error.

/* Divide the first number by the second. */

#include <stdio.h>

int main(void)

{

int a, b;

printf("Enter two numbers: ");

scanf("%d%d", &a, &b);

if(b) printf("%d\n", a/b);

else printf("Cannot divide by zero.\n");

return 0;

}

C h a p t e r 3 : S t a t e m e n t s 67

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

This approach works because if b is 0, the condition controlling the if is false and the
else executes. Otherwise, the condition is true (nonzero) and the division takes place.

One other point: Writing the if statement as shown here

if(b != 0) printf("%d\n", a/b);

is redundant, potentially inefficient, and is considered bad style. Since the value of b
alone is sufficient to control the if, there is no need to test it against 0.

switch
C/C++ has a built-in multiple-branch selection statement, called switch, which
successively tests the value of an expression against a list of integer or character constants.
When a match is found, the statements associated with that constant are executed. The
general form of the switch statement is

switch (expression) {
case constant1:

statement sequence
break;

case constant2:
statement sequence
break;

case constant3:
statement sequence
break;

.

.

.
default

statement sequence
}

The expression must evaluate to a character or integer value. Floating-point expressions,
for example, are not allowed. The value of expression is tested, in order, against the
values of the constants specified in the case statements. When a match is found, the
statement sequence associated with that case is executed until the break statement or
the end of the switch statement is reached. The default statement is executed if no
matches are found. The default is optional and, if it is not present, no action takes place
if all matches fail.

In C, a switch can have at least 257 case statements. Standard C++ recommends
that at least 16,384 case statements be supported! In practice, you will want to limit the
number of case statements to a smaller amount for efficiency. Although case is a label
statement, it cannot exist by itself, outside of a switch.

68 C + + : T h e C o m p l e t e R e f e r e n c e

The break statement is one of C/C++'s jump statements. You can use it in loops as
well as in the switch statement (see the section "Iteration Statements"). When break is
encountered in a switch, program execution "jumps" to the line of code following the
switch statement.

There are three important things to know about the switch statement:

■ The switch differs from the if in that switch can only test for equality, whereas
if can evaluate any type of relational or logical expression.

■ No two case constants in the same switch can have identical values. Of course,
a switch statement enclosed by an outer switch may have case constants that
are the same.

■ If character constants are used in the switch statement, they are automatically
converted to integers.

The switch statement is often used to process keyboard commands, such as menu
selection. As shown here, the function menu() displays a menu for a spelling-checker
program and calls the proper procedures:

void menu(void)

{

char ch;

printf("1. Check Spelling\n");

printf("2. Correct Spelling Errors\n");

printf("3. Display Spelling Errors\n");

printf("Strike Any Other Key to Skip\n");

printf(" Enter your choice: ");

ch = getchar(); /* read the selection from

the keyboard */

switch(ch) {

case '1':

check_spelling();

break;

case '2':

correct_errors();

break;

case '3':

display_errors();

break;

default :

printf("No option selected");

}

}

Technically, the break statements inside the switch statement are optional. They
terminate the statement sequence associated with each constant. If the break statement
is omitted, execution will continue on into the next case's statements until either a break
or the end of the switch is reached. For example, the following function uses the "drop
through" nature of the cases to simplify the code for a device-driver input handler:

/* Process a value */

void inp_handler(int i)

{

int flag;

flag = -1;

switch(i) {

case 1: /* These cases have common */

case 2: /* statement sequences. */

case 3:

flag = 0;

break;

case 4:

flag = 1;

case 5:

error(flag);

break;

default:

process(i);

}

}

This example illustrates two aspects of switch. First, you can have case statements
that have no statement sequence associated with them. When this occurs, execution
simply drops through to the next case. In this example, the first three cases all execute
the same statements, which are

flag = 0;

break;

C h a p t e r 3 : S t a t e m e n t s 69

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

70 C + + : T h e C o m p l e t e R e f e r e n c e

Second, execution of one statement sequence continues into the next case if no
break statement is present. If i matches 4, flag is set to 1 and, because there is no break
statement at the end of that case, execution continues and the call to error(flag) is executed.
If i had matched 5, error(flag) would have been called with a flag value of −1 (rather
than 1).

The fact that cases can run together when no break is present prevents the
unnecessary duplication of statements, resulting in more efficient code.

Nested switch Statements
You can have a switch as part of the statement sequence of an outer switch. Even if the
case constants of the inner and outer switch contain common values, no conflicts arise.
For example, the following code fragment is perfectly acceptable:

switch(x) {

case 1:

switch(y) {

case 0: printf("Divide by zero error.\n");

break;

case 1: process(x,y);

}

break;

case 2:

.

.

.

Iteration Statements
In C/C++, and all other modern programming languages, iteration statements (also
called loops) allow a set of instructions to be executed repeatedly until a certain condition
is reached. This condition may be predefined (as in the for loop), or open-ended (as in
the while and do-while loops).

The for Loop
The general design of the for loop is reflected in some form or another in all procedural
programming languages. However, in C/C++, it provides unexpected flexibility
and power.

The general form of the for statement is

for(initialization; condition; increment) statement;

The for loop allows many variations, but its most common form works like this. The
initialization is an assignment statement that is used to set the loop control variable. The

C h a p t e r 3 : S t a t e m e n t s 71

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

condition is a relational expression that determines when the loop exits. The increment
defines how the loop control variable changes each time the loop is repeated. You must
separate these three major sections by semicolons. The for loop continues to execute
as long as the condition is true. Once the condition becomes false, program execution
resumes on the statement following the for.

In the following program, a for loop is used to print the numbers 1 through 100 on
the screen:

#include <stdio.h>

int main(void)

{

int x;

for(x=1; x <= 100; x++) printf("%d ", x);

return 0;

}

In the loop, x is initially set to 1 and then compared with 100. Since x is less than 100,
printf() is called and the loop iterates. This causes x to be increased by 1 and again tested
to see if it is still less than or equal to 100. If it is, printf() is called. This process repeats
until x is greater than 100, at which point the loop terminates. In this example, x is the
loop control variable, which is changed and checked each time the loop repeats.

The following example is a for loop that iterates multiple statements:

for(x=100; x != 65; x -= 5) {

z = x*x;

printf("The square of %d, %f", x, z);

}

Both the squaring of x and the call to printf() are executed until x equals 65. Note that
the loop is negative running: x is initialized to 100 and 5 is subtracted from it each time the
loop repeats.

In for loops, the conditional test is always performed at the top of the loop. This
means that the code inside the loop may not be executed at all if the condition is false
to begin with. For example, in

x = 10;

for(y=10; y!=x; ++y) printf("%d", y);

printf("%d", y); /* this is the only printf()

statement that will execute */

72 C + + : T h e C o m p l e t e R e f e r e n c e

the loop will never execute because x and y are equal when the loop is entered. Because
this causes the conditional expression to evaluate to false, neither the body of the loop
nor the increment portion of the loop executes. Hence, y still has the value 10, and the
only output produced by the fragment is the number 10 printed once on the screen.

for Loop Variations
The previous discussion described the most common form of the for loop. However,
several variations of the for are allowed that increase its power, flexibility, and
applicability to certain programming situations.

One of the most common variations uses the comma operator to allow two or
more variables to control the loop. (Remember, you use the comma operator to string
together a number of expressions in a "do this and this" fashion. See Chapter 2.) For
example, the variables x and y control the following loop, and both are initialized
inside the for statement:

for(x=0, y=0; x+y<10; ++x) {

y = getchar();

y = y - '0'; /* subtract the ASCII code for 0

from y */

.

.

.

}

Commas separate the two initialization statements. Each time the loop repeats, x is
incremented and y's value is set by keyboard input. Both x and y must be at the correct
value for the loop to terminate. Even though y's value is set by keyboard input, y must
be initialized to 0 so that its value is defined before the first evaluation of the conditional
expression. (If y were not defined, it could by chance contain the value 10, making the
conditional test false and preventing the loop from executing.)

The converge() function, shown next, demonstrates multiple loop control variables
in action. The converge() function copies the contents of one string into another by
moving characters from both ends, converging in the middle.

/* Demonstrate multiple loop control variables. */

#include <stdio.h>

#include <string.h>

void converge(char *targ, char *src);

int main(void)

{

C h a p t e r 3 : S t a t e m e n t s 73

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

char target[80] = "XXXXXXXXXXXXXXXXXXXXXXXXXXXXX";

converge(target, "This is a test of converge().");

printf("Final string: %s\n", target);

return 0;

}

/* This function copies one string into another.

It copies characters to both the ends,

converging at the middle. */

void converge(char *targ, char *src)

{

int i, j;

printf("%s\n", targ);

for(i=0, j=strlen(src); i<=j; i++, j--) {

targ[i] = src[i];

targ[j] = src[j];

printf("%s\n", targ);

}

}

Here is the output produced by the program.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

TXXXXXXXXXXXXXXXXXXXXXXXXXXXX

ThXXXXXXXXXXXXXXXXXXXXXXXXXX.

ThiXXXXXXXXXXXXXXXXXXXXXXXX).

ThisXXXXXXXXXXXXXXXXXXXXXX().

This XXXXXXXXXXXXXXXXXXXXe().

This iXXXXXXXXXXXXXXXXXXge().

This isXXXXXXXXXXXXXXXXrge().

This is XXXXXXXXXXXXXXerge().

This is aXXXXXXXXXXXXverge().

This is a XXXXXXXXXXnverge().

This is a tXXXXXXXXonverge().

This is a teXXXXXXconverge().

This is a tesXXXX converge().

This is a testXXf converge().

This is a test of converge().

Final string: This is a test of converge().

74 C + + : T h e C o m p l e t e R e f e r e n c e

In converge(), the for loop uses two loop control variables, i and j, to index the
string from opposite ends. As the loop iterates, i is increased and j is decreased. The
loop stops when i is greater than j, thus ensuring that all characters are copied.

The conditional expression does not have to involve testing the loop control variable
against some target value. In fact, the condition may be any relational or logical
statement. This means that you can test for several possible terminating conditions.

For example, you could use the following function to log a user onto a remote
system. The user has three tries to enter the password. The loop terminates when the
three tries are used up or the user enters the correct password.

void sign_on(void)

{

char str[20] = "";

int x;

for(x=0; x<3 && strcmp(str, "password"); ++x) {

printf("Enter password please:");

gets(str);

}

if(x==3) return;

/* else log user in ... */

}

This function uses strcmp(), the standard library function that compares two strings
and returns 0 if they match.

Remember, each of the three sections of the for loop may consist of any valid
expression. The expressions need not actually have anything to do with what the
sections are generally used for. With this in mind, consider the following example:

#include <stdio.h>

int sqrnum(int num);

int readnum(void);

int prompt(void);

int main(void)

{

int t;

for(prompt(); t=readnum(); prompt())

sqrnum(t);

return 0;

}

int prompt(void)

{

printf("Enter a number: ");

return 0;

}

int readnum(void)

{

int t;

scanf("%d", &t);

return t;

}

int sqrnum(int num)

{

printf("%d\n", num*num);

return num*num;

}

Look closely at the for loop in main(). Notice that each part of the for loop is composed
of function calls that prompt the user and read a number entered from the keyboard. If
the number entered is 0, the loop terminates because the conditional expression will be
false. Otherwise, the number is squared. Thus, this for loop uses the initialization and
increment portions in a nontraditional but completely valid sense.

Another interesting trait of the for loop is that pieces of the loop definition need
not be there. In fact, there need not be an expression present for any of the sections—
the expressions are optional. For example, this loop will run until the user enters 123:

for(x=0; x!=123;) scanf("%d", &x);

Notice that the increment portion of the for definition is blank. This means that each
time the loop repeats, x is tested to see if it equals 123, but no further action takes place.
If you type 123 at the keyboard, however, the loop condition becomes false and the
loop terminates.

C h a p t e r 3 : S t a t e m e n t s 75

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

The initialization of the loop control variable can occur outside the for statement.
This most frequently happens when the initial condition of the loop control variable
must be computed by some complex means as in this example:

gets(s); /* read a string into s */

if(*s) x = strlen(s); /* get the string's length */

else x = 10;

for(; x<10;) {

printf("%d", x);

++x;

}

The initialization section has been left blank and x is initialized before the loop is entered.

The Infinite Loop
Although you can use any loop statement to create an infinite loop, for is traditionally
used for this purpose. Since none of the three expressions that form the for loop are
required, you can make an endless loop by leaving the conditional expression empty:

for(; ;) printf("This loop will run forever.\n");

When the conditional expression is absent, it is assumed to be true. You may have an
initialization and increment expression, but C++ programmers more commonly use
the for(;;) construct to signify an infinite loop.

Actually, the for(;;) construct does not guarantee an infinite loop because a break
statement, encountered anywhere inside the body of a loop, causes immediate
termination. (break is discussed in detail later in this chapter.) Program control then
resumes at the code following the loop, as shown here:

ch = '\0';

for(; ;) {

ch = getchar(); /* get a character */

if(ch=='A') break; /* exit the loop */

}

printf("you typed an A");

This loop will run until the user types an A at the keyboard.

76 C + + : T h e C o m p l e t e R e f e r e n c e

for Loops with No Bodies
A statement may be empty. This means that the body of the for loop (or any other loop)
may also be empty. You can use this fact to improve the efficiency of certain algorithms
and to create time delay loops.

Removing spaces from an input stream is a common programming task. For example,
a database program may allow a query such as "show all balances less than 400." The
database needs to have each word fed to it separately, without leading spaces. That is,
the database input processor recognizes "show" but not " show". The following loop
shows one way to accomplish this. It advances past leading spaces in the string pointed
to by str.

for(; *str == ' '; str++) ;

As you can see, this loop has no body—and no need for one either.
Time delay loops are often used in programs. The following code shows how to create

one by using for:

for(t=0; t<SOME_VALUE; t++) ;

The while Loop
The second loop available in C/C++ is the while loop. Its general form is

while(condition) statement;

where statement is either an empty statement, a single statement, or a block of
statements. The condition may be any expression, and true is any nonzero value. The
loop iterates while the condition is true. When the condition becomes false, program
control passes to the line of code immediately following the loop.

The following example shows a keyboard input routine that simply loops until the
user types A:

char wait_for_char(void)

{

char ch;

ch = '\0'; /* initialize ch */

while(ch != 'A') ch = getchar();

return ch;

}

C h a p t e r 3 : S t a t e m e n t s 77

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

First, ch is initialized to null. As a local variable, its value is not known when
wait_for_char() is executed. The while loop then checks to see if ch is not equal to A.
Because ch was initialized to null, the test is true and the loop begins. Each time you
press a key, the condition is tested again. Once you enter an A, the condition becomes
false because ch equals A, and the loop terminates.

Like for loops, while loops check the test condition at the top of the loop, which
means that the body of the loop will not execute if the condition is false to begin with.
This feature may eliminate the need to perform a separate conditional test before the
loop. The pad() function provides a good illustration of this. It adds spaces to the end
of a string to fill the string to a predefined length. If the string is already at the desired
length, no spaces are added.

#include <stdio.h>

#include <string.h>

void pad(char *s, int length);

int main(void)

{

char str[80];

strcpy(str, "this is a test");

pad(str, 40);

printf("%d", strlen(str));

return 0;

}

/* Add spaces to the end of a string. */

void pad(char *s, int length)

{

int l;

l = strlen(s); /* find out how long it is */

while(l<length) {

s[l] = ' '; /* insert a space */

l++;

}

s[l]= '\0'; /* strings need to be

terminated in a null */

}

78 C + + : T h e C o m p l e t e R e f e r e n c e

The two arguments of pad() are s, a pointer to the string to lengthen, and length, the
number of characters that s should have. If the length of string s is already equal to or
greater than length, the code inside the while loop does not execute. If s is shorter than
length, pad() adds the required number of spaces. The strlen() function, part of the
standard library, returns the length of the string.

If several separate conditions need to terminate a while loop, a single variable
commonly forms the conditional expression. The value of this variable is set at various
points throughout the loop. In this example,

void func1(void)

{

int working;

working = 1; /* i.e., true */

while(working) {

working = process1();

if(working)

working = process2();

if(working)

working = process3();

}

}

any of the three routines may return false and cause the loop to exit.
There need not be any statements in the body of the while loop. For example,

while((ch=getchar()) != 'A') ;

will simply loop until the user types A. If you feel uncomfortable putting the
assignment inside the while conditional expression, remember that the equal sign is
just an operator that evaluates to the value of the right-hand operand.

The do-while Loop
Unlike for and while loops, which test the loop condition at the top of the loop, the
do-while loop checks its condition at the bottom of the loop. This means that a do-while
loop always executes at least once. The general form of the do-while loop is

do {
statement;

} while(condition);

C h a p t e r 3 : S t a t e m e n t s 79

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

80 C + + : T h e C o m p l e t e R e f e r e n c e

Although the curly braces are not necessary when only one statement is present, they
are usually used to avoid confusion (to you, not the compiler) with the while. The
do-while loop iterates until condition becomes false.

The following do-while loop will read numbers from the keyboard until it finds a
number less than or equal to 100.

do {

scanf("%d", &num);

} while(num > 100);

Perhaps the most common use of the do-while loop is in a menu selection function.
When the user enters a valid response, it is returned as the value of the function.
Invalid responses cause a reprompt. The following code shows an improved version
of the spelling-checker menu developed earlier in this chapter:

void menu(void)

{

char ch;

printf("1. Check Spelling\n");

printf("2. Correct Spelling Errors\n");

printf("3. Display Spelling Errors\n");

printf(" Enter your choice: ");

do {

ch = getchar(); /* read the selection from

the keyboard */

switch(ch) {

case '1':

check_spelling();

break;

case '2':

correct_errors();

break;

case '3':

display_errors();

break;

}

} while(ch!='1' && ch!='2' && ch!='3');

}

C h a p t e r 3 : S t a t e m e n t s 81

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

Here, the do-while loop is a good choice because you will always want a menu function
to display the menu at least once. After the options have been displayed, the program
will loop until a valid option is selected.

Declaring Variables within Selection
and Iteration Statements
In C++ (but not C89), it is possible to declare a variable within the conditional expression
of an if or switch, within the conditional expression of a while loop, or within the
initialization portion of a for loop. A variable declared in one of these places has its
scope limited to the block of code controlled by that statement. For example, a variable
declared within a for loop will be local to that loop.

Here is an example that declares a variable within the initialization portion of a
for loop:

/* i is local to for loop; j is known outside loop. */

int j;

for(int i = 0; i<10; i++)

j = i * i;

/* i = 10; // *** Error *** -- i not known here! */

Here, i is declared within the initialization portion of the for and is used to control the
loop. Outside the loop, i is unknown.

Since often a loop control variable in a for is needed only by that loop, the declaration
of the variable in the initialization portion of the for is becoming common practice.
Remember, however, that this is not supported by C89. (This restriction was removed
from C by C99.)

Whether a variable declared within the initialization portion of a for loop is local to that
loop has changed over time. Originally, the variable was available after the for. However,
Standard C++ restricts the variable to the scope of the for loop as just described.

If your compiler fully complies with Standard C++, then you can also declare a
variable within any conditional expression, such as those used by the if or a while. For
example, this fragment,

if(int x = 20) {

x = x - y;

82 C + + : T h e C o m p l e t e R e f e r e n c e

if(x>10) y = 0;

}

declares x and assigns it the value 20. Since this is a true value, the target of the if
executes. Variables declared within a conditional statement have their scope limited
to the block of code controlled by that statement. Thus, in this case, x is not known
outside the if. Frankly, not all programmers believe that declaring variables within
conditional statements is good practice, and this technique will not be used in
this book.

Jump Statements
C/C++ has four statements that perform an unconditional branch: return, goto, break,
and continue. Of these, you may use return and goto anywhere in your program. You
may use the break and continue statements in conjunction with any of the loop
statements. As discussed earlier in this chapter, you can also use break with switch.

The return Statement
The return statement is used to return from a function. It is categorized as a jump
statement because it causes execution to return (jump back) to the point at which the
call to the function was made. A return may or may not have a value associated with
it. If return has a value associated with it, that value becomes the return value of the
function. In C89, a non-void function does not technically have to return a value. If no
return value is specified, a garbage value is returned. However, in C++ (and in C99),
a non-void function must return a value. That is, in C++, if a function is specified as
returning a value, any return statement within it must have a value associated with it.
(Even in C89, if a function is declared as returning a value, it is good practice to
actually return one!)

The general form of the return statement is

return expression;

The expression is present only if the function is declared as returning a value. In this
case, the value of expression will become the return value of the function.

You can use as many return statements as you like within a function. However,
the function will stop executing as soon as it encounters the first return. The } that ends
a function also causes the function to return. It is the same as a return without any
specified value. If this occurs within a non-void function, then the return value of the
function is undefined.

A function declared as void may not contain a return statement that specifies a
value. Since a void function has no return value, it makes sense that no return
statement within a void function can return a value.

See Chapter 6 for more information on return.

The goto Statement
Since C/C++ has a rich set of control structures and allows additional control using
break and continue, there is little need for goto. Most programmers' chief concern
about the goto is its tendency to render programs unreadable. Nevertheless, although
the goto statement fell out of favor some years ago, it occasionally has its uses. There
are no programming situations that require goto. Rather, it is a convenience, which,
if used wisely, can be a benefit in a narrow set of programming situations, such as
jumping out of a set of deeply nested loops. The goto is not used outside of this section.

The goto statement requires a label for operation. (A label is a valid identifier
followed by a colon.) Furthermore, the label must be in the same function as the goto
that uses it—you cannot jump between functions. The general form of the goto
statement is

goto label;
.
.
.
label:

where label is any valid label either before or after goto. For example, you could create a
loop from 1 to 100 using the goto and a label, as shown here:

x = 1;

loop1:

x++;

if(x<100) goto loop1;

The break Statement
The break statement has two uses. You can use it to terminate a case in the switch
statement (covered in the section on switch earlier in this chapter). You can also use it
to force immediate termination of a loop, bypassing the normal loop conditional test.

When the break statement is encountered inside a loop, the loop is immediately
terminated and program control resumes at the next statement following the loop. For
example,

#include <stdio.h>

int main(void)

{

int t;

C h a p t e r 3 : S t a t e m e n t s 83

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

for(t=0; t<100; t++) {

printf("%d ", t);

if(t==10) break;

}

return 0;

}

prints the numbers 0 through 10 on the screen. Then the loop terminates because break
causes immediate exit from the loop, overriding the conditional test t<100.

Programmers often use the break statement in loops in which a special condition
can cause immediate termination. For example, here a keypress can stop the execution
of the look_up() function:

void look_up(char *name)

{

do {

/* look up names ... */

if(kbhit()) break;

} while(!found);

/* process match */

}

The kbhit() function returns 0 if you do not press a key. Otherwise, it returns a
nonzero value. Because of the wide differences between computing environments,
neither Standard C nor Standard C++ defines kbhit(), but you will almost certainly
have it (or one with a slightly different name) supplied with your compiler.

A break causes an exit from only the innermost loop. For example,

for(t=0; t<100; ++t) {

count = 1;

for(;;) {

printf("%d ", count);

count++;

if(count==10) break;

}

}

prints the numbers 1 through 10 on the screen 100 times. Each time execution encounters
break, control is passed back to the outer for loop.

84 C + + : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 3 : S t a t e m e n t s 85

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

A break used in a switch statement will affect only that switch. It does not affect
any loop the switch happens to be in.

The exit() Function
Although exit() is not a program control statement, a short digression that discusses
it is in order at this time. Just as you can break out of a loop, you can break out of a
program by using the standard library function exit(). This function causes immediate
termination of the entire program, forcing a return to the operating system. In effect,
the exit() function acts as if it were breaking out of the entire program.

The general form of the exit() function is

void exit(int return_code);

The value of return_code is returned to the calling process, which is usually the operating
system. Zero is generally used as a return code to indicate normal program termination.
Other arguments are used to indicate some sort of error. You can also use the macros
EXIT_SUCCESS and EXIT_FAILURE for the return_code. The exit() function requires
the header stdlib.h. A C++ program may also use the C++-style header <cstdlib>.

Programmers frequently use exit() when a mandatory condition for program
execution is not satisfied. For example, imagine a virtual reality computer game that
requires a special graphics adapter. The main() function of this game might look
like this:

#include <stdlib.h>

int main(void)

{

if(!virtual_graphics()) exit(1);

play();

/* ... */

}

/* */

where virtual_graphics() is a user-defined function that returns true if the virtual-reality
graphics adapter is present. If the adapter is not in the system, virtual_graphics()
returns false and the program terminates.

As another example, this version of menu() uses exit() to quit the program and
return to the operating system:

void menu(void)

{

86 C + + : T h e C o m p l e t e R e f e r e n c e

char ch;

printf("1. Check Spelling\n");

printf("2. Correct Spelling Errors\n");

printf("3. Display Spelling Errors\n");

printf("4. Quit\n");

printf(" Enter your choice: ");

do {

ch = getchar(); /* read the selection from

the keyboard */

switch(ch) {

case '1':

check_spelling();

break;

case '2':

correct_errors();

break;

case '3':

display_errors();

break;

case '4':

exit(0); /* return to OS */

}

} while(ch!='1' && ch!='2' && ch!='3');

}

The continue Statement
The continue statement works somewhat like the break statement. Instead of forcing
termination, however, continue forces the next iteration of the loop to take place,
skipping any code in between. For the for loop, continue causes the conditional test
and increment portions of the loop to execute. For the while and do-while loops,
program control passes to the conditional tests. For example, the following program
counts the number of spaces contained in the string entered by the user:

/* Count spaces */

#include <stdio.h>

int main(void)

{

char s[80], *str;

int space;

printf("Enter a string: ");

gets(s);

str = s;

for(space=0; *str; str++) {

if(*str != ' ') continue;

space++;

}

printf("%d spaces\n", space);

return 0;

}

Each character is tested to see if it is a space. If it is not, the continue statement forces
the for to iterate again. If the character is a space, space is incremented.

The following example shows how you can use continue to expedite the exit from
a loop by forcing the conditional test to be performed sooner:

void code(void)

{

char done, ch;

done = 0;

while(!done) {

ch = getchar();

if(ch=='$') {

done = 1;

continue;

}

putchar(ch+1); /* shift the alphabet one

position higher */

}

}

This function codes a message by shifting all characters you type one letter higher. For
example, an A becomes a B. The function will terminate when you type a $. After a $
has been input, no further output will occur because the conditional test, brought into
effect by continue, will find done to be true and will cause the loop to exit.

C h a p t e r 3 : S t a t e m e n t s 87

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

Expression Statements
Chapter 2 covered expressions thoroughly. However, a few special points are mentioned
here. Remember, an expression statement is simply a valid expression followed by a
semicolon, as in

func(); /* a function call */

a = b+c; /* an assignment statement */

b+f(); /* a valid, but strange statement */

; /* an empty statement */

The first expression statement executes a function call. The second is an assignment.
The third expression, though strange, is still evaluated by the C++ compiler and
the function f() is called. The final example shows that a statement can be empty
(sometimes called a null statement).

Block Statements
Block statements are simply groups of related statements that are treated as a unit. The
statements that make up a block are logically bound together. Block statements are also
called compound statements. A block is begun with a { and terminated by its matching }.
Programmers use block statements most commonly to create a multistatement target
for some other statement, such as if. However, you may place a block statement
anywhere you would put any other statement. For example, this is perfectly valid
(although unusual) C/C++ code:

#include <stdio.h>

int main(void)

{

int i;

{ /* a block statement */

i = 120;

printf("%d", i);

}

return 0;

}

88 C + + : T h e C o m p l e t e R e f e r e n c e

