
Chapter 2
Expressions

13

Copyright © 2003 by The McGraw-Hill Companies. Click here for terms of use.

This chapter examines the most fundamental element of the C (as well as the C++)
language: the expression. As you will see, expressions in C/C++ are substantially
more general and more powerful than in most other computer languages.

Expressions are formed from these atomic elements: data and operators. Data may be
represented either by variables or by constants. Like most other computer languages,
C/C++ supports a number of different types of data. It also provides a wide variety
of operators.

The Five Basic Data Types
There are five atomic data types in the C subset: character, integer, floating-point,
double floating-point, and valueless (char, int, float, double, and void, respectively).
As you will see, all other data types in C are based upon one of these types. The size
and range of these data types may vary between processor types and compilers. However,
in all cases a character is 1 byte. The size of an integer is usually the same as the word
length of the execution environment of the program. For most 16-bit environments, such
as DOS or Windows 3.1, an integer is 16 bits. For most 32-bit environments, such as
Windows 2000, an integer is 32 bits. However, you cannot make assumptions about
the size of an integer if you want your programs to be portable to the widest range of
environments. It is important to understand that both C and C++ only stipulate the
minimal range of each data type, not its size in bytes.

To the five basic data types defined by C, C++ adds two more: bool and wchar_t. These
are discussed in Part Two.

The exact format of floating-point values will depend upon how they are implemented.
Integers will generally correspond to the natural size of a word on the host computer.
Values of type char are generally used to hold values defined by the ASCII character
set. Values outside that range may be handled differently by different compilers.

The range of float and double will depend upon the method used to represent
the floating-point numbers. Whatever the method, the range is quite large. Standard
C specifies that the minimum range for a floating-point value is 1E−37 to 1E+37. The
minimum number of digits of precision for each floating-point type is shown in
Table 2-1.

Standard C++ does not specify a minimum size or range for the basic types. Instead, it
simply states that they must meet certain requirements. For example, Standard C++
states that an int will “have the natural size suggested by the architecture of the
execution environment." In all cases, this will meet or exceed the minimum ranges
specified by Standard C. Each C++ compiler specifies the size and range of the basic
types in the header <climits>.

14 C + + : T h e C o m p l e t e R e f e r e n c e

The type void either explicitly declares a function as returning no value or creates
generic pointers. Both of these uses are discussed in subsequent chapters.

Modifying the Basic Types
Except for type void, the basic data types may have various modifiers preceding them.
You use a modifier to alter the meaning of the base type to fit various situations more
precisely. The list of modifiers is shown here:

signed
unsigned
long
short

C h a p t e r 2 : E x p r e s s i o n s 15

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

Type Typical Size in Bits Minimal Range

char 8 −127 to 127

unsigned char 8 0 to 255

signed char 8 −127 to 127

int 16 or 32 −32,767 to 32,767

unsigned int 16 or 32 0 to 65,535

signed int 16 or 32 same as int

short int 16 −32,767 to 32,767

unsigned short int 16 0 to 65,535

signed short int 16 same as short int

long int 32 −2,147,483,647 to
2,147,483,647

signed long int 32 same as long int

unsigned long int 32 0 to 4,294,967,295

float 32 Six digits of precision

double 64 Ten digits of precision

long double 80 Ten digits of precision

Table 2-1. All Data Types Defined by the ANSI/ISO C Standard

You can apply the modifiers signed, short, long, and unsigned to integer base types.
You can apply unsigned and signed to characters. You may also apply long to double.
Table 2-1 shows all valid data type combinations, along with their minimal ranges and
approximate bit widths. (These values also apply to a typical C++ implementation.)
Remember, the table shows the minimum range that these types will have as specified
by Standard C/C++, not their typical range. For example, on computers that use two's
complement arithmetic (which is nearly all), an integer will have a range of at least
32,767 to –32,768.

The use of signed on integers is allowed, but redundant because the default integer
declaration assumes a signed number. The most important use of signed is to modify
char in implementations in which char is unsigned by default.

The difference between signed and unsigned integers is in the way that the high-
order bit of the integer is interpreted. If you specify a signed integer, the compiler
generates code that assumes that the high-order bit of an integer is to be used as a
sign flag. If the sign flag is 0, the number is positive; if it is 1, the number is negative.

In general, negative numbers are represented using the two's complement approach,
which reverses all bits in the number (except the sign flag), adds 1 to this number, and
sets the sign flag to 1.

Signed integers are important for a great many algorithms, but they only have half
the absolute magnitude of their unsigned relatives. For example, here is 32,767:

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

If the high-order bit were set to 1, the number would be interpreted as −1. However,
if you declare this to be an unsigned int, the number becomes 65,535 when the high-
order bit is set to 1.

When a type modifier is used by itself (that is, when it does not precede a basic
type), then int is assumed. Thus, the following sets of type specifiers are equivalent:

Specifier Same As

signed signed int

unsigned unsigned int

long long int

short short int

Although the int is implied, many programmers specify the int anyway.

Identifier Names
In C/C++, the names of variables, functions, labels, and various other user-defined
objects are called identifiers. These identifiers can vary from one to several characters.

16 C + + : T h e C o m p l e t e R e f e r e n c e

The first character must be a letter or an underscore, and subsequent characters must
be either letters, digits, or underscores. Here are some correct and incorrect identifier
names:

Correct Incorrect

Count 1count

test23 hi!there

high_balance high...balance

In C, identifiers may be of any length. However, not all characters will necessarily
be significant. If the identifier will be involved in an external link process, then at
least the first six characters will be significant. These identifiers, called external names,
include function names and global variables that are shared between files. If the
identifier is not used in an external link process, then at least the first 31 characters
will be significant. This type of identifier is called an internal name and includes the
names of local variables, for example. In C++, there is no limit to the length of an
identifier, and at least the first 1,024 characters are significant. This difference may
be important if you are converting a program from C to C++.

In an identifier, upper- and lowercase are treated as distinct. Hence, count, Count,
and COUNT are three separate identifiers.

An identifier cannot be the same as a C or C++ keyword, and should not have the
same name as functions that are in the C or C++ library.

Variables
As you probably know, a variable is a named location in memory that is used to hold a
value that may be modified by the program. All variables must be declared before they
can be used. The general form of a declaration is

type variable_list;

Here, type must be a valid data type plus any modifiers, and variable_list may consist of
one or more identifier names separated by commas. Here are some declarations:

int i,j,l;

short int si;

unsigned int ui;

double balance, profit, loss;

Remember, in C/C++ the name of a variable has nothing to do with its type.

C h a p t e r 2 : E x p r e s s i o n s 17

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

Where Variables Are Declared
Variables will be declared in three basic places: inside functions, in the definition of
function parameters, and outside of all functions. These are local variables, formal
parameters, and global variables.

Local Variables
Variables that are declared inside a function are called local variables. In some C/C++
literature, these variables are referred to as automatic variables. This book uses the more
common term, local variable. Local variables may be referenced only by statements that
are inside the block in which the variables are declared. In other words, local variables
are not known outside their own code block. Remember, a block of code begins with an
opening curly brace and terminates with a closing curly brace.

Local variables exist only while the block of code in which they are declared is
executing. That is, a local variable is created upon entry into its block and destroyed
upon exit.

The most common code block in which local variables are declared is the function.
For example, consider the following two functions:

void func1(void)

{

int x;

x = 10;

}

void func2(void)

{

int x;

x = -199;

}

The integer variable x is declared twice, once in func1() and once in func2(). The x in
func1() has no bearing on or relationship to the x in func2(). This is because each x
is known only to the code within the block in which it is declared.

The C language contains the keyword auto, which you can use to declare local
variables. However, since all nonglobal variables are, by default, assumed to be auto,
this keyword is virtually never used. Hence, the examples in this book will not use it.
(It has been said that auto was included in C to provide for source-level compatibility
with its predecessor B. Further, auto is supported in C++ to provide compatibility
with C.)

18 C + + : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 : E x p r e s s i o n s 19

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

For reasons of convenience and tradition, most programmers declare all the variables
used by a function immediately after the function's opening curly braceand before any
other statements. However, you may declare local variables within any code block. The
block defined by a function is simply a special case. For example,

void f(void)

{

int t;

scanf("%d%*c", &t);

if(t==1) {

char s[80]; /* this is created only upon

entry into this block */

printf("Enter name:");

gets(s);

/* do something ... */

}

}

Here, the local variable s is created upon entry into the if code block and destroyed
upon exit. Furthermore, s is known only within the if block and may not be referenced
elsewhere—even in other parts of the function that contains it.

Declaring variables within the block of code that uses them helps prevent
unwanted side effects. Since a variable does not exist outside the block in which it is
declared, it cannot be accidentally altered.

There is an important difference between C (as defined by C89) and C++ as to
where you can declare local variables. In C, you must declare all local variables at the
start of a block, prior to any "action" statements. For example, in C89 the following
function is in error.

/* For C89, this function is in error,

but it is perfectly acceptable for C++.

*/

void f(void)

{

int i;

i = 10;

int j; /* this line will cause an error */

j = 20;

}

However, in C++, this function is perfectly valid because you can declare local
variables at any point within a block, prior to their first use. (The topic of C++ variable
declaration is discussed in depth in Part Two.) As a point of interest, C99 allows you to
define variables at any point within a block.

Because local variables are created and destroyed with each entry and exit from
the block in which they are declared, their content is lost once the block is left. This is
especially important to remember when calling a function. When a function is called,
its local variables are created, and upon its return they are destroyed. This means that
local variables cannot retain their values between calls. (However, you can direct the
compiler to retain their values by using the static modifier.)

Unless otherwise specified, local variables are stored on the stack. The fact that
the stack is a dynamic and changing region of memory explains why local variables
cannot, in general, hold their values between function calls.

You can initialize a local variable to some known value. This value will be assigned
to the variable each time the block of code in which it is declared is entered. For example,
the following program prints the number 10 ten times:

#include <stdio.h>

void f(void);

int main(void)

{

int i;

for(i=0; i<10; i++) f();

return 0;

}

void f(void)

{

int j = 10;

printf("%d ", j);

j++; /* this line has no lasting effect */

}

20 C + + : T h e C o m p l e t e R e f e r e n c e

Formal Parameters
If a function is to use arguments, it must declare variables that will accept the values
of the arguments. These variables are called the formal parameters of the function. They
behave like any other local variables inside the function. As shown in the following
program fragment, their declarations occur after the function name and inside
parentheses:

/* Return 1 if c is part of string s; 0 otherwise */

int is_in(char *s, char c)

{

while(*s)

if(*s==c) return 1;

else s++;

return 0;

}

The function is_in() has two parameters: s and c. This function returns 1 if the character
specified in c is contained within the string s; 0 if it is not.

You must specify the type of the formal parameters by declaring them as just shown.
Then you may use them inside the function as normal local variables. Keep in mind that,
as local variables, they are also dynamic and are destroyed upon exit from the function.

As with local variables, you may make assignments to a function's formal parameters
or use them in any allowable expression. Even though these variables receive the value of
the arguments passed to the function, you can use them like any other local variable.

Global Variables
Unlike local variables, global variables are known throughout the program and may be
used by any piece of code. Also, they will hold their value throughout the program's
execution. You create global variables by declaring them outside of any function. Any
expression may access them, regardless of what block of code that expression is in.

In the following program, the variable count has been declared outside of all functions.
Although its declaration occurs before the main() function, you could have placed it
anywhere before its first use as long as it was not in a function. However, it is usually
best to declare global variables at the top of the program.

#include <stdio.h>

int count; /* count is global */

void func1(void);

C h a p t e r 2 : E x p r e s s i o n s 21

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

void func2(void);

int main(void)

{

count = 100;

func1();

return 0;

}

void func1(void)

{

int temp;

temp = count;

func2();

printf("count is %d", count); /* will print 100 */

}

void func2(void)

{

int count;

for(count=1; count<10; count++)

putchar('.');

}

Look closely at this program. Notice that although neither main() nor func1() has
declared the variable count, both may use it. func2(), however, has declared a local
variable called count. When func2() refers to count, it refers to only its local variable,
not the global one. If a global variable and a local variable have the same name, all
references to that variable name inside the code block in which the local variable is
declared will refer to that local variable and have no effect on the global variable.
This can be convenient, but forgetting it can cause your program to act strangely,
even though it looks correct.

Storage for global variables is in a fixed region of memory set aside for this purpose
by the compiler. Global variables are helpful when many functions in your program
use the same data. You should avoid using unnecessary global variables, however.
They take up memory the entire time your program is executing, not just when they are
needed. In addition, using a global where a local variable would do makes a function
less general because it relies on something that must be defined outside itself. Finally,
using a large number of global variables can lead to program errors because of unknown

22 C + + : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 : E x p r e s s i o n s 23

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

and unwanted side effects. A major problem in developing large programs is the
accidental changing of a variable's value because it was used elsewhere in the program.
This can happen in C/C++ if you use too many global variables in your programs.

The const and volatile Qualifiers
There are two qualifiers that control how variables may be accessed or modified:
const and volatile. They must precede the type modifiers and the type names that
they qualify. These qualifiers are formally referred to as the cv-qualifiers.

const
Variables of type const may not be changed by your program. (A const variable can be
given an initial value, however.) The compiler is free to place variables of this type into
read-only memory (ROM). For example,

const int a=10;

creates an integer variable called a with an initial value of 10 that your program
may not modify. However, you can use the variable a in other types of expressions.
A const variable will receive its value either from an explicit initialization or by some
hardware-dependent means.

The const qualifier can be used to protect the objects pointed to by the arguments
to a function from being modified by that function. That is, when a pointer is passed to
a function, that function can modify the actual variable pointed to by the pointer. However,
if the pointer is specified as const in the parameter declaration, the function code won't
be able to modify what it points to. For example, the sp_to_dash() function in the
following program prints a dash for each space in its string argument. That is, the string
"this is a test" will be printed as "this-is-a-test". The use of const in the parameter
declaration ensures that the code inside the function cannot modify the object pointed
to by the parameter.

#include <stdio.h>

void sp_to_dash(const char *str);

int main(void)

{

sp_to_dash("this is a test");

return 0;

}

void sp_to_dash(const char *str)

{

while(*str) {

if(*str== ' ') printf("%c", '-');

else printf("%c", *str);

str++;

}

}

If you had written sp_to_dash() in such a way that the string would be modified, it
would not compile. For example, if you had coded sp_to_dash() as follows, you would
receive a compile-time error:

/* This is wrong. */

void sp_to_dash(const char *str)

{

while(*str) {

if(*str==' ') *str = '-'; /* can't do this; str is const */

printf("%c", *str);

str++;

}

}

Many functions in the standard library use const in their parameter declarations.
For example, the strlen() function has this prototype:

size_t strlen(const char *str);

Specifying str as const ensures that strlen() will not modify the string pointed to by str.
In general, when a standard library function has no need to modify an object pointed to
by a calling argument, it is declared as const.

You can also use const to verify that your program does not modify a variable.
Remember, a variable of type const can be modified by something outside your
program. For example, a hardware device may set its value. However, by declaring
a variable as const, you can prove that any changes to that variable occur because of
external events.

volatile
The modifier volatile tells the compiler that a variable's value may be changed in ways
not explicitly specified by the program. For example, a global variable's address may
be passed to the operating system's clock routine and used to hold the real time of the

24 C + + : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 : E x p r e s s i o n s 25

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

system. In this situation, the contents of the variable are altered without any explicit
assignment statements in the program. This is important because most C/C++ compilers
automatically optimize certain expressions by assuming that a variable's content is
unchanging if it does not occur on the left side of an assignment statement; thus, it
might not be reexamined each time it is referenced. Also, some compilers change the
order of evaluation of an expression during the compilation process. The volatile
modifier prevents these changes.

You can use const and volatile together. For example, if 0x30 is assumed to be the
value of a port that is changed by external conditions only, the following declaration
would prevent any possibility of accidental side effects:

const volatile char *port = (const volatile char *) 0x30;

Storage Class Specifiers
There are four storage class specifiers supported by C:

extern
static
register
auto

These specifiers tell the compiler how to store the subsequent variable. The general
form of a declaration that uses one is shown here.

storage_specifier type var_name;

Notice that the storage specifier precedes the rest of the variable declaration.

C++ adds another storage-class specifier called mutable, which is described in
Part Two.

extern
Before examining extern, a brief description of C/C++ linkage is in order. C and C++
define three categories of linkage: external, internal, and none. In general, functions
and global variables have external linkage. This means that they are available to all
files that comprise a program. Global objects declared as static (described in the next
section) have internal linkage. These are known only within the file in which they are
declared. Local variables have no linkage and are therefore known only within their
own block.

The principal use of extern is to specify that an object is declared with external
linkage elsewhere in the program. To understand why this is important it is necessary

to understand the difference between a declaration and a definition. A declaration declares
the name and type of an object. A definition causes storage to be allocated for the
object. While there can be many declarations of the same object, there can be only one
definition for the object.

In most cases, variable declarations are also definitions. However, by preceding a
variable name with the extern specifier, you can declare a variable without defining it.
Thus, when you need to refer to a variable that is defined in another part of your program,
you can declare that variable using extern.

Here is an example that uses extern. Notice that the global variables first and last
are declared after main().

#include <stdio.h>

int main(void)

{

extern int first, last; /* use global vars */

printf("%d %d", first, last);

return 0;

}

/* global definition of first and last */

int first = 10, last = 20;

This programs outputs 10 20 because the global variables first and last used by the
printf() statement are initialized to these values. Because the extern declaration in
main() tells the compiler that first and last are declared elsewhere (in this case, later
in the same file), the program can be compiled without error even though first and
last are used prior to their definition.

It is important to understand that the extern variable declarations as shown in the
preceding program are necessary only because first and last had not yet been declared
prior to their use in main(). Had their declarations occurred prior to main(), then there
would have been no need for the extern statement. Remember, if the compiler finds a
variable that has not been declared within the current block, the compiler checks if it
matches any of the variables declared within enclosing blocks. If it does not, the compiler
then checks the previously declared global variables. If a match is found, the compiler
assumes that that is the variable being referenced. The extern specifier is needed when
you want to use a variable that is declared later in the file.

As mentioned, extern allows you to declare a variable without defining it. However,
if you give that variable an initialization, then the extern declaration becomes a definition.
This is important because an object can have multiple declarations, but only one
definition.

26 C + + : T h e C o m p l e t e R e f e r e n c e

There is an important use of extern that relates to mutiple-file programs. In C/C++,
a program can be spread across two or more files, compiled separately, and then linked
together. When this is the case, there must be some way of telling all the files about the
global variables required by the program. The best (and most portable) way to do this
is to declare all of your global variables in one file and use extern declarations in the
other, as in Figure 2-1.

In File Two, the global variable list was copied from File One and the extern specifier
was added to the declarations. The extern specifier tells the compiler that the variable
types and names that follow it have been defined elsewhere. In other words, extern lets
the compiler know what the types and names are for these global variables without
actually creating storage for them again. When the linker links the two modules, all
references to the external variables are resolved.

In real world, multi-file programs, extern declarations are normally contained in
a header file that is simply included with each source code file. This is both easier and
less error prone than manually duplicating extern declarations in each file.

In C++, the extern specifier has another use, which is described in Part Two.

extern can also be applied to a function declaration, but doing so is redundant.

C h a p t e r 2 : E x p r e s s i o n s 27

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

File One File Two

int x, y; extern int x, y;

char ch; extern char ch;

int main(void) void func22(void)

{ {

/* ... */ x = y / 10;

} }

void func1(void) void func23(void)

{ {

x = 123; y = 10;

} }

Figure 2-1. Using global variables in separately compiled modules

28 C + + : T h e C o m p l e t e R e f e r e n c e

static Variables
static variables are permanent variables within their own function or file. Unlike global
variables, they are not known outside their function or file, but they maintain their
values between calls. This feature makes them useful when you write generalized
functions and function libraries that other programmers may use. static has different
effects upon local variables and global variables.

static Local Variables
When you apply the static modifier to a local variable, the compiler creates permanent
storage for it, much as it creates storage for a global variable. The key difference
between a static local variable and a global variable is that the static local variable
remains known only to the block in which it is declared. In simple terms, a static local
variable is a local variable that retains its value between function calls.

static local variables are very important to the creation of stand-alone functions
because several types of routines must preserve a value between calls. If static variables
were not allowed, globals would have to be used, opening the door to possible side
effects. An example of a function that benefits from a static local variable is a number-
series generator that produces a new value based on the previous one. You could use
a global variable to hold this value. However, each time the function is used in a
program, you would have to declare that global variable and make sure that it did not
conflict with any other global variables already in place. The better solution is to declare
the variable that holds the generated number to be static, as in this program fragment:

int series(void)

{

static int series_num;

series_num = series_num+23;

return series_num;

}

In this example, the variable series_num stays in existence between function calls,
instead of coming and going the way a normal local variable would. This means that
each call to series() can produce a new member in the series based on the preceding
number without declaring that variable globally.

You can give a static local variable an initialization value. This value is assigned
only once, at program start-up—not each time the block of code is entered, as with
normal local variables. For example, this version of series() initializes series_num
to 100:

int series(void)

{

C h a p t e r 2 : E x p r e s s i o n s 29

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

static int series_num = 100;

series_num = series_num+23;

return series_num;

}

As the function now stands, the series will always begin with the same value—in this
case, 123. While this might be acceptable for some applications, most series generators
need to let the user specify the starting point. One way to give series_num a user-specified
value is to make it a global variable and then let the user set its value. However, not
defining series_num as global was the point of making it static. This leads to the second
use of static.

static Global Variables
Applying the specifier static to a global variable instructs the compiler to create a
global variable that is known only to the file in which you declared it. This means
that even though the variable is global, routines in other files may have no knowledge
of it or alter its contents directly, keeping it free from side effects. For the few situations
where a local static variable cannot do the job, you can create a small file that contains
only the functions that need the global static variable, separately compile that file, and
use it without fear of side effects.

To illustrate a global static variable, the series generator example from the previous
section is recoded so that a seed value initializes the series through a call to a second
function called series_start(). The entire file containing series(), series_start(), and
series_num is shown here:

/* This must all be in one file - preferably by itself. */

static int series_num;

void series_start(int seed);

int series(void);

int series(void)

{

series_num = series_num+23;

return series_num;

}

/* initialize series_num */

void series_start(int seed)

{

series_num = seed;

}

Calling series_start() with some known integer value initializes the series generator.
After that, calls to series() generate the next element in the series.

To review: The names of local static variables are known only to the block of code
in which they are declared; the names of global static variables are known only to the
file in which they reside. If you place the series() and series_start() functions in a
library, you can use the functions but cannot reference the variable series_num, which
is hidden from the rest of the code in your program. In fact, you can even declare and
use another variable called series_num in your program (in another file, of course). In
essence, the static modifier permits variables that are known only to the functions that
need them, without unwanted side effects.

static variables enable you to hide portions of your program from other portions.
This can be a tremendous advantage when you are trying to manage a very large and
complex program.

In C++, the preceding use of static is still supported, but deprecated. This means that it
is not recommended for new code. Instead, you should use a namespace, which is described
in Part Two.

register Variables
The register storage specifier originally applied only to variables of type int, char, or
pointer types. However, register's definition has been broadened so that it applies to
any type of variable.

Originally, the register specifier requested that the compiler keep the value of a
variable in a register of the CPU rather than in memory, where normal variables are
stored. This meant that operations on a register variable could occur much faster than
on a normal variable because the register variable was actually held in the CPU and
did not require a memory access to determine or modify its value.

Today, the definition of register has been greatly expanded and it now may be applied
to any type of variable. Standard C simply states "that access to the object be as fast as
possible." (Standard C++ states that register is a "hint to the implementation that the
object so declared will be heavily used.") In practice, characters and integers are still
stored in registers in the CPU. Larger objects like arrays obviously cannot be stored in
a register, but they may still receive preferential treatment by the compiler. Depending
upon the implementation of the C/C++ compiler and its operating environment, register
variables may be handled in any way deemed fit by the compiler's implementor. In fact,
it is technically permissible for a compiler to ignore the register specifier altogether
and treat variables modified by it as if they weren't, but this is seldom done in practice.

You can only apply the register specifier to local variables and to the formal
parameters in a function. Global register variables are not allowed. Here is an example
that uses register variables. This function computes the result of Me for integers:

30 C + + : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 : E x p r e s s i o n s 31

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

int int_pwr(register int m, register int e)

{

register int temp;

temp = 1;

for(; e; e--) temp = temp * m;

return temp;

}

In this example, e, m, and temp are declared as register variables because they
are all used within the loop. The fact that register variables are optimized for speed
makes them ideal for control of or use in loops. Generally, register variables are used
where they will do the most good, which are often places where many references will
be made to the same variable. This is important because you can declare any number
of variables as being of type register, but not all will receive the same access speed
optimization.

The number of register variables optimized for speed within any one code block is
determined by both the environment and the specific implementation of C/C++. You
don't have to worry about declaring too many register variables because the compiler
automatically transforms register variables into nonregister variables when the limit is
reached. (This ensures portability of code across a broad line of processors.)

Usually at least two register variables of type char or int can actually be held in
the registers of the CPU. Because environments vary widely, consult your compiler's
documentation to determine if you can apply any other types of optimization options.

In C, you cannot find the address of a register variable using the & operator (discussed
later in this chapter). This makes sense because a register variable might be stored in
a register of the CPU, which is not usually addressable. But this restriction does not
apply to C++. However, taking the address of a register variable in C++ may prevent
it from being fully optimized.

Although the description of register has been broadened beyond its traditional
meaning, in practice it still generally has a significant effect only with integer and
character types. Thus, you should probably not count on substantial speed improvements
for other variable types.

Variable Initializations
You can give variables a value as you declare them by placing an equal sign and
a value after the variable name. The general form of initialization is

type variable_name = value;

32 C + + : T h e C o m p l e t e R e f e r e n c e

Some examples are

char ch = 'a';

int first = 0;

float balance = 123.23;

Global and static local variables are initialized only at the start of the program. Local
variables (excluding static local variables) are initialized each time the block in which
they are declared is entered. Local variables that are not initialized have unknown
values before the first assignment is made to them. Uninitialized global and static local
variables are automatically set to zero.

Constants
Constants refer to fixed values that the program cannot alter. Constants can be of any
of the basic data types. The way each constant is represented depends upon its type.
Constants are also called literals.

Character constants are enclosed between single quotes. For example 'a' and '%'
are both character constants. Both C and C++ define wide characters (used mostly in
non-English language environments), which are 16 bits long. To specify a wide character
constant, precede the character with an L. For example,

wchar_t wc;

wc = L'A';

Here, wc is assigned the wide-character constant equivalent of A. The type of wide
characters is wchar_t. In C, this type is defined in a header file and is not a built-in
type. In C++, wchar_t is built in.

Integer constants are specified as numbers without fractional components. For
example, 10 and –100 are integer constants. Floating-point constants require the
decimal point followed by the number's fractional component. For example, 11.123
is a floating-point constant. C/C++ also allows you to use scientific notation for
floating-point numbers.

There are two floating-point types: float and double. There are also several variations
of the basic types that you can generate using the type modifiers. By default, the compiler
fits a numeric constant into the smallest compatible data type that will hold it. Therefore,
assuming 16-bit integers, 10 is int by default, but 103,000 is a long. Even though the
value 10 could fit into a character type, the compiler will not cross type boundaries. The
only exception to the smallest type rule are floating-point constants, which are assumed
to be doubles.

For most programs you will write, the compiler defaults are adequate. However,
you can specify precisely the type of numeric constant you want by using a suffix.
For floating-point types, if you follow the number with an F, the number is treated

C h a p t e r 2 : E x p r e s s i o n s 33

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

as a float. If you follow it with an L, the number becomes a long double. For integer
types, the U suffix stands for unsigned and the L for long. Here are some examples:

Data type Constant examples

int 1 123 21000 −234

long int 35000L −34L

unsigned int 10000U 987U 40000U

float 123.23F 4.34e−3F

double 123.23 1.0 −0.9876324

long double 1001.2L

Hexadecimal and Octal Constants
It is sometimes easier to use a number system based on 8 or 16 rather than 10 (our
standard decimal system). The number system based on 8 is called octal and uses the
digits 0 through 7. In octal, the number 10 is the same as 8 in decimal. The base 16 number
system is called hexadecimal and uses the digits 0 through 9 plus the letters A through F,
which stand for 10, 11, 12, 13, 14, and 15, respectively. For example, the hexadecimal
number 10 is 16 in decimal. Because these two number systems are used frequently,
C/C++ allows you to specify integer constants in hexadecimal or octal instead of
decimal. A hexadecimal constant must consist of a 0x followed by the constant in
hexadecimal form. An octal constant begins with a 0. Here are some examples:

int hex = 0x80; /* 128 in decimal */

int oct = 012; /* 10 in decimal */

String Constants
C/C++ supports one other type of constant: the string. A string is a set of characters
enclosed in double quotes. For example, "this is a test" is a string. You have seen examples
of strings in some of the printf() statements in the sample programs. Although C
allows you to define string constants, it does not formally have a string data type.
(C++ does define a string class, however.)

You must not confuse strings with characters. A single character constant is enclosed
in single quotes, as in 'a'. However, "a" is a string containing only one letter.

Backslash Character Constants
Enclosing character constants in single quotes works for most printing characters. A
few, however, such as the carriage return, are impossible to enter into a string from the
keyboard. For this reason, C/C++ include the special backslash character constants shown

in Table 2-2 so that you may easily enter these special characters as constants. These are
also referred to as escape sequences. You should use the backslash codes instead of their
ASCII equivalents to help ensure portability.

For example, the following program outputs a new line and a tab and then prints
the string This is a test.

#include <stdio.h>

int main(void)

{

printf("\n\tThis is a test.");

return 0;

}

34 C + + : T h e C o m p l e t e R e f e r e n c e

Code Meaning

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\" Double quote

\' Single quote

\0 Null

\\ Backslash

\v Vertical tab

\a Alert

\? Question mark

\N Octal constant (where N is an octal constant)

\xN Hexadecimal constant (where N is a hexadecimal
constant)

Table 2-2. Backslash Codes

C h a p t e r 2 : E x p r e s s i o n s 35

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

Operators
C/C++ is rich in built-in operators. In fact, it places more significance on operators than
do most other computer languages. There are four main classes of operators: arithmetic,
relational, logical, and bitwise. In addition, there are some special operators for
particular tasks.

The Assignment Operator
You can use the assignment operator within any valid expression. This is not the case
with many computer languages (including Pascal, BASIC, and FORTRAN), which treat
the assignment operator as a special case statement. The general form of the assignment
operator is

variable_name = expression;

where an expression may be as simple as a single constant or as complex as you require.
C/C++ uses a single equal sign to indicate assignment (unlike Pascal or Modula-2,
which use the := construct). The target, or left part, of the assignment must be a variable
or a pointer, not a function or a constant.

Frequently in literature on C/C++ and in compiler error messages you will see
these two terms: lvalue and rvalue. Simply put, an lvalue is any object that can occur
on the left side of an assignment statement. For all practical purposes, "lvalue" means
"variable." The term rvalue refers to expressions on the right side of an assignment and
simply means the value of an expression.

Type Conversion in Assignments
When variables of one type are mixed with variables of another type, a type conversion
will occur. In an assignment statement, the type conversion rule is easy: The value of
the right side (expression side) of the assignment is converted to the type of the left
side (target variable), as illustrated here:

int x;

char ch;

float f;

void func(void)

{

ch = x; /* line 1 */

x = f; /* line 2 */

f = ch; /* line 3 */

f = x; /* line 4 */

}

In line 1, the left high-order bits of the integer variable x are lopped off, leaving ch with
the lower 8 bits. If x were between 255 and 0, ch and x would have identical values.
Otherwise, the value of ch would reflect only the lower-order bits of x. In line 2, x will
receive the nonfractional part of f. In line 3, f will convert the 8-bit integer value stored
in ch to the same value in the floating-point format. This also happens in line 4, except
that f will convert an integer value into floating-point format.

When converting from integers to characters and long integers to integers, the
appropriate amount of high-order bits will be removed. In many 16-bit environments,
this means that 8 bits will be lost when going from an integer to a character and 16 bits
will be lost when going from a long integer to an integer. For 32-bit environments,
24 bits will be lost when converting from an integer to a character and 16 bits will be
lost when converting from an integer to a short integer.

Table 2-3 summarizes the assignment type conversions. Remember that the conversion
of an int to a float, or a float to a double, and so on, does not add any precision or
accuracy. These kinds of conversions only change the form in which the value is
represented. In addition, some compilers always treat a char variable as positive, no
matter what value it has, when converting it to an int or float. Other compilers treat
char variable values greater than 127 as negative numbers when converting. Generally

36 C + + : T h e C o m p l e t e R e f e r e n c e

Target Type Expression Type Possible Info Loss

signed char char If value > 127, target is negative

char short int High-order 8 bits

char int (16 bits) High-order 8 bits

char int (32 bits) High-order 24 bits

char long int High-order 24 bits

short int int (16 bits) None

short int int (32 bits) High-order 16 bits

int (16 bits) long int High-order 16 bits

int (32 bits) long int None

int float Fractional part and possibly more

float double Precision, result rounded

double long double Precision, result rounded

Table 2-3. The Outcome of Common Type Conversions

C h a p t e r 2 : E x p r e s s i o n s 37

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

speaking, you should use char variables for characters, and use ints, short ints, or
signed chars when needed to avoid possible portability problems.

To use Table 2-3 to make a conversion not shown, simply convert one type at a time
until you finish. For example, to convert from double to int, first convert from double
to float and then from float to int.

Multiple Assignments
C/C++ allows you to assign many variables the same value by using multiple assignments
in a single statement. For example, this program fragment assigns x, y, and z the value 0:

x = y = z = 0;

In professional programs, variables are frequently assigned common values using this
method.

Arithmetic Operators
Table 2-4 lists C/C++'s arithmetic operators. The operators +, −, *, and / work as they
do in most other computer languages. You can apply them to almost any built-in data
type. When you apply / to an integer or character, any remainder will be truncated.
For example, 5/2 will equal 2 in integer division.

The modulus operator % also works in C/C++ as it does in other languages,
yielding the remainder of an integer division. However, you cannot use it on
floating-point types. The following code fragment illustrates %:

int x, y;

x = 5;

y = 2;

printf("%d ", x/y); /* will display 2 */

printf("%d ", x%y); /* will display 1, the remainder of

the integer division */

x = 1;

y = 2;

printf("%d %d", x/y, x%y); /* will display 0 1 */

The last line prints a 0 and a 1 because 1/2 in integer division is 0 with a remainder of 1.
The unary minus multiplies its operand by –1. That is, any number preceded by

a minus sign switches its sign.

Increment and Decrement
C/C++ includes two useful operators not found in some other computer languages.
These are the increment and decrement operators, ++ and − −. The operator ++ adds 1
to its operand, and − − subtracts 1. In other words:

x = x+1;

is the same as

++x;

and

x = x-1;

is the same as

x--;

Both the increment and decrement operators may either precede (prefix) or follow
(postfix) the operand. For example,

38 C + + : T h e C o m p l e t e R e f e r e n c e

Operator Action

− Subtraction, also unary minus

+ Addition

* Multiplication

/ Division

% Modulus

– – Decrement

++ Increment

Table 2-4. Arithmetic Operators

C h a p t e r 2 : E x p r e s s i o n s 39

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

x = x+1;

can be written

++x;

or

x++;

There is, however, a difference between the prefix and postfix forms when you use
these operators in an expression. When an increment or decrement operator precedes
its operand, the increment or decrement operation is performed before obtaining the value
of the operand for use in the expression. If the operator follows its operand, the value of
the operand is obtained before incrementing or decrementing it. For instance,

x = 10;

y = ++x;

sets y to 11. However, if you write the code as

x = 10;

y = x++;

y is set to 10. Either way, x is set to 11; the difference is in when it happens.
Most C/C++ compilers produce very fast, efficient object code for increment and

decrement operations—code that is better than that generated by using the equivalent
assignment statement. For this reason, you should use the increment and decrement
operators when you can.

Here is the precedence of the arithmetic operators:

highest ++ – –

– (unary minus)

* / %

lowest + –

Operators on the same level of precedence are evaluated by the compiler from left to
right. Of course, you can use parentheses to alter the order of evaluation. C/C++ treats
parentheses in the same way as virtually all other computer languages. Parentheses
force an operation, or set of operations, to have a higher level of precedence.

Relational and Logical Operators
In the term relational operator, relational refers to the relationships that values canhave
with one another. In the term logical operator, logical refers to the ways these relationships
can be connected. Because the relational and logical operators oftenwork together, they
are discussed together here.

The idea of true and false underlies the concepts of relational and logical operators.
In C, true is any value other than zero. False is zero. Expressions that use relational or
logical operators return 0 for false and 1 for true.

C++ fully supports the zero/non-zero concept of true and false. However, it also
defines the bool data type and the Boolean constants true and false. In C++, a 0 value
is automatically converted into false, and a non-zero value is automatically converted
into true. The reverse also applies: true converts to 1 and false converts to 0. In C++,
the outcome of a relational or logical operation is true or false. But since this automatically
converts into 1 or 0, the distinction between C and C++ on this issue is mostly academic.

Table 2-5 shows the relational and logical operators. The truth table for the logical
operators is shown here using 1's and 0's.

p q p && q p || q !p

0 0 0 0 1

0 1 0 1 1

1 1 1 1 0

1 0 0 1 0

Both the relational and logical operators are lower in precedence than the
arithmetic operators. That is, an expression like 10 > 1+12 is evaluated as if it were
written 10 > (1+12). Of course, the result is false.

You can combine several operations together into one expression, as shown here:

10>5 && !(10<9) || 3<=4

In this case, the result is true.
Although neither C nor C++ contain an exclusive OR (XOR) logical operator, you

can easily create a function that performs this task using the other logical operators.
The outcome of an XOR operation is true if and only if one operand (but not both) is

40 C + + : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 : E x p r e s s i o n s 41

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

true. The following program contains the function xor(), which returns the outcome of
an exclusive OR operation performed on its two arguments:

#include <stdio.h>

int xor(int a, int b);

int main(void)

{

printf("%d", xor(1, 0));

printf("%d", xor(1, 1));

printf("%d", xor(0, 1));

printf("%d", xor(0, 0));

return 0;

}

Relational Operators

Operator Action

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal

= = Equal

!= Not equal

Logical Operators

Operator Action

&& AND

|| OR

! NOT

Table 2-5. Relational and Logical Operators

42 C + + : T h e C o m p l e t e R e f e r e n c e

/* Perform a logical XOR operation using the

two arguments. */

int xor(int a, int b)

{

return (a || b) && !(a && b);

}

The following table shows the relative precedence of the relational and logical
operators:

Highest !

> >= < <=

== !=

&&

Lowest ||

As with arithmetic expressions, you can use parentheses to alter the natural order of
evaluation in a relational and/or logical expression. For example,

!0 && 0 || 0

is false. However, when you add parentheses to the same expression, as shown here,
the result is true:

!(0 && 0) || 0

Remember, all relational and logical expressions produce either a true or false
result. Therefore, the following program fragment is not only correct, but will print
the number 1.

int x;

x = 100;

printf("%d", x>10);

Bitwise Operators
Unlike many other languages, C/C++ supports a full complement of bitwise operators.
Since C was designed to take the place of assembly language for most programming

tasks, it needed to be able to support many operations that can be done in assembler,
including operations on bits. Bitwise operation refers to testing, setting, or shifting the
actual bits in a byte or word, which correspond to the char and int data types and
variants. You cannot use bitwise operations on float, double, long double, void,
bool, or other, more complex types. Table 2-6 lists the operators that apply to bitwise
operations. These operations are applied to the individual bits of the operands.

The bitwise AND, OR, and NOT (one's complement) are governed by the same
truth table as their logical equivalents, except that they work bit by bit. The exclusive
OR has the truth table shown here:

p q p ^q

0 0 0

1 0 1

1 1 0

0 1 1

As the table indicates, the outcome of an XOR is true only if exactly one of the operands
is true; otherwise, it is false.

Bitwise operations most often find application in device drivers—such as modem
programs, disk file routines, and printer routines — because the bitwise operations
can be used to mask off certain bits, such as parity. (The parity bit confirms that the
rest of the bits in the byte are unchanged. It is usually the high-order bit in each byte.)

C h a p t e r 2 : E x p r e s s i o n s 43

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

Operator Action

& AND

| OR

^ Exclusive OR (XOR)

~ One's complement (NOT)

>> Shift right

<< Shift left

Table 2-6. Bitwise Operators

44 C + + : T h e C o m p l e t e R e f e r e n c e

Think of the bitwise AND as a way to clear a bit. That is, any bit that is 0 in either
operand causes the corresponding bit in the outcome to be set to 0. For example, the
following function reads a character from the modem port and resets the parity bit to 0:

char get_char_from_modem(void)

{

char ch;

ch = read_modem(); /* get a character from the

modem port */

return(ch & 127);

}

Parity is often indicated by the eighth bit, which is set to 0 by ANDing it with a
byte that has bits 1 through 7 set to 1 and bit 8 set to 0. The expression ch & 127 means
to AND together the bits in ch with the bits that make up the number 127. The net
result is that the eighth bit of ch is set to 0. In the following example, assume that ch
had received the character "A" and had the parity bit set:

The bitwise OR, as the reverse of AND, can be used to set a bit. Any bit that is set
to 1 in either operand causes the corresponding bit in the outcome to be set to 1. For
example, the following is 128 | 3:

Ill 2-2

Parity bit

1 1 0 0 0 0 0 1 ch containing an "A" with parity set
0 1 1 1 1 1 1 1 127 in binary

&___________ bitwise AND
0 1 0 0 0 0 0 1 "A" without parity

1 0 0 0 0 0 0 0 128 in binary
0 0 0 0 0 0 1 1 3 in binary

¦___________ bitwise OR
1 0 0 0 0 0 1 1 result

An exclusive OR, usually abbreviated XOR, will set a bit on if and only if the bits
being compared are different. For example, 127 ^120 is

Remember, relational and logical operators always produce a result that is either
true or false, whereas the similar bitwise operations may produce any arbitrary value
in accordance with the specific operation. In other words, bitwise operations may
produce values other than 0 or 1, while logical operators will always evaluate to 0 or 1.

The bit-shift operators, >> and <<, move all bits in a value to the right or left as
specified. The general form of the shift-right statement is

value >> number of bit positions

The general form of the shift-left statement is

value << number of bit positions

As bits are shifted off one end, 0's are brought in the other end. (In the case of a
signed, negative integer, a right shift will cause a 1 to be brought in so that the sign bit
is preserved.) Remember, a shift is not a rotate. That is, the bits shifted off one end do
not come back around to the other. The bits shifted off are lost.

Bit-shift operations can be very useful when you are decoding input from an
external device, like a D/A converter, and reading status information. The bitwise shift
operators can also quickly multiply and divide integers. A shift right effectively divides
a number by 2 and a shift left multiplies it by 2, as shown in Table 2-7. The following
program illustrates the shift operators:

/* A bit shift example. */

#include <stdio.h>

int main(void)

{

unsigned int i;

int j;

i = 1;

C h a p t e r 2 : E x p r e s s i o n s 45

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

0 1 1 1 1 1 1 1 127 in binary
0 1 1 1 1 0 0 0 120 in binary

^___________ bitwise XOR
0 0 0 0 0 1 1 1 result

/* left shifts */

for(j=0; j<4; j++) {

i = i << 1; /* left shift i by 1, which

is same as a multiply by 2 */

printf("Left shift %d: %d\n", j, i);

}

/* right shifts */

for(j=0; j<4; j++) {

i = i >> 1; /* right shift i by 1, which

is same as a division by 2 */

printf("Right shift %d: %d\n", j, i);

}

return 0;

}

The one's complement operator, ~, reverses the state of each bit in its operand. That
is, all 1's are set to 0, and all 0's are set to 1.

The bitwise operators are often used in cipher routines. If you want to make a disk
file appear unreadable, perform some bitwise manipulations on it. One of the simplest

46 C + + : T h e C o m p l e t e R e f e r e n c e

unsigned char x;
x as each statement
executes value of x

x = 7; 0 0 0 0 0 1 1 1 7

x = x<<1; 0 0 0 0 1 1 1 0 14

x = x<<3; 0 1 1 1 0 0 0 0 112

x = x<<2; 1 1 0 0 0 0 0 0 192

x = x>>1; 0 1 1 0 0 0 0 0 96

x = x>>2; 0 0 0 1 1 0 0 0 24

*Each left shift multiplies by 2. Notice that information has been lost after x<<2 because
a bit was shifted off the end.

**Each right shift divides by 2. Notice that subsequent divisions do not bring back any
lost bits.

Table 2-7. Multiplication and Division with Shift Operators

C h a p t e r 2 : E x p r e s s i o n s 47

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

methods is to complement each byte by using the one's complement to reverse each bit
in the byte, as is shown here:

Notice that a sequence of two complements in a row always produces the original
number. Thus, the first complement represents the coded version of that byte. The
second complement decodes the byte to its original value.

You could use the encode() function shown here to encode a character.

/* A simple cipher function. */

char encode(char ch)

{

return(~ch); /* complement it */

}

Of course, a file encoded using encode() would be very easy to crack!

The ? Operator
C/C++ contains a very powerful and convenient operator that replaces certain
statements of the if-then-else form. The ternary operator ? takes the general form

Exp1 ? Exp2 : Exp3;

where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.
The ? operator works like this: Exp1 is evaluated. If it is true, Exp2 is evaluated

and becomes the value of the expression. If Exp1 is false, Exp3 is evaluated and its
value becomes the value of the expression. For example, in

x = 10;

y = x>9 ? 100 : 200;

y is assigned the value 100. If x had been less than 9, y would have received the value
200. The same code written using the if-else statement is

x = 10;

Same
Original byte 0 0 1 0 1 1 0 0
After 1st complement 1 1 0 1 0 0 1 1
After 2nd complement 0 0 1 0 1 1 0 0

48 C + + : T h e C o m p l e t e R e f e r e n c e

if(x>9) y = 100;

else y = 200;

The ? operator will be discussed more fully in Chapter 3 in relationship to the other
conditional statements.

The & and * Pointer Operators
A pointer is the memory address of some object. A pointer variable is a variable that is
specifically declared to hold a pointer to an object of its specified type. Knowing a
variable's address can be of great help in certain types of routines. However, pointers
have three main functions in C/C++. They can provide a fast means of referencing
array elements. They allow functions to modify their calling parameters. Lastly,
they support linked lists and other dynamic data structures. Chapter 5 is devoted
exclusively to pointers. However, this chapter briefly covers the two operators that
are used to manipulate pointers.

The first pointer operator is &, a unary operator that returns the memory address
of its operand. (Remember, a unary operator only requires one operand.) For example,

m = &count;

places into m the memory address of the variable count. This address is the computer's
internal location of the variable. It has nothing to do with the value of count. You can
think of & as meaning "the address of." Therefore, the preceding assignment statement
means "m receives the address of count."

To better understand this assignment, assume that the variable count is at memory
location 2000. Also assume that count has a value of 100. Then, after the previous
assignment, m will have the value 2000.

The second pointer operator is *, which is the complement of &. The * is a unary
operator that returns the value of the variable located at the address that follows it.
For example, if m contains the memory address of the variable count,

q = *m;

places the value of count into q. Now q has the value 100 because 100 is stored at
location 2000, the memory address that was stored in m. Think of * as meaning
"at address." In this case, you could read the statement as "q receives the value at
address m."

Unfortunately, the multiplication symbol and the "at address" symbol are the
same, and the symbol for the bitwise AND and the "address of" symbol are the same.

C h a p t e r 2 : E x p r e s s i o n s 49

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

These operators have no relationship to each other. Both & and * have a higher
precedence than all other arithmetic operators except the unary minus, with which
they share equal precedence.

Variables that will hold memory addresses (i.e., pointers), must be declared by
putting * in front of the variable name. This indicates to the compiler that it will hold
a pointer. For example, to declare ch as a pointer to a character, write

char *ch;

Here, ch is not a character but a pointer to a character—there is a big difference. The
type of data that a pointer points to, in this case char, is called the base type of the pointer.
However, the pointer variable itself is a variable that holds the address to an object of
the base type. Thus, a character pointer (or any pointer) is of sufficient size to hold any
address as defined by the architecture of the computer. However, as a rule, a pointer
should only point to data that is of that pointer's base type.

You can mix both pointer and nonpointer variables in the same declaration
statement. For example,

int x, *y, count;

declares x and count as integer types and y as a pointer to an integer type.
The following program uses * and & operators to put the value 10 into a variable

called target. As expected, this program displays the value 10 on the screen.

#include <stdio.h>

int main(void)

{

int target, source;

int *m;

source = 10;

m = &source;

target = *m;

printf("%d", target);

return 0;

}

50 C + + : T h e C o m p l e t e R e f e r e n c e

The Compile-Time Operator sizeof
sizeof is a unary compile-time operator that returns the length, in bytes, of the variable
or parenthesized type-specifier that it precedes. For example, assuming that integers
are 4 bytes and doubles are 8 bytes,

double f;

printf("%d ", sizeof f);

printf("%d", sizeof(int));

will display 8 4.
Remember, to compute the size of a type, you must enclose the type name in parentheses.

This is not necessary for variable names, although there is no harm done if you do so.
C/C++ defines (using typedef) a special type called size_t, which corresponds

loosely to an unsigned integer. Technically, the value returned by sizeof is of type
size_t. For all practical purposes, however, you can think of it (and use it) as if it were
an unsigned integer value.

sizeof primarily helps to generate portable code that depends upon the size of the
built-in data types. For example, imagine a database program that needs to store six
integer values per record. If you want to port the database program to a variety of
computers, you must not assume the size of an integer, but must determine its actual
length using sizeof. This being the case, you could use the following routine to write
a record to a disk file:

/* Write 6 integers to a disk file. */

void put_rec(int rec[6], FILE *fp)

{

int len;

len = fwrite(rec, sizeof(int)*6, 1, fp);

if(len != 1) printf("Write Error");

}

Coded as shown, put_rec() compiles and runs correctly in any environment, including
those that use 16- and 32-bit integers.

One final point: sizeof is evaluated at compile time, and the value it produces is
treated as a constant within your program.

The Comma Operator
The comma operator strings together several expressions. The left side of the comma
operator is always evaluated as void. This means that the expression on the right side
becomes the value of the total comma-separated expression. For example,

x = (y=3, y+1);

first assigns y the value 3 and then assigns x the value 4. The parentheses are necessary
because the comma operator has a lower precedence than the assignment operator.

Essentially, the comma causes a sequence of operations. When you use it on the
right side of an assignment statement, the value assigned is the value of the last
expression of the comma-separated list.

The comma operator has somewhat the same meaning as the word "and" in normal
English as used in the phrase "do this and this and this."

The Dot (.) and Arrow (>) Operators
In C, the . (dot) and the >(arrow) operators access individual elements of structures
and unions. Structures and unions are compound (also called aggregate) data types that
may be referenced under a single name (see Chapter 7). In C++, the dot and arrow
operators are also used to access the members of a class.

The dot operator is used when working with a structure or union directly. The
arrow operator is used when a pointer to a structure or union is used. For example,
given the fragment

struct employee

{

char name[80];

int age;

float wage;

} emp;

struct employee *p = &emp; /* address of emp into p */

you would write the following code to assign the value 123.23 to the wage member of
structure variable emp:

emp.wage = 123.23;

However, the same assignment using a pointer to emp would be

p->wage = 123.23;

The [] and () Operators
Parentheses are operators that increase the precedence of the operations inside them.
Square brackets perform array indexing (arrays are discussed fully in Chapter 4). Given

C h a p t e r 2 : E x p r e s s i o n s 51

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

an array, the expression within square brackets provides an index into that array. For
example,

#include <stdio.h>

char s[80];

int main(void)

{

s[3] = 'X';

printf("%c", s[3]);

return 0;

}

first assigns the value 'X' to the fourth element (remember, all arrays begin at 0) of array
s, and then prints that element.

Precedence Summary
Table 2-8 lists the precedence of all operators defined by C. Note that all operators,
except the unary operators and ?, associate from left to right. The unary operators
(*, &,) and ? associate from right to left.

C++ defines a few additional operators, which are discussed at length in Part Two.

Expressions
Operators, constants, and variables are the constituents of expressions. An expression in
C/C++ is any valid combination of these elements. Because most expressions tend to
follow the general rules of algebra, they are often taken for granted. However, a few
aspects of expressions relate specifically to C and C++.

Order of Evaluation
Neither C nor C++ specifies the order in which the subexpressions of an expression are
evaluated. This leaves the compiler free to rearrange an expression to produce more
optimal code. However, it also means that your code should never rely upon the order
in which subexpressions are evaluated. For example, the expression

x = f1() + f2();

does not ensure that f1() will be called before f2().

52 C + + : T h e C o m p l e t e R e f e r e n c e

C h a p t e r 2 : E x p r e s s i o n s 53

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

Type Conversion in Expressions
When constants and variables of different types are mixed in an expression, they are
all converted to the same type. The compiler converts all operands up to the type of
the largest operand, which is called type promotion. First, all char and short int values
are automatically elevated to int. (This process is called integral promotion.) Once this
step has been completed, all other conversions are done operation by operation, as
described in the following type conversion algorithm:

IF an operand is a long double
THEN the second is converted to long double
ELSE IF an operand is a double
THEN the second is converted to double

Highest () [] −> .

! ~ ++ – – (type) * & sizeof

* / %

+ −

<< >>

< <= > >=

== !=

&

^

|

&&

||

Highest

?:

= += − = *= /= etc.

Lowest ,

Table 2-8. The Precedence of C Operators

54 C + + : T h e C o m p l e t e R e f e r e n c e

ELSE IF an operand is a float
THEN the second is converted to float
ELSE IF an operand is an unsigned long
THEN the second is converted to unsigned long
ELSE IF an operand is long
THEN the second is converted to long
ELSE IF an operand is unsigned int
THEN the second is converted to unsigned int

There is one additional special case: If one operand is long and the other is
unsigned int, and if the value of the unsigned int cannot be represented by a long,
both operands are converted to unsigned long.

Once these conversion rules have been applied, each pair of operands is of the
same type and the result of each operation is the same as the type of both operands.

For example, consider the type conversions that occur in Figure 2-2. First, the
character ch is converted to an integer. Then the outcome of ch/i is converted to a
double because f*d is double. The outcome of f+i is float, because f is a float. The
final result is double.

Casts
You can force an expression to be of a specific type by using a cast. The general form of
a cast is

(type) expression

char ch;
int i;
float f;
double d;
result=(ch/i) + (f*d) – (f+i);

int double float

int double float

double

Figure 2-2. A type conversion example

C h a p t e r 2 : E x p r e s s i o n s 55

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

where type is a valid data type. For example, to make sure that the expression x/2
evaluates to type float, write

(float) x/2

Casts are technically operators. As an operator, a cast is unary and has the same
precedence as any other unary operator.

Although casts are not usually used a great deal in programming, they can be very
helpful when needed. For example, suppose you wish to use an integer for loop control,
yet to perform computation on it requires a fractional part, as in the following program:

#include <stdio.h>

int main(void) /* print i and i/2 with fractions */

{

int i;

for(i=1; i<=100; ++i)

printf("%d / 2 is: %f\n", i, (float) i /2);

return 0;

}

Without the cast (float), only an integer division would have been performed. The cast
ensures that the fractional part of the answer is displayed.

C++ adds four more casting operators, such as const_cast and static_cast. These
operators are discussed in Part Two.

Spacing and Parentheses
You can add tabs and spaces to expressions to make them easier to read. For example,
the following two expressions are the same:

x=10/y~(127/x);

x = 10 / y ~(127/x);

Redundant or additional parentheses do not cause errors or slow down the execution
of an expression. You should use parentheses to clarify the exact order of evaluation,

both for yourself and for others. For example, which of the following two expressions
is easier to read?

x = y/3-34*temp+127;

x = (y/3) - (34*temp) + 127;

Compound Assignments
There is a variation on the assignment statement, called compound assignment, that
simplifies the coding of a certain type of assignment operation. For example,

x = x+10;

can be written as

x += 10;

The operator += tells the compiler to assign to x the value of x plus 10.
Compound assignment operators exist for all the binary operators (those that

require two operands). In general, statements like:

var = var operator expression

can be rewritten as

var operator = expression

For another example,

x = x-100;

is the same as

x -= 100;

Compound assignment is widely used in professionally written C/C++ programs;
you should become familiar with it. Compound assignment is also commonly referred
to as shorthand assignment because it is more compact.

56 C + + : T h e C o m p l e t e R e f e r e n c e

