
Chapter 1
An Overview of C

3

Copyright © 2003 by The McGraw-Hill Companies. Click here for terms of use. 



4 C + + : T h e C o m p l e t e R e f e r e n c e

To understand C++ is to understand the forces that drove its creation, the ideas
that shaped it, and the legacy it inherits. Thus, the story of C++ begins with C.

This chapter presents an overview of the C programming language, its origins, its
uses, and its underlying philosophy. Because C++ is built upon C, this chapter provides
an important historical perspective on the roots of C++. Much of what “makes C++,
C++” had its genesis in the C language.

The Origins and History of C
C was invented and first implemented by Dennis Ritchie on a DEC PDP-11 that used
the UNIX operating system. C is the result of a development process that started with
an older language called BCPL. BCPL was developed by Martin Richards, and it
influenced a language called B, which was invented by Ken Thompson. B led to the
development of C in the 1970s.

For many years, the de facto standard for C was the version supplied with the UNIX
operating system. It was first described in The C Programming Language by Brian Kernighan
and Dennis Ritchie (Englewood Cliffs, N.J.: Prentice-Hall, 1978). In the summer of 1983
a committee was established to create an ANSI (American National Standards Institute)
standard that would define the C language. The standardization process took six years
(much longer than anyone reasonably expected at the time).

The ANSI C standard was finally adopted in December of 1989, with the first copies
becoming available in early 1990. The standard was also adopted by ISO (International
Standards Organization) and the resulting standard was typically referred to as ANSI/
ISO Standard C. In 1995, Amendment 1 to the C standard was adopted, which, among
other things, added several new library functions. The 1989 standard for C, along with
Amendment 1, became the base document for Standard C++, defining the C subset of
C++. The version of C defined by the 1989 standard is commonly referred to as C89.

After 1989, C++ took center stage, and during the 1990s the development of a
standard for C++ consumed most programmers’ attention, with a standard for C++
being adopted by the end of 1998. However, work on C continued along quietly. The
end result was the 1999 standard for C, usually referred to as C99. In general, C99 retained
nearly all of the features of C89 and did not alter the main aspects of the language. Thus,
the C language described by C99 is essentially the same as the one described by C89.
The C99 standardization committee focused on two main areas: the addition of several
numeric libraries and the development of some special-use, but highly innovative, new
features, such as variable- length arrays and the restrict pointer qualifier. In a few cases,
features originally from C++, such as single-line comments, were also incorporated into
C99. Because the standard for C++ was finalized before C99 was created, none of the
C99 innovations are found in Standard C++.

C89 vs. C99
Although the innovations in C99 are important from a computer science point of view,
they are currently of little practical consequence because, at the time of this writing, no
widely-used compiler implements C99. Rather, it is C89 that defines the version of C



TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

C h a p t e r 1 : A n O v e r v i e w o f C 5

that most programmers think of as “C” and that all mainstream compilers recognize.
Furthermore, it is C89 that forms the C subset of C++. Although several of the new
features added by C99 will eventually find their way into the next standard for C++,
currently these new features are incompatible with C++.

Because C89 is the standard that forms the C subset of C++, and because it is the
version of C that the vast majority of C programmers currently know, it is the version
of C discussed in Part I. Thus, when the term C is used, take it to mean the C defined
by C89. However, important differences between C89 and C99 that relate specifically to
C++ are noted, such as when C99 adds a feature that improves compatibility with C++.

C Is a Middle-Level Language
C is often called a middle-level computer language. This does not mean that C is less
powerful, harder to use, or less developed than a high-level language such as BASIC or
Pascal; nor does it imply that C has the cumbersome nature of assembly language (and
its associated troubles). Rather, C is thought of as a middle-level language because it
combines the best elements of high-level languages with the control and flexibility of
assembly language. Table 1-1 shows how C fits into the spectrum of computer languages.

As a middle-level language, C allows the manipulation of bits, bytes, and addresses—
the basic elements with which the computer functions. Despite this fact, C code is also

Highest level Ada

Modula-2

Pascal

COBOL

FORTRAN

BASIC

Middle level Java

C#

C++

C

Forth

Macro-assembler

Lowest level Assembler

Table 1-1. C’s Place in the World of Languages



6 C + + : T h e C o m p l e t e R e f e r e n c e

portable. Portability means that it is easy to adapt software written for one type of
computer or operating system to another. For example, if you can easily convert a
program written for UNIX so that it runs under Windows, that program is portable.

All high-level programming languages support the concept of data types. A data
type defines a set of values that a variable can store along with a set of operations that
can be performed on that variable. Common data types are integer, character, and real.
Although C has five basic built-in data types, it is not a strongly typed language, as are
Pascal and Ada. C permits almost all type conversions. For example, you may freely
intermix character and integer types in an expression.

Unlike a high-level language, C performs almost no run-time error checking. For
example, no check is performed to ensure that array boundaries are not overrun. These
types of checks are the responsibility of the programmer.

In the same vein, C does not demand strict type compatibility between a parameter
and an argument. As you may know from your other programming experience, a high-
level computer language will typically require that the type of an argument be (more or
less) exactly the same type as the parameter that will receive the argument. However,
such is not the case for C. Instead, C allows an argument to be of any type so long as it
can be reasonably converted into the type of the parameter. Further, C provides all of
the automatic conversions to accomplish this.

C is special in that it allows the direct manipulation of bits, bytes, words, and pointers.
This makes it well suited for system-level programming, where these operations are
common.

Another important aspect of C is that it has only a few keywords, which are the
commands that make up the C language. For example, C89 defines only 32 keywords,
with C99 adding just another 5. Some computer languages have several times more.
For comparison, most versions of BASIC have well over 100 keywords!

C Is a Structured Language
In your previous programming experience, you may have heard the term block-structured
applied to a computer language. Although the term block-structured language does
not strictly apply to C, C is commonly referred to simply as a structured language. It has
many similarities to other structured languages, such as ALGOL, Pascal, and Modula-2.

The reason that C (and C++) is not, technically, a block-structured language is that
block-structured languages permit procedures or functions to be declared inside other
procedures or functions. However, since C does not allow the creation of functions
within functions, it cannot formally be called block-structured.

The distinguishing feature of a structured language is compartmentalization of code
and data. This is the ability of a language to section off and hide from the rest of the
program all information and instructions necessary to perform a specific task. One
way that you achieve compartmentalization is by using subroutines that employ local
(temporary) variables. By using local variables, you can write subroutines so that
the events that occur within them cause no side effects in other parts of the program.



C h a p t e r 1 : A n O v e r v i e w o f C 7

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

This capability makes it easier for programs to share sections of code. If you develop
compartmentalized functions, you only need to know what a function does, not how
it does it. Remember, excessive use of global variables (variables known throughout
the entire program) may allow bugs to creep into a program by allowing unwanted
side effects. (Anyone who has programmed in standard BASIC is well aware of this
problem.)

The concept of compartmentalization is greatly expanded by C++. Specifically, in C++,
one part of your program may tightly control which other parts of your program are
allowed access.

A structured language allows you a variety of programming possibilities. It directly
supports several loop constructs, such as while, do-while, and for. In a structured
language, the use of goto is either prohibited or discouraged and is not the common
form of program control (as is the case in standard BASIC and traditional FORTRAN,
for example). A structured language allows you to place statements anywhere on a line
and does not require a strict field concept (as some older FORTRANs do).

Here are some examples of structured and nonstructured languages:

Nonstructured Structured

FORTRAN Pascal

BASIC Ada

COBOL Java

C#

C++

C

Modula-2

Structured languages tend to be modern. In fact, a mark of an old computer
language is that it is nonstructured. Today, few programmers would consider using
a nonstructured language for serious, new programs.

New versions of many older languages have attempted to add structured elements.
BASIC is an example—in particular Visual Basic by Microsoft. However, the
shortcomings of these languages can never be fully mitigated because they were
not designed with structured features from the beginning.

C’s main structural component is the function—C’s stand-alone subroutine. In C,
functions are the building blocks in which all program activity occurs. They allow you to
define and code separately the separate tasks in a program, thus allowing your programs
to be modular. After you have created a function, you can rely on it to work properly
in various situations without creating side effects in other parts of the program. Being



8 C + + : T h e C o m p l e t e R e f e r e n c e

able to create stand-alone functions is extremely critical in larger projects where one
programmer’s code must not accidentally affect another’s code.

Another way to structure and compartmentalize code in C is through the use of
code blocks. A code block is a logically connected group of program statements that is
treated as a unit. In C, you create a code block by placing a sequence of statements
between opening and closing curly braces. In this example,

if (x < 10)  {

printf("Too low, try again.\n");

scanf("%d", &x);

}

the two statements after the if and between the curly braces are both executed if x
is less than 10. These two statements together with the braces represent a code block.
They are a logical unit: one of the statements cannot execute without the other executing
also. Code blocks allow many algorithms to be implemented with clarity, elegance, and
efficiency. Moreover, they help the programmer better conceptualize the true nature of
the algorithm being implemented.

C Is a Programmer’s Language
Surprisingly, not all computer programming languages are for programmers. Consider
the classic examples of nonprogrammer languages, COBOL and BASIC. COBOL was
designed not to better the programmer’s lot, not to improve the reliability of the code
produced, and not even to improve the speed with which code can be written. Rather,
COBOL was designed, in part, to enable nonprogrammers to read and presumably
(however unlikely) to understand the program. BASIC was created essentially to allow
nonprogrammers to program a computer to solve relatively simple problems.

In contrast, C was created, influenced, and field-tested by working programmers.
The end result is that C gives the programmer what the programmer wants: few
restrictions, few complaints, block structures, stand-alone functions, and a compact set
of keywords. By using C, you can nearly achieve the efficiency of assembly code combined with
the structure of ALGOL or Modula-2. It is no wonder that C and C++ are easily two of
the most popular languages among topflight professional programmers.

The fact that you can often use C in place of assembly language is a major factor in
its popularity among programmers. Assembly language uses a symbolic representation
of the actual binary code that the computer executes directly. Each assembly-language
operation maps into a single task for the computer to perform. Although assembly
language gives programmers the potential to accomplish tasks with maximum flexibility
and efficiency, it is notoriously difficult to work with when developing and debugging
a program. Furthermore, since assembly language is unstructured, the final program
tends to be spaghetti code—a tangled mess of jumps, calls, and indexes. This lack of
structure makes assembly-language programs difficult to read, enhance, and maintain.



C h a p t e r 1 : A n O v e r v i e w o f C 9

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

Perhaps more important, assembly-language routines are not portable between
machines with different central processing units (CPUs).

Initially, C was used for systems programming. A systems program forms a portion
of the operating system of the computer or its support utilities. For example, the following are
usually called systems programs:

■ Operating systems

■ Interpreters

■ Editors

■ Compilers

■ File utilities

■ Performance enhancers

■ Real-time executives

■ Device drivers

As C grew in popularity, many programmers began to use it to program all tasks
because of its portability and efficiency—and because they liked it! At the time of its
creation, C was a much longed-for, dramatic improvement in programming languages.
Of course, C++ has carried on this tradition.

With the advent of C++, some thought that C as a distinct language would die out.
Such has not been the case. First, not all programs require the application of the object-
oriented programming features provided by C++. For example, applications such as
embedded systems are still typically programmed in C. Second, much of the world
still runs on C code, and those programs will continue to be enhanced and maintained.
While C’s greatest legacy is as the foundation for C++, C will continue to be a vibrant,
widely used language for many years to come.

The Form of a C Program
Table 1-2 lists the 32 keywords that, combined with the formal C syntax, form C89, the
C subset of C++. All are, of course, also keywords in C++.

In addition, many compilers have added several keywords that better exploit their
operating environment. For example, several compilers include keywords to manage
the memory organization of the 8086 family of processors, to support inter-language
programming, and to access interrupts. Here is a list of some commonly used extended
keywords:

asm _cs _ds _es

_ss cdecl far huge

interrupt near pascal



10 C + + : T h e C o m p l e t e R e f e r e n c e

Your compiler may also support other extensions that help it take better advantage of
its specific environment.

Notice that all of the keywords are lowercase. C/C++ is case-sensitive. Thus, in
a C/C++ program, uppercase and lowercase are different. This means that else is a
keyword, while ELSE is not. You may not use a keyword for any other purpose in
a program— that is, you may not use it as a variable or function name.

All C programs consist of one or more functions. The only function that must be
present is called main( ), which is the first function called when program execution
begins. In well-written C code, main( ) contains what is, in essence, an outline of what
the program does. The outline is composed of function calls. Although main( ) is not
a keyword, treat it as if it were. For example, don’t try to use main as the name of a
variable because you will probably confuse the compiler.

The general form of a C program is illustrated in Figure 1-1, where f1( ) through
fN( ) represent user-defined functions.

The Library and Linking
Technically speaking, you can create a useful, functional C or C++ program that consists solely
of the statements that you actually created. However, this is quite rare because neither
C nor C++ provides any keywords that perform such things as I/O operations,
high-level mathematical computations, or character handling. As a result, most programs
include calls to various functions contained in the standard library.

All C++ compilers come with a standard library of functions that perform most
commonly needed tasks. Standard C++ specifies a minimal set of functions that will be
supported by all compilers. However, your compiler will probably contain many other
functions. For example, the standard library does not define any graphics functions,
but your compiler will probably include some.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

Table 1-2. The 32 Keywords Defined by the C Subset of C++



C h a p t e r 1 : A n O v e r v i e w o f C 11

TH
E

FO
U

N
D

A
TIO

N
O

F
C

+
+
:

TH
E

C
S
U

B
S
ET

The C++ standard library can be divided into two halves: the standard function
library and the class library. The standard function library is inherited from the C
language. C++ supports the entire function library defined by C89. Thus, all of the
standard C functions are available for use in C++ programs that you write.

In addition to the standard function library, C++ also defines its own class library.
The class library provides object-oriented routines that your programs may use. It also
defines the Standard Template Library (STL), which offers off-the-shelf solutions to
a variety of programming problems. Both the class library and the STL are discussed
later in this book. In Part One, only the standard function library is used, since it is the
only one that is also defined by C.

global declarations

return-type main (parameter list)

{

statement sequence

}

return-type f1 (parameter list)

{

statement sequence

}

return-type f2 (parameter list)

{

statement sequence

}

.

.

.

return-type fN(parameter list)

{

statement sequence

}

Figure 1-1. The general form of a C program



12 C + + : T h e C o m p l e t e R e f e r e n c e

The standard function library contains most of the general-purpose functions that
you will use. When you call a library function, the compiler “remembers” its name.
Later, the linker combines the code you wrote with the object code for the library
function, which is found in the standard library. This process is called linking. Some
compilers have their own linker, while others use the standard linker supplied by
your operating system.

The functions in the library are in relocatable format. This means that the memory
addresses for the various machine-code instructions have not been absolutely defined—
only offset information has been kept. When your program links with the functions in
the standard library, these memory offsets are used to create the actual addresses used.
Several technical manuals and books explain this process in more detail. However, you
do not need any further explanation of the actual relocation process to program in C++.

Many of the functions that you will need as you write programs are in the standard
library. They act as building blocks that you combine. If you write a function that you
will use again and again, you can place it into a library, too.

Separate Compilation
Most short programs are completely contained within one source file. However, as
a program’s length grows, so does its compile time (and long compile times make for
short tempers). Hence, C/C++ allows a program to be contained in multiple files and
lets you compile each file separately. Once you have compiled all files, they are linked,
along with any library routines, to form the complete object code. The advantage of
separate compilation is that if you change the code of one file, you do not need to recompile the
entire program. On all but the most simple projects, this saves a substantial amount of
time. The user documentation to your C/C++ compiler will contain instructions for
compiling multiple-file programs.

Understanding the .C and .CPP File Extensions
The programs in Part One of this book are, of course, valid C++ programs and can be
compiled using any modern C++ compiler. They are also valid C programs and can
be compiled using a C compiler. Thus, if you are called upon to write C programs,
the programs shown in Part One qualify as examples. Traditionally, C programs use the
file extension .C and C++ programs use the extension .CPP. A C++ compiler uses
the file extension to determine what type of program it is compiling. This is important
because the compiler assumes that any program using the .C extension is a C program
and that any file using .CPP is a C++ program. Unless explicitly noted otherwise, you
may use either extension for the programs in Part One. However, the programs in the
rest of this book will require .CPP.

One last point: Although C is a subset of C++, there are a few minor differences
between the two languages and in a few cases, you may need to compile a C program
as a C program (using the .C extension). Any instances of this will be noted.




