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We use B-spline functions to develop a numerical method for solving a singularly per-
turbed boundary value problem associated with biology science. We use B-spline colloca-
tion method, which leads to a tridiagonal linear system. The accuracy of the proposed
method is demonstrated by test problems. The numerical result is found in good agree-
ment with exact solution.
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1. Introduction

Any function of L2(R) can be expressed by the dilation and translation of wavelet functions, so it has drawn a great deal of
attention from scientists and engineers. The stiffness matrix is sparse when it is used as trial functions. Wavelet especially
adapt to solve the equation with the singular solution and a local severe gradients. Wavelets have many excellent properties
such as orthogonality, compact support, exact representation of polynomials to a certain degree, flexibility to represent func-
tions at different levels of resolution.

B-spline functions are useful wavelet basis functions and based on piece polynomials that possess attractive properties:
piecewise smooth, compact support, symmetry, rapidly decaying, differentiability, linear combination, which leads to matri-
ces that are easier to diagonalize. The resulting matrices are sparse, but always, banded. B-splines were introduced by
Schoenberg in 1946 [9]. Up to now, B-spline approximation method for numerical solutions have been researched by various
researchers [1–7].

We consider a B-spline collocation method for following singularly perturbed boundary value problems arising in biology:
LyðxÞ ¼ �ey00 þ pðxÞy0 þ qðxÞy ¼ f ðxÞ; a < x < b ð1Þ
With boundary conditions
yðaÞ ¼ A; yðbÞ ¼ B ð2Þ
where 0 < e < 1, e is a small positive parameter, p(x) and q(x) are sufficiently smooth real-valued functions. This problem aris-
ing in transport phenomena in chemistry and biology [10,11] has been studied by several authors [8,12–14]. It is so attractive
to mathematicians due to the fact that the solution exhibits a multiscale character, that is, there is a thin layer where the
solution varies rapidly, while away from the layer the solution behaves regularly and varies slowly. So the usual numerical
treatment of singular perturbation problems gives major computational difficulties. Typically, these problems arise very fre-
quently in fluid dynamics, elasticity, quantum mechanics, chemical reactor theory and many other allied areas. In recent
years, a large number of special purpose methods have been developed to provide accurate numerical solutions.
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In this paper, the 3rd order B-spline function is used as a single mother wavelet and the numerical method based on B-
splines is studied to solve a class of singular boundary value problems arising in biology. We use B-spline collocation meth-
od, which leads to a tridiagonal linear system. The present method is tested for its efficiency by considering two examples
from biology.

2. Spline scaling function

An arbitrary Nth order spline function with compact support of N, a useful wavelet basis function, has excellent mathe-
matical properties. It is a concatenation of N sections of (N � 1)th order polynomials, continuous at the junctions or ‘knots’,
and gives continuous (N � 1)th derivatives at the junctions. The expression and recursion formula of B-spline function are as
follows:
N1ðxÞ ¼ v½0;1�ðxÞ ¼
1; 0 6 x < 1
0; others

�
ð3Þ

N2ðxÞ ¼ N1 � N1ðxÞ ¼
x; 0 6 x < 1
2� x 1 6 x < 2
0; others

8><
>: ð4Þ

N3ðxÞ ¼
Z 1

0
N2ðx� sÞds ¼

1
2 x2 ½0;1Þ
3
4� x� 3

2

� �2 ½1;2Þ
1
2 ðx� 3Þ ½2;3Þ
0 others

8>>>><
>>>>:

ð5Þ

N4ðxÞ ¼
Z 1

0
N3ðx� sÞds ¼

1
6 x3 ½0;1Þ
� 1

2 x3 þ 2x2 � 2xþ 2
3 ½1;2Þ

1
2 x3 � 4x2 þ 10x� 22

3 ½2;3Þ
� 1

6 x3 þ 2x2 � 8xþ 32
3 ½3;4Þ

0 others

8>>>>>><
>>>>>>:

ð6Þ

NmðxÞ ¼ Nm�1 � N1ðxÞ ¼
Z 1

0
Nm�1ðx� sÞds ¼ x

m� 1
Nm�1ðxÞ þ

m� x
m� 1

Nm�1ðx� 1Þ m P 2 ð7Þ
The 3rd order B-spline function N4(x) is usually used to calculate in practice, which is easy and efficient, possesses the
following characters: piecewise smooth, compact support, symmetry, rapidly decaying, differentiability, linear combination.

3. Wavelet theory

Preliminaries: Definition (multi-resolution): A sequence {Vj}j2Z of closed subspaces of L2(R) is a multi-resolution approx-
imation if the following properties are satisfied:
8ðj; kÞ 2 Z2f ðtÞ 2 Vj () f ðt � 2jkÞ 2 Vj

Vj � Vjþ1

f ðtÞ 2 Vj () f ð2tÞ 2 Vjþ1

lim
j!�1

Vj ¼ \þ1j¼�1Vj ¼ f0g;

[Vj ¼ L2ðRÞ
There exists / such that {/(t � n)}n2z is a Riesz basis of V0.
Supposing that one-dimensional scaling functions /(x) generate multi-resolution analyses {Vj}, The span of Vj is

{2j/2u(2jx � k)}. One-dimensional functions in the form is given
fj;kðxÞ ¼ 2j=2f ð2jx� kÞ ð8Þ
From the wavelet theory, the approximate formulas of solution can be expressed in terms of the scaling function basis /J
k at

scale J as
SðxÞ ¼
X

k

ck/
J
kðxÞ ð9Þ
where ck ¼< SðxÞ;/J
kðxÞ >¼

R
SðxÞ/J

kðxÞdx, /J
kðxÞ ¼ 2J=2/ð2Jx� kÞ, J is the scale parameter or the resolution, k is the parameter

of the time or space location (J,k 2 Z,integers) and it can be determined from the following two scale relations:
/ðxÞ ¼
XL�1

k¼0

pk/ð2x� kÞ ð10Þ
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where L is an even integer.
In the proposed algorithm, The 3rd order B-spline function N4(x) is used as a single mother wavelet, i.e., /(x) = N4(x) and

dilation and translation of mother wavelet functions can construct any function of L2(R).
SðxÞ ¼
X

k

ck/
J
kðxÞ ¼

X
k

ck2J=2/ð2Jx� kÞ ¼
X

k

ak/
x� 2�Jk

2�J

 !
¼
X

k

akN4
x� xk

h

� �
ð11Þ
where h ¼ 1
2J xk ¼ k

2J ak ¼ 2J=2ck.
The 3rd order B-splines function is used to construct numerical solutions to singular boundary-value problems discussed

in Section 4.

4. B-spline solutions for singular boundary value problems arising in biology

The region [a,b] is partitioned into uniformly sized finite elements of length h by the knots xj such that a = x0 < x1 <
x2 < � � � < xN = b. Let /m(x) be 3rd order B-spline function with knots at the points xm, m = 0, 1, . . . ,N. The set of splines
{/�1,/0, /1, � � � /N,/N+1} forms a basis for functions defined over [a,b].

So the global approximation S(x) to the function y(x) can be written in terms of the B-splines as
SðxÞ ¼
XNþ1

i¼�1

aiN4
x� xi

h

� �
; ð12Þ
where h ¼ b�a
n , ai are unknown real coefficients.

Using the 3rd order B-spline function Eq. (6) and the approximate solution Eq. (11), the nodal values S(xj),S0(xj) and S00(xj)
at the node xj are given in terms of element parameters by
SðxjÞ ¼
1
6
ðaj�1 þ 4aj þ ajþ1Þ ð13Þ

S0ðxjÞ ¼
1

2h
ð�aj�1 þ ajþ1Þ ð14Þ

S00ðxjÞ ¼
1

h2 ðaj�1 � 2aj þ ajþ1Þ ð15Þ
where the symbols0 and 00 denote first and second differentiation with respect to x, respectively.
Substituting Eqs. (12)–(15) into Eqs. (1) and (2), we can obtain following linear equations
Ba ¼ r ð16Þ
where
a ¼ a�1; a0; a1; � � � ; aN; aNþ1ð ÞT

r ¼ 6yðaÞ;6h2f0=e;6h2f1=e; � � �6h2fN=e;6h2yðbÞ
� �T

fi ¼ f ðaþ ihÞ
Note N4
xj�xi

h

� �
¼ Bij
B ¼

1 4 1 0 � � � 0
LB�1;0 LB0;0 LB1;0 0 � � �

0 LB0;1 LB1;1 LB2;1 � � �
� � � � � � � � �

LBN�1;N LBN;N LBNþ1;N

1 4 1

2
666666664

3
777777775
ðNþ3Þ�ðNþ3Þ
where
LBj�1;j ¼ 6� 3hpj=eþ h2qj=e LBj;j ¼ 4h2qj=e� 12; LBj;jþ1 ¼ 6þ 3hpj=eþ h2qj=e pj ¼ pðaþ jhÞ qj ¼ qðaþ jhÞ
It is easily seen that the matrix B is strictly diagonally dominant and hence nonsingular. Since B is nonsingular, we can solve
the system Ba = r for a�1,a0,a1,� � �,aN,aN+1. Hence the method of collocation using the 3rd order B-spline function N4(x) as a
basis function applied to the singularly perturbed boundary value problem has a unique solution S(x) given by Eq. (12).

5. Computation of error and order of convergence

The relative error of numerical solution is defined as



Table 1
Compar

X

1/16
2/16
4/16
6/16
12/16
14/16
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Er ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðSðxiÞ � yðxiÞÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðyðxiÞ
q

Þ2
ð17Þ
The pointwise errors are given by
EðxiÞ ¼ SðxiÞ�j yðxiÞj ð18Þ
For every e the computed maximum pointwise errors are given by
EN ¼ max
06i6N

yðxiÞ � SðxiÞj j ð19Þ
The numerical order of convergence is given by
OrdN ¼ LogðEN=E2NÞ
Log2

ð20Þ
The uniform maximum pointwise errors is given by
gN ¼ max
e¼1;10�1 ;���10�12 ;p¼1;10�1 ;���10�12 ;0

SðxÞ � yðxÞk k1
6. Numerical results and conclusion

In the section, we illustrate the numerical techniques discussed in the previous section by the following problems.

Example 1. Consider the convection-dominated equation:
� ey00 þ y0 þ y ¼ 1 ð0 < x < 1Þ ð21Þ
yð0Þ ¼ yð1Þ ¼ 0
The exact solution is given by
yðxÞ ¼ ðek2 � 1Þek1x=ðek1 � ek2 Þ þ ð1� ek1 Þek2x=ðek1 � ek2 Þ þ 1 ð22Þ
where k1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e
p� �

=ð2eÞ; k2 ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4e
p� �

=ð2eÞ.
Comparison of the numerical results and pointwise errors is given in Table 3. Comparison of errors is given in Tables 1 and

2. Comparison of exact solution and approximation solution for different values of e is given in Figs. 1–3. Relation of relative
errors and values of e and h is seen in Figs. 4 and 5. Relation of maximum pointwise errors and values of e and h is given in
Figs. 6 and 7. Relation of Order of convergence and values of e and h is given in Figs. 8 and 9.

It observed that

(1) when h decreases ( i.e. collocation number increases) for fixed e the pointwise errors decrease;
(2) when e from 0.8 to 0.01 decreases for fixed h the pointwise errors increase;
(3) when e from 0.01 to 0.0015 decreases for fixed h the pointwise errors are almost steady;
(4) when e = 0.0015, x ? 1 the errors are very large;
(5) when h increase for fixed e, relative errors decreases, but maximum pointwise errors increase;
(6) when e increase for fixed h, relative errors and maximum pointwise errors decreases;
(7) when e increase for fixed h, order of convergence decreases rapidly afterward decreases slowly to 0;
(8) when h increase for fixed e, order of convergence increases afterward decreases slowly.
Example 2. Solve the following non-homogeneous equation:
�ey00 þ py0 þ y ¼ cospx ð0 < x < 1Þ: ð23Þ
ison of pointwise errors of Example 1.

Error

(e = 0.1, h = 1/32) (e = 0.1, h = 1/128) (e = 0.01, h = 1/32) (e = 0.01, h = 1/128)

0.0274 0.0068 0.0295 0.0073
0.0259 0.0064 0.0278 0.0069
0.0230 0.0057 0.0245 0.0061
0.0204 0.0050 0.0217 0.0054
0.0025 0.0004 0.0150 0.0037
0.0330 0.0094 0.0129 0.0033



Table 2
Comparison of pointwise errors of Example 1.

X Error

h = 1/128 h = 1/1024

e = 0.8 e = 0.5 e = 0.2 e = 0.01 e = 0.008 e = 0.002 e = 0.0015 e = 0.0015

1/16 0.0033 0.0044 0.0062 0.0073 0.0073 0.0074 0.0074 0.0009
2/16 0.0029 0.0040 0.0059 0.0069 0.0069 0.0069 0.0069 0.0009
4/16 0.0022 0.0031 0.0051 0.0061 0.0061 0.0061 0.0061 0.0008
6/16 0.0014 0.0022 0.0042 0.0054 0.0054 0.0054 0.0054 0.0007
12/16 0.0019 0.0025 0.0025 0.0037 0.0037 0.0037 0.0037 0.0005
14/16 0.0034 0.0051 0.0092 0.0033 0.0033 0.0033 0.0033 0.0004

Fig. 1. Results of Problem 1 for e = 0.0015, n = 128.
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With boundary conditions
yð0Þ ¼ yð1Þ ¼ 0
The analytical solution is given by
yðxÞ ¼ a cos pxþ b sinpxþ A expðk1xÞ þ B exp½�k2ð1� xÞ� ð24Þ
where
a ¼ ep2 þ 1

p2p2 þ ðep2 þ 1Þ2
; b ¼ pp

p2p2 þ ðep2 þ 1Þ2

A ¼ �a
1þ expð�k2Þ

1� expðk1 � k2Þ
; B ¼ a

1þ expðk1Þ
1� expðk1 � k2Þ
And k1 < 0 and k2 > 0 are the real solutions of the characteristic equation
�ek2 þ pkþ 1 ¼ 0
Comparison of exact solution and approximation solution for different values of e and p is given in Figs. 10–12. Approxima-
tion solutions for different values of e and for fix p is given in Fig. 13. Relation of relative errors and values of e, p and h is seen
in Figs. 14–16. Relation of maximum pointwise errors and values of e, p and h is given in Figs. 17–19. The uniform maximum
pointwise errors is given in Fig. 20.



Fig. 2. Results of Problem 1 for e = 0.01, n = 128.

Fig. 3. Results of Problem 1 for e = 0.1, n = 128.

B. Lin et al. / Chaos, Solitons and Fractals 42 (2009) 2934–2948 2939
It observed that

(1) the approximation solutions are in good agreement with exact solution(Figs. 12 and 13);
(2) when e = 10�6, x ? 0 and x ? 1 the errors are very large (Fig. 14);



Fig. 4. Relative errors of Problem 1 for different values of e and for fix h.

Fig. 5. Relative errors of Problem 1 for different values of h and for fix e.

Fig. 6. Maximum pointwise errors of Problem 1 for different values of e and for fix h.
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(3) when e decreases for fixed p the width of boundary layer becomes small and wave shape change more and more stiff
at x = 0 and x = 1;

(4) when e increase for fixed h and p, relative errors and maximum pointwise errors increase;



Fig. 7. Maximum pointwise errors of Problem 1 for different values of h and for fix e.

Fig. 8. Order of convergence of Problem 1 for different values of e and for fix h.

Fig. 9. Order of convergence of Problem 1 for different values of h and for fix e.
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(5) when h increase for fixed e and p, relative errors increase and maximum pointwise errors increase rapidly afterward
decreases slowly;

(6) when p increase for fixed e and h, relative errors decreases slowly to p = 10�15 afterward decreases rapidly and max-
imum pointwise errors decreases slowly.



Fig. 10. Comparison of values of Problem 2 for e = 10�2, p = 10�6.

Fig. 11. Comparison of values of Problem 2 for e = 10�3, p = 10�6.

Fig. 12. Comparison of values of Problem 2 for e = 10�6, p = 10�6.
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Example 3. Solve the following nonlinear equation:
ey00 þ 2y0 ¼ �ey; ð0 6 x 6 1Þ ð25Þ



Fig. 13. Approximate solutions of Problem 2 for different values of e and for fix p.

Fig. 14. Relative errors of Problem 2 for different values of e and for fix h and p.
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With boundary conditions
yð0Þ ¼ yð1Þ ¼ 0 ð26Þ
To compare, following valid approximation [15] is chosen as reference solution
yðxÞ ¼ ln
2

xþ 1
� e�2x=e ln 2
According to method of reduction of order [16], the pair of initial value problems related to (25) and (26) are
ðiÞ z0ðxÞ ¼ � 2
xþ 1

with zð1Þ ¼ � e
2

ð27Þ

ðiiÞ ey0ðxÞ þ 2yðxÞ ¼ zðxÞ with yð0Þ ¼ 0 ð28Þ



Fig. 15. Relative errors of Problem 2 for different values of h and for fix e and p.

Fig. 16. Relative errors of Problem 2 for different values of p and for fix e and h.

Fig. 17. Maximum pointwise of Problem 2 for different values of e and for fix h and p.
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Fig. 18. Maximum pointwise errors of Problem 2 for different values of h and for fix e and p.

Fig. 19. Maximum pointwise errors of Problem 2 for different values of p and for fix e and h.

Fig. 20. The uniform maximum pointwise errors of Problem 2.
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Fig. 21. Results of Problem 3 for e = 0.0015, n = 1024.

Fig. 22. Results of Problem 3 for e = 0.01, n = 1024.
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Table 3
Comparison of results and pointwise errors of Example 1.

X e = 0.1, h = 1/128 e = 0.01, h = 1/128

Numerical Exact Error Numerical Exact Error

1/16 0.0489 0.0556 0.0068 0.0379 0.0600 0.0073
2/16 0.1018 0.1082 0.0064 0.1096 0.1164 0.0069
4/16 0.1988 0.2045 0.0057 0.2132 0.2193 0.0061
6/16 0.2851 0.2901 0.0050 0.3048 0.3102 0.0054
12/16 0.3631 0.4578 0.0004 0.5205 0.5241 0.0037
14/16 0.4075 0.3981 0.0094 0.5763 0.5795 0.00333

Table 4
Numerical results of Example 3.

x e = 0.0015, n = 1024 e = 0.01, n = 1024

S(x) y(x) Errors S(x) y(x) Errors

100/1024 0.6021 0.6009 0.0012 0.6038 0.6009 0.0030
200/1024 0.5166 0.5156 0.0011 0.5181 0.5156 0.0025
300/1024 0.4379 0.4370 0.0010 0.4391 0.4370 0.0021
400/1024 0.3650 0.3641 0.0009 0.3659 0.3641 0.0018
500/1024 0.2970 0.2962 0.0008 0.2977 0.2962 0.0015
600/1024 0.2333 0.2326 0.0007 0.2339 0.2326 0.0013
700/1024 0.1734 0.1728 0.0007 0.1739 0.1728 0.0011
800/1024 0.1170 0.1164 0.00006 0.1172 0.1164 0.0009
900/1024 0.0635 0.0630 0.0005 0.0637 0.0630 0.0007
1000/1024 0.0128 0.0123 0.0005 0.0128 0.0123 0.0005
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From (27) and (28) we have
ey0ðxÞ þ 2yðxÞ ¼ �2 lnðxþ 1Þ þ 2 ln 2� e
2

ð29Þ
Substitute (13) and (14) into (29), we obtain
1
3
� e

2h

� 	
aj�1 þ

4
3

aj þ
1
3
þ e

2h

� 	
ajþ1 ¼ �2 lnðxþ 1Þ þ 2 ln 2� e

2
:

Comparison of reference solution and approximation solution for different values of e is given in Figs. 21 and 22. The numer-
ical results are given in Table 4.

The numerical results is found in good agreement with exact solution.
The numerical results show clearly the effect of e on the boundary layer and the present method is relatively simple to

collocate the solution at the mesh points, to set up the collocation system and to solve singular boundary value problems
arising in biology, and it is applicable technique and approximates the exact solution very well.
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