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The use of cubic splines in the solution of two-point boundary

value problems
By D. J. Fyfe*

A method of obtaining an approximate solution to two-point boundary value problems by use of
of cubic splines, which was suggested by Bickley (1968) is developed. Error analysis is carried
out and from the results a method of deferred correction is obtained. The use of unequal intervals
is considered. An algorithm for computing the solution to prescribed accuracy in the case of
equal intervals is described and a numerical example given.

(Received August 1968)

1. Bickley (1968) suggested that cubic splines may be
used to obtain an approximate solution to the two-
point boundary value problem:

Yo+ Py +ax)y=rx), a<x<b (1

with boundary conditions
%y + By =vo at x=a 2
and o,y — By’ =1y, at x=0b. 3

This paper examines this method, and error estimates
are obtained which enable a deferred correction to be
made. The possibility of using unequal intervals is
also considered.

In Section 2, the relevant results of Curtis and Powell
(1967), are quoted for the convenience of the reader.
In Section 3, the method for the solution of equation (1)
is developed whilst in Section 4 the unequal interval
case is considered. In Section 5 a procedure is described
which enables results to be obtained to a pre-assigned
accuracy, with the minimum of computation, and in
Section 6 some numerical results are given and discussed.

2. Let f(x) be a function with continuous derivatives in
the range a < x < b. Divide the range into » intervals
by inserting knots at the points x,, xi, ..., X, where
a=xg<x;<....<x,=2>,, then s(x) is a cubic
spline interpolating function for f(x) if

(i) s(x) is a cubic polynomial in each interval

[xi > Xi4 1]’

(i) sCx;) = fx;), i = O(Dn,

and (iii) s'(x) and s”(x) are continuous.
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The third derivative s"”(x) will be discontinuous at the
knots x;, i = 1(1)n — 1. It can be shown that if s(x)
is a cubic spline it must have the form

5(x) = ap + bo(x — xo) + co(x — xo)?

n—1
+EXdx —x)3+,a<x<6, D
k=0

=z,z>0
““1=0,z<0.

where

Let us now assume that the knots x; are equally spaced
in [a, b], at interval 4 so that x; = a + ih. In this case
the following relationships can be obtained:

Rls'(xi— 1) + 4s'(x;) + 5'(xi41)]
=3[flxiy) —fxi-D], )
h2s5"(x;) = 6[s(x; 1. 1) — s(x;)]
— 2h[25'(x;) + s'(x; 4 D], (6)
and A3 (x; ) = 12[s"(x;) — s(x;4 1]
+ 6h[s'(x;) + s'(xir )], (D)

where 5”'(x;..) denotes the value of s”'(x) in (x;, x;, 1)
Using operator notation (5) may be written in the form

(E~' + 4 + E)hs’(x;) = 3(E — E~Df(x))
and hence

3(E— E!
hs'(x;) = {Eiﬁ}f(x,').

If we now put E = ¢"P and expand in powers of hD, we
obtain

$0) =1 () — [goh () + O, ®)
Simularly (6) and (7) give
) = (6D — () + 555 hCx) + O ©)
and
S0 = 170D + ) + 15
— 6o — 1) + O, (10)
From (10) we now obtain
L7 + G = 1)
+ ) O (1)
and  §(xis) — §" i) = W)
— s ) + O (12)

(12) gives a very good estimate of Af™(x;) and from (4)
we see that

$7(x;4) — $7(x;2) = dy = Bf"(x;)) + O(F).  (13)
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Cubic splines 189

~ We now define e(x) = f(x) — s(x) and substitute (8),
(9), (11) and (12) in the Taylor series expansion of
e(x; + Oh) obtaining

et + 0 — " D g

0(6% — 1)(36% — 2
O e = Dysrx) + 00 (14)

for0< <.

3. The number of coefficients in (4) is n + 3 and Bickley

(1968) has shown that satisfying (1) by colocation at

the n + 1 knots together with equations (2) and (3)

gives precisely the requisite number of equations.
Differentiating (4) twice we obtain

n—1
5'(x) = by + colx — xo) + %k_Eo d(x — x5 (15)
n—1
and s"(x) = ¢, +k§) di(x — x;) - (16)

Substituting s(x), s’(x) and s”(x) into (1) gives, for
satisfaction at the ith knot,

n—1
Co +k§0dk(xi — X+ +pi [bo + co(x; — xo)

n—1 B

+ %kgo di(x; — xk)%)-J

+ 41 [a0 + boler; — x0) + e, — o)’
n—1

+3 3 dir — x4 | = 1, (17)
k=0

where p; = p(x;) etc.
Satisfying the boundary conditions leads to

a9 + Bobo = Yo, 13
and @, [ag + boCx, — Xo) + Jeox, — x0)?
n—1
+4 3 dix, — %]
k=0

— Bu b0 + eolxn — %) + 1S s~ 107] =
k=0
(19)

(19), (17) with i = n(— 1)0 and (18) produce a system of
n + 3 equations in the unknowns ay, by, ¢y, dy, dy,. . .d,_,
which is upper triangular with a single sub-diagonal.
The forward elimination has only one multiplier at each
step and the solution is thus simple.

Let the spline obtained by solving (17), (18) and (19)
be s(x). We wish to find the spline which satisfies

(S:-, + e:’) ‘I‘P:(S: + e:) + q,~S,- == r,-, (20)

where ¢; and e”; are given by (8) and (9). We have
obtained s@(x) which satisfies

s+ pisi® + qis® = 1. 21

If we now let e(x) = s(x) — s(®(x) be a correction spline,
we have, by subtracting (21) from (20)

€ + pi€i + qi; = — e — piei. (22)

Substituting for e} and e, we obtain

1 1
— h2yiv 4,,vi
Iy 4 ey,

€ +piei + qi€; = 360

1
— — p.hM 6
g P + O9)

in which the major term in the right-hand side is the first.
However, using equation (13) we have a good estimate

1 .
for ——ﬁhz v at each of the internal knots, namely

1
—ﬁhd,.. Using linear extrapolation, estimates of

. 1 . . .
— éth” and — l—zhzy’" can be obtained to sufficient

accuracy, for example
— Ly = — S — ) + s
12770 12 A VA

1
= — 1_2h(2d1 — dy) + O(h%).
The two boundary conditions become

1
ageg + Pocg = — mpoh“yb' + O(h®)

1
— S 4,,v 6
and o€y — Bre, = 180p,,h v + O(h°).

We thus obtain the correction spline e(x) by solving the
equations

- S

1 .
—ﬁh(Zdl—do), l=0

1

€ +piei +qiei = 3 _ﬁhdi’ i=1Dn—1 ((23)

1 .
| - —l_zh(Zdn—l - dn—2) 1=n, )

with boundary conditions
xg€p + /805(; == 0. (24)
and o€, — Bren=0. (25)

Since (x) is a cubic spline it will have the form of (4)
and so the solution of (23), (24), (25) is just the same as
the solution of (17), (18), (19) with a new right-hand
side. This will involve very little additional computation.
A better approximation to s(x) is then easily obtained
from s@(x) + e(x).

4. The use of unequal intervals is now considered in a
manner similar to that of Curtis and Powell (1967). We
assume that for a < x < x; an interval 2h is used and
for x, < x < b an interval h is used. Let s, (x) and
s_(x) be the splines that would have been obtained if
intervals 4 and 24 had been used throughout the range.

For x > x,, s(x) differs from s, (x) by a spline o (x)
which is zero at each knot and whose effect diminishes
as x increases. Curtis and Powell show that for x > x,,
s(x) = s, (x) + o (x), where
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0. (%) = Ay [A2(x — x) — v/3h(x — x,)?
+ &3 =Dk —x)?
+2V3 3 (~ 24y a—x— 03] (26)
and for x < xy, s(x) = s_(x) + o_(x), where
o_(x) = A_[4h*(x — x;) — 24/3(x — x;)?
+ (3= Dkx—x)

—2\/32( 24/3Y(— x+x,.— 2% 1
@7

A; and A_ are determined from the continuity conditions
and are given by

1 1
M = py Al ") — 360k + O0)  (28)

and A = g ) + s B + O, (29)
We have for x > x,
e(x) = f(x) — s(x) = fx) — 5,.(x) — o, (x)
=e;(x) — oy ().
Thus e’(x) = e (x) — o} (x) and substituting from
equations (8), (26) and (28) we obtain
) = — Y )

+ 351G + O (30)

Similarly
" | S, V3
e'(x) = ahzf (X)) — Tg—h:;fv(xk) + O(r*)  (31)
and d, = \/3 hf™(x;)
- %hzfv(xk) + 0. (32)
In general for j > 1
, 1 3—-2
€/ (5k1.) = T ke ) — 2 W)
+ 2= Dy + 00, 63
, 1 . 3—-2)y .
) = 7 " en) + L b

_ %8—2)’ K (%) +O(h%), (34)

and  diy; = () + (V3 — 2 *(x,)

3 —
~ 822 Dy + 0. 39

Also
, 4
€ 05k-) = g5t O ) — Y32 W)
— OB D i) + 0, 6

1 3—-2y .
et = ) — V2 Y ey
— VA2 s + 0, (37
and  de; — 2h77x ) — 2 gy
3—-2)
~ 2220 + 00 ()

As a consequence of these results, we see that the error
in the first derivatives near a change of interval size is
of order A3, whereas for the equal interval case it is of
order 4% Secondly, there is an 43 term in e’’(x;) which
is not present in the equal interval case and thirdly
close to an interval change d; = hf *(x;) + O(h?), whereas
away from interval changes d; = hf*(x;) + O(h%).
These facts mean that the deferred correction described
in Section 3 will not be as effective near an interval
change and at best the values obtained for s(x;) will have
errors of order A43.

5. In this section a procedure is described which will
produce an equal interval spline for use as an inter-
polating sphne over the whole range a < x < b. The
spline will give results to a prescribed accuracy at any
point in the range and will involve the minimum con-
venient number of knots consistent with such accuracy.

The choice of interval is determined by two separate
considerations. First, we must ensure that the values
at the knots are determined to sufficient accuracy, and
secondly, assuming that the values at the knots are
correct, that the interpolation error at an interval point
of any interval is sufficiently small. These two require-
ments are not necessarily related although it is often
found that when the second condition is satisfied the
first will also hold.

Let us consider the second requirement. We assume
therefore that we have obtained a spline s(x) which
satisfies the conditions in Section 2. Then the error
e(x; + 6h) is given by (14). Thus we have

2,
le(x; + 6h)| < ax {6(0 h“lf“( )I}

:—l—h“ max |f(x)|. (39)

384 i <cx<xin
. ; d;
At the internal knots we have from (13) f7V(x;) = n

Thus we may take as an estimate of the maximum error
mx; <x< X541,

$i = h3maX{|d| i1} i=1(Dn — 2, (40)

and let ¢, = h3|d1] and ¢,_| = 5o h%|d,—|.

384 384

Therefore if we let ¢ = i:lr(ll")‘f_ , {¢:}, then if the maximum

error is to be less than e, the interval control test will be

3

h
¢ =13 i=ﬁ1&{1{|dz|} <e 4D
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Cubic splines 191

We now consider the problem of ensuring that the
values at the knots have been determined to sufficient
accuracy. Since we are solving a boundary value
problem and so have information about the behaviour
of the solution at the ends of the range, we expect the
errors in the values at the knots to be greater away
from the boundaries. Equation (41) necessitates the
use of an iterative scheme in which a value for 4 is
guessed, the values d; and hence the error estimate
calculated, and from this estimate a new value of 4 is
determined and the process repeated. In order to
estimate the accuracy of the values at the knots we make
use of the values obtained for two successive values of A.

Let 4, and h, be two intervals such that certain x; are
knots in each partition of the range. Let the values
obtained from the two splines at one of these knots be
y{h{} and y{h,}. Since, from Section 3, the error is of
order h* we have, letting y; be the exact solution,

yi = yi{hi} + Bt + O(KS)

and Vi = yithy} + B,-h§ + O(hg)-
Subtracting we obtain
B = — yilhi} — yithy}

and hence let
4
2

h
= lei{hy}| = m[)’f{hl} —yitha}ll. (42

Thus if we require that the maximum error at the knots
is € (not necessarily the same as €) we use as interval
control test

7 = max {n;} < &. 43)

We apply this test at the quarter points of the range
which requires that 4 be chosen so that the number of
knots is a multiple of 4. 1If in any example it is con-
sidered desirable to apply test (43) at additional points
this can be done by ensuring that the required knots
occur in two successive approximations.

Test (43) implies that even if the guessed value of A
used initially satisfies test (41), a second value of 4 must
be used in order that (43) can be applied.

The computational procedure is therefore as follows:
guess a value of 4 and evaluate s(x) as described in
Section 3. Evaluate ¢ from (41) and if ¢ > ¢, evaluate
a new value of 4 from:

hp1 = (e/$)'*h,. (44)

h
multiple of 4. Then the coefficients of a new spline are
found and the test (41) reapplied. If this is still not
satisfied a new 4 is found as above.

When an £ satisfying (41) is found test (43) is applied,
using current and previous values of 4. If test (43) fails
a new value of 4 is determined from

h,+ 1= (Gk/ﬂ)1/4hr- (45)

This new value of % is now modified until a is a

b—a
h
of 4. This test is then reapplied as necessary.
When an interval satisfying both tests is obtained the
spline then calculated can be used to produce the
solution y = s(x) for any x in [a, b].

This interval is also modified so that

is a multiple

6. The following numerical example (Fox, 1957) is used
to illustrate the method

s 4x 2 .

with boundary conditions y(0) = 1, y(2) = 0-2. The
. 1

exact solution is y = T

The problem was first solved using the procedure
described in the previous section with € and ¢, both
set equal to 4 X 10~4. The initial value of n was 4
and the tests chose n =8, 12, 16 before both were satisfied.
The results at the knots and the mid-points of each
interval, are given in Table 1. The dramatic improve-

Table 1

X sO(x) s(x) e(x) x 104
0-0000 | 1-000 000 00 | 1-000 000 00 0-0000
0-0625 0-996 112 84 | —0-0489
0-1250 | 0-984 893 16 | 0-984 647 51 | —0-3212
0-1875 0-966 073 10 | —0-3536
0-2500 | 0-942 052 03 | 0-941 233 10 | —0:5663
0-3125 0-911 098 53 | —0-6650
0-3750 | 0-878 230 64 | 0-875 784 26 | —0-7193
0-4375 0-839 422 10 | —0-7783
0-5000 | 0-801 969 78 | 0-800 067 84 | —0-6784
0-5625 0-759 710 92 | —0-6700
0-6250 | 0-721 238 96 | 0-719 151 14 | —0-5002
0-6875 0-679 090 50 | —0-4541
0-7500 | 0-642 056 85 | 0-640 029 29 | —0-2929
0-8125 0-602 377 35 | —0-2441
0-8750 | 0-568 188 45 | 0-566 384 48 | —0-1280
0-9375 0-532 233 90 | —0-0937
1-0000 | 0-501 506 18 | 0-500 002 54 | —0-0254
1-0625 0-469 725 50 | —0-0073
1-1250 | 0-442 567 25 | 0-441 376 79 0-0252
1-1875 0-414 907 69 0-0317
1-2500 | 0-391 141 35 | 0-390 239 69 0-0422
1-3125 0-367 284 15 0-0423
1-3750 | 0-346 595 75 | 0-345 941 83 0-0412
1-4375 0-326 110 78 0-0387
1-5000 | 0-308 140 10 | 0-307 689 04 0-0327
1-5625 0-290 575 92 0-0297
1-6250 | 0-274 966 06 | 0-274 675 89 0-0222
1-6875 0-259 896 50 0-0197
1-7500 | 0-246 318 11 | 0-246 152 57 0-0127
1-8125 0-233 362 62 0-0110
1-8750 | 0-221 523 56 | 0-221 452 78 0-0051
1-9375 0-210 352 91 0-0042
2-0000 | 0-200 000 00 | 0-200 000 00 0-0000

ment obtained by using deferred correction can be seen
from the fact that at x = 1 the errors in s(9(x) and s(x)
are —0-00150618 and —0-00000254 respectively. The
maximum error occurs at x = 0-4375 and is less than
one unit in the fourth decimal place.

The form of the solution suggests that this example
would benefit from the use of unequal intervals (indeed
Fox (1957) uses this example to illustrate the use of
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192 Fyfe

unequal intervals in the finite difference method). We Table 2
therefore again solve equation (46) with n = 16 but this
time with knots at the points 0 1%)%(%’)2. Modified x SO(x) 5(x) e(x) x 104

deferred correction terms for use on the right-hand side v
of equation (23) close to x = %, are obtained from
equations (31) to (38). The results are given in Table 2.

0-0000 | 1-000 000 00 | 1-000 000 00 0-0000

The maximum error occurs at the mid-point of the ggg;g 0-993 500 95 ggg§ %—1/(5) ;’% _8?:1;22
interval including the knot where the interval size 0-1250 0-984 630 11 :0_1 473
ghanged anq is slightly smaller than the maximum error 0-1666 | 0-973 834 52 | 0-972 995 63 | —0-2265
in the equal interval case.
. L 0-2083 0-958 429 28 | —0-2662
It can be seen that very little advantage is gained by
. . i 0-2500 | 0-942 524 70 | 0-941 209 57 | —0-3310 |
using unequal intervals. This is because the deferred 0-2916 0-921 637 30 0-3730
correction is less effective. The interval control tests o
- . . . 0-3333 | 0-901 808 93 | 0-900 041 48 | —0-4148
are easier to implement if equal intervals are used and 0-3750 0-876 757 47 | —0-4514
;(])eg:;‘lil'se of unequal intervals is, in general, not recom- 0-4166 | 0-854 274 33 | 0-852 117 91 | —0-4691
The results obtained using this method are better than 8‘5‘(5)83 0-802 507 21 8 2(2)(6) gjg g(l) "8233
using the usual finite difference method with the same 0-5416 0-773 206 38 B 0-5202
number of knots. Also this method produces a spline o
. . . . 0-5833 | 0-748 827 65 | 0-746 163 68 | —0-4969
function which may be used to obtain the solution at 0-6250 0-719 149 00 0-4788
any point in the range, whereas the finite difference 0-6666 | 0-695 137 04 | 0-692 356 03 —0_ 4834
method only obtains the solution at the chosen knots. 0-7500 0-640 060 41 B 0-6041
Finally, the author would echo the comment of 0-8333 | 0-592 843 37 | 0-590 179 80 _0-1587
Curtis and Powell that the more one uses splines the B
more one likes them. 0-9166 0-543 397 18 | —0-0010
1-0000 | 0-502 164 20 | 0-499 978 68 0-2131
1-0833 0-460 038 22 0-2567
1-1666 | 0-425 101 56 | 0-423 497 72 0-3169
1-2500 0-390 213 52 0-3039
1-3333 | 0-361 048 66 | 0-359 971 73 0-2827
1-4166 0-332 538 75 0-2476
1-5000 | 0-308 331 92 | 0-307 672 33 0-1998
1-5833 0-285 132 13 0-1638
1-6666 | 0-265 048 11 | 0-264 694 35 0-1153
1-7500 0-246 145 20 0-0864
Acknowledgement 1-8333 | 0-229 435 85 | 0-229 294 73 |  0-0463
1-9166 0-213 964 69 0-0262

The author would like to acknowledge the many
valuable discussions he had with Professor W. G. 2-0000 | 0-200 000 00 | 0-200 000 00 0-0000

Bickley during the development of this work.
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