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a b s t r a c t

A new approach implementing a modified decomposition method in combination with
the cubic B-spline collocation technique is introduced for the numerical solution of a class
of singular boundary value problems arising in physiology. The domain of the problem is
split into two subintervals; amodified decomposition procedure based on a special integral
operator is implemented in the vicinity of the singular point and outside this domain the
resulting boundary value problem is tackled by applying the B-spline scheme. Performance
of this method is examined numerically; the examples reveal that the current approach
converges to the exact solution rapidly and with O(h2) accuracy. Results show that the
method yields a numerical solution in very good agreement with the existing exact and
approximate solutions.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The aimof this paper is to introduce a new approach for the numerical solution of the following class of singular boundary
value problems arising in physiology:

y′′ +
m
x
y′ = f (x, y(x)), (1.1)

defined on the interval [0, b] and subject to the following boundary conditions:

y′(0) = 0 (or y(0) = η), (1.2)

and

αy(b)+ βy′(b) = γ . (1.3)

We assume that f (x, y) is continuous, ∂ f
∂x exists and is continuous on the domain [0, b]. The singular boundary value problem

(1.1)–(1.3) arises in a number of applications, particularly for the caseswhenm = 0, 1, 2 and for certain linear and nonlinear
functions f (x, y). Of special interest is the case whenm = 2 and

f (x, y) =
ny
y+ k

, n > 0, k > 0

which arises in the modeling of steady state oxygen diffusion in a spherical cell with Michaelis-Menten uptake kinetics
(see [1] and [2]). Another case of physical significance is whenm = 2 and

f (x, y) = −le−lky, l > 0, k > 0

which occurs in the formulation of the distribution of heat sources in the human head (see [3,4]).
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In recent years, finding numerical solutions of singular differential equations, particularly those arising in physiology,
has been the focus of a number of authors. Kanth and Bhattacharya [5] used a quasi-linearization technique to reduce a class
of nonlinear singular boundary value problems arising in physiology to a sequence of linear problems; the resulting set of
differential equations are modified at the singular point, then spline collocation is utilized to obtain the numerical solution.
Pandey and Singh [6] described a finite difference method based on a uniform mesh for the solution of a class of singular
boundary value problems arising in physiology; it was shown that the method is of second-order accuracy under quite
general conditions. Caglar et al. [7] used B-spline functions to develop a numerical method for computing approximations
to the solution of nonlinear singular boundary value problems associatedwith physiological science. The original differential
equation was modified at the singular point, then the boundary value problem was treated by using the B-spline
approximation. Asaithambi and Garner [8] presented a numerical technique for obtaining pointwise bounds for the solution
of a class of nonlinear boundary-value problems appearing in physiology. Gustaffsson [9] presented a numerical method for
solving singular boundary value problems. Kanth and Reddy [10] presented a numerical method for solving a two point
boundary value problem in the interval [0, 1]with regular singularity at x = 0. Kanth and Reddy [11] presented a numerical
method for singular two point boundary value problems via Chebyshev economizition. A number of papers discussed
the existence of solutions for the given problem, for instance, existence and uniqueness of the solution of (1.1)–(1.3),
for the special case m = 2, α = γ and β = 1 has been given in [12]. See papers [12,7] and the references therein for
further applications of such a problem and where it arises.
The purpose of this paper is to introduce a novel approach based on a combination of amodified decomposition approach

and cubic B-splines collocation for the numerical solution of the class of singular second-order boundary value problems
given in (1.1)–(1.3) that arise in physiology. The main thrust of this approach is to decompose the domain of the problem
into two subintervals. The singularity, which lies in the first subinterval is removed via the application of a modified
decomposition procedure based on a special integral operator that is applied to surmount the singularity. Then, in the second
subdomain, which is outside the vicinity of the singularity, the resulting problem is treated via employing the B-spline
collocation technique. The performance of the numerical scheme is assessed and tested on specific test problems. The oxygen
diffusion problem in spherical cells and a nonlinear heat-conduction model of the human head are discussed as illustrative
examples. The numerical outcomes indicate that the method yields highly accurate results and is computationally more
efficient than existing ones.
In the past decade, there has been a great deal of interest (see [13–21]) in applying the decompositionmethod for solving

a wide range of nonlinear equations, including algebraic, differential, partial-differential, differential-delay and integro-
differential equations. In this paper, we employ a modified version of the decomposition approach in order to handle the
singularity point at the origin, however, the setback of this method is that it diverges very rapidly as the applicable domain
increases, that is, it yields only a local approximation. In contrast, the spline approach gives a global approximation regardless
of the size of the interval, nevertheless it has a drawback in handling the singularity at the origin. To handle the deficiencies
and balance the advantages of both methods we propose in this paper a combination of both methods as described above.
The balance of this paper is organized as follows. In Section 2, the mixed modified decomposition and cubic B-spline

collocation approach is presented for the numerical solution of the class of singular second-order boundary value problems.
In Section 3, a number of test problems are discussed to appraise the accuracy of the technique. Finally, Section 4 includes
a conclusion that briefly summarizes the numerical results.

2. Numerical method

The essence of the new mixed decomposition-spline approach for the numerical solution of the nonlinear singular
differential problem (1.1), is to split the domain Ω = [0, b] into two subintervals as Ω = Ω1 ∪ Ω2 = [0, δ] ∪ [δ, b]. A
modified decomposition scheme is implemented on the subdomainΩ1, that is, in the vicinity of the singular point at x = 0.
Then, outside this range a numerical solution of the problem is obtained by applying the B-spline collocationmethod on the
subdomainΩ2.
The decomposition method yields very accurate local approximations, even close to the singularity, but deteriorates as

the applicable domain increases. In contrast, the spline collocation provides global estimation of the solution, however,
the shortcoming of the method is that it gives an unsatisfactory approximation in the presence of a singularity. To handle
the singularity and avoid the deficiencies of both methods, we propose the combination of both methods. In the next two
subsections, we present both the cubic B-spline collocation and the modified decomposition techniques.

2.1. Spline approach

In this subsection, we present the cubic B-spline finite element collocation for the numerical solution of the class of
nonlinear boundary value problems (1.1)–(1.3).
Consider the nodal points xi on the interval [a, b]where

0 ≤ a = x0 < x1 < · · · < xn−1 < xn = b.

If the nodal points are equidistant fromeach other, we have xi = ih, i = 0, 1, 2, . . . , n, where h = b−a
n on the interval [a, b].

Letψ(t) be a shape function that satisfies the two boundary conditions (1.2)-(1.3) and is expressed as a linear combination
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Table 1
ψi, ψ

′

i , and ψ
′′

i evaluated at the nodal points.

Nodes ψi ψ ′i ψ ′′i

xi 0 0 0
xi+1 1 3

h
6
h2

xi+2 4 0 −
12
h2

xi+3 1 −
3
h

6
h2

xi+4 0 0 0

of n+ 3 shape functions given by

ψ(t) =
n−1∑
i=−3

Aiψi(t). (2.4)

The A′is are unknown real coefficients and the ψi(x) are the cubic B-splines functions defined as follows:

ψi(x) =
1
h3


(x− xi)3, [xi, xi+1]
h3 + 3h2(x− xi+1)+ 3h(x− xi+1)2 − 3(x− xi+1)3, [xi+1, xi+2]
h3 + 3h2(xi+3 − x)+ 3h(xi+3 − x)2 − 3(xi+3 − x)3, [xi+2, xi+3]
(xi+4 − x)3, [xi+3, xi+4]
0, otherwise

(2.5)

where h = xi+1 − xi. From (2.5), the values of ψi, ψ ′i and ψ
′′

i at the nodal points xi = ih are given according to Table 1.
To construct such an approximate solution, we substitute the approximate solution (2.4) into Eq. (1.1). This yields

n−1∑
i=−3

Ai

[
ψ ′′i (xj)+

m
xj
ψ ′i (xj)

]
= f

(
xj,

n−1∑
i=−3

Aiψi(xj)

)
, j = 0, 1, 2, . . . , n. (2.6)

The above system consists of n+ 1 equations in n+ 3 unknowns. The boundary conditions in (1.2)-(1.3) give the following
two equations:
For y′(a) = 0 (or y(a) = η)we have

n−1∑
i=−3

Aiψ ′i (x0) = 0

(
or

n−1∑
i=−3

Aiψi(x0) = η

)
. (2.7)

For αy(b)+ βy′(b) = γ we have

n−1∑
i=−3

Ai
(
αψi(xn)+ βψ ′i (xn)

)
= γ . (2.8)

The values of ψi(xj), ψ ′i (xj) and ψ
′′

i (xj) at the nodal points xj, j = 0, 1, . . . , n are determined from Table 1.
The system of equations in (2.6)–(2.8) can be written in matrix form as follows:

Cb = d (2.9)

where

C =



−
3
h

0
3
h

0 0 · · · 0
r0 w0 v0 0 0 · · · 0
0 r1 w1 v1 0 · · · 0
· · · · · · ·

· · · · · · ·

· · · · · · ·

0 0 0 · · · rn wn vn

0 0 0 · · · α −
3β
h

4α α +
3β
h


ri =

6− 3hGi
h2

, wi =
−12
h2

, vi =
6+ 3hGi
h2
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where
Gi =

m
xi

d =



0
F (x0, a−3 + 4a−2 + a−1)
F (x1, a−2 + 4a−1 + a0)
F (x2, a−1 + 4a0 + a1)

.

.

.
F (xn−1, an−4 + 4an−3 + an−2)
F (xn, an−3 + 4an−2 + an−1)

γ


and

bT =
[
A−3 A−2 A−1 A0 · · · An−3 An−2 An−1

]
.

The system of equations given in (2.9) is solved using the computer algebra systemMaple.
In the case of the second condition in (2.7), the above system has to be slightlymodified. The first three entries in the first

row of matrix C have to be replaced by: 1, 4 and 1, respectively. Also, the first row in the vector d should be η instead of 0.

2.2. Modified decomposition method formulation

In this subsection, we describe briefly the decomposition algorithm as it applies to the following generalized nonlinear
equation of the form

u− N(u) = f (2.10)
where N is a nonlinear operator on a Hilbert space H and f is a known element of H . We assume that for a given f a unique
solution u of (2.10) exists. The decomposition scheme (see [13–20] formore details on themethod) assumes a series solution
given by

u =
∞∑
n=0

un (2.11)

where the nonlinear operator N is decomposed into

N(u) =
∞∑
n=0

An (2.12)

where the An’s are the Adomian polynomials (see [13]) of u0, u1, . . . , un given by

An =
1
n!
dn

dλn

[
N

(
∞∑
i=0

λiui

)]
λ=0

n = 0, 1, 2, . . . . (2.13)

Substituting Eqs. (2.11) and (2.12) into the functional equation (2.10) yields
∞∑
n=0

un −
∞∑
n=0

An = f . (2.14)

Upon matching both sides of the equation, we obtain the following recursive scheme:
u0 = f
u1 = A0
u2 = A1
· · ·

un = An−1.

(2.15)

Thus, one can recurrently determine every term of the series
∑
∞

n=0 un.
If the operator N(u) is a nonlinear function of u, say f (u), then the first four Adomian Polynomials (see [13]) are given by

A0 = f (u0)
A1 = u1f (1)(u0)

A2 = u2f (1)(u0)+
1
2!
u21f

(2)(u0)

A3 = u3f (1)(u0)+ u1u2f (2)(u0)+
1
3!
u31f

(3)(u0)

A4 = u4f (1)(u0)+
(
u1u3 + u22/2

)
f (2)(u0)+

1
2
u21u2f

(3)(u0)+
1
24
u41f

(4)(u0)
· · · .

(2.16)
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How do we interpret and solve the class of nonlinear boundary-value problem (1.1)–(1.2) in this setting? We first proceed
by rewriting problem (1.1) in the form

x−m
(
xmy′

)′
= f (x, y(x)). (2.17)

Following the decomposition analysis, we define the linear operator

L = x−m
d
dx

(
xm
d
dx

)
. (2.18)

This operator is defined in thismanner in order to surmount the singularity at x = 0. Consequently, Eq. (1.1) can be rewritten
in terms of this linear operator as follows:

L[y] = f (x, y). (2.19)

Based on the definition of L in (2.18), the inverse operator of L, namely L−1, is given by the following twofold indefinite
integral operator:

L−1 [.] :=
∫ x

0
x−m

∫ x

0
xm [.] dx dx. (2.20)

Operating on both sides of (2.19) with L−1 yields

L−1L [y] = L−1[f (x, y(x))] (2.21)

which simplifies to

y(x)− y(0)− y′(0)x = L−1[f (x, y(x))]. (2.22)

The algorithm consists of expressing the solution as an infinite series as follows:

y =
∞∑
n=0

yn (2.23)

where the terms yn are to be recursively computed. The nonlinear term f (x, y) is decomposed in terms of the Adomian
polynomials An(x) given in (2.16), as follows:

f (x, y(x)) =
∞∑
n=0

An(x). (2.24)

If we substitute Eqs. (2.23) and (2.24) into (2.22) we have

∞∑
n=0

yn = y(0)+ y′(0)x+ L−1 [An(x)] . (2.25)

Matching both sides of Eq. (2.25) yields the following iterative scheme:
y0 = y(0)+ y′(0)x
y1 = L−1 [A0(x)]
y2 = L−1 [A1(x)]
· · ·

yn+1 = L−1 [An(x)] .

(2.26)

3. Numerical examples

In this section, the mixed decomposition-spline method is implemented for tackling the singular differential equation
(1.1). To illustrate the effectiveness of this novel method we shall consider three singular test examples. Comparisons with
exact solutions and existing numerical methods shall also be made. We will consider three physical model problems from
the literature, namely, oxygen diffusion and a non-linear heat conduction model of the human head (see [1–4]). All the
numerical computations were executed on a Pentium-III PC usingMaple.

Example 1. Consider the following special case of Eq. (1.1):

y′′ +
1
x
y′ = −ey (3.27)
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and subject to one of the following two cases of boundary conditions:
Case A.

y′(0) = 0, y(1) = µ = 0 (3.28)

Case B.

y′(0) = 0, y(1.5) = µ = 2 ln

(
4− 2

√
2

7.75− 4.50
√
2

)
. (3.29)

Problem (3.27)–(3.28) has the exact solution y(x) = 2 ln
(
C+1
Cx2+1

)
, where C = 3− 2

√
2.

For this case, the nonlinear function in (1.1) is given by f (x, y) = −ey. Further, we have m = 1. Assuming a solution of the
form y(x) =

∑
∞

n=0 yn, then upon using (2.16) and (2.26) the various iterates for problem (3.27)–(3.28) can be determined
as follows:

y0 = y(0)+ y′(0)x = η. (3.30)

We used the fact that y′(0) = 0 and we set y(0) = η, where η is not given and will be determined later. For the other higher
iterates, we have

y1 = L−1 [A0] = L−1 [f (x, y0)] = −L−1
[
ey0
]
= −L−1 [eη]

= −

∫ x

0
x−1

∫ x

0
x eη dx dx = −

x2

4
eη. (3.31)

In a similar manner,

y2 = L−1 [A1] = L−1
[
fy(x, y0) y1

]
= −L−1

[
ey0 y1

]
= −L−1

[
eη
(
−
x2

4
eη
)]

=

∫ x

0
x−1

∫ x

0
x
(
x2

4
e2η
)
dx dx =

1
64
x4e2η (3.32)

y3 = L−1 [A2] = L−1
[
fy(y0) y2 +

1
2
y21 fyy(y0)

]
= −L−1

[
ey0 y2 +

1
2
y21 e

y0

]
= −L−1

[
eη
(
x4

64
e2η
)
+
1
2

(
−
x2

4
eη
)2
eη
]

= −

∫ x

0
x−1

∫ x

0
x
(
3x4

64
e3η
)
dx dx = −

1
768
x6e3η (3.33)

y4 = L−1 [A3] = L−1
[
fy(y0) y3 + y1y2fyy(y0)+

1
6
y31fyyy(y0)

]
=

1
8192

x8e4η (3.34)

and

y5 = L−1 [A4] = −
1

81920
x10 e5η. (3.35)

Upon summing these iterates, the approximate solution is

y(x) ≈ yS1 =
5∑
i=0

yi = η −
x2

4
eη +

1
64
x4e2η −

1
768
x6e3η +

1
8192

x8e4η −
1

81920
x10 e5η. (3.36)

To determine the value of ηwe consider two approaches. The first approach (I) is suitable for small intervalsmainly of length
at most 1 and with boundary conditions as that given in case A above. In this approach, the second boundary condition in
(3.28), namely y(1) = 0, is manipulated to determine the value of η in (3.36). Requiring the approximate solution in (3.36)
to satisfy this boundary condition we obtain

η = 0.316704855297798.

Substituting this value of η into (3.36) yields the approximate solution on the interval [0, 1]:

yI(x) = 0.316704855297798− 0.343149349321440x2 + 0.0294378689849319x4 − 0.00336719519586307x6

+ 0.000433294065187008x8 − 0.0000594738306135055x10. (3.37)
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Table 2
Numerical errors of Example 1 on [0, 1]with δ = 0.5.

x Approach I Approach II Method in [7]
n = 5 n = 10 n = 20 n = 5 n = 10 n = 20 n Max. Err.

0.0 1.05 (−5) 1.05 (−5) 1.05 (−5) 3.22 (−5) 8.06 (−6) 2.00 (−6) 20 3.16 (−5)
0.1 1.05 (−5) 1.05 (−5) 1.05 (−5) 3.21 (−5) 8.03 (−6) 1.99 (−6)
0.2 1.03 (−5) 1.03 (−5) 1.03 (−5) 3.18 (−5) 7.95 (−6) 1.97 (−6)
0.3 1.02 (−5) 1.02 (−5) 1.02 (−5) 3.13 (−5) 7.81 (−6) 1.94 (−6)
0.4 9.93 (−6) 9.93 (−6) 9.93 (−6) 3.05 (−5) 7.63 (−6) 1.83 (−6)
0.5 9.62 (−6) 9.62 (−6) 9.62 (−6) 2.96 (−5) 7.40 (−6) 1.78 (−6) 40 1.55 (−6)
0.6 2.73 (−6) 6.07 (−6) 6.93 (−6) 2.69 (−5) 6.72 (−6) 1.67 (−6)
0.7 6.67 (−7) 3.65 (−6) 4.75 (−6) 2.16 (−5) 5.41 (−6) 1.34 (−6)
0.8 1.58 (−6) 2.02 (−6) 2.93 (−6) 1.48 (−5) 3.70 (−6) 9.20 (−7)
0.9 1.08 (−6) 8.76 (−7) 1.37 (−6) 7.36 (−6) 1.84 (−6) 4.57 (−7)
1.0 0 0 0 0 0 0 90 1.55(−6)

Table 3
Maximum numerical errors of Example 1 on [0, 1.5].

n 5 10 15 20
Max. Error 2.37× 10−5 6.18× 10−6 3.03× 10−6 1.56× 10−6

The domain Ω = [0, 1] is divided into two subintervals as Ω = Ω1 ∪ Ω2 = [0, δ] ∪ [δ, 1]. The modified decomposition
method is employed in the vicinity of the singularity x = 0, that is within the subdomainΩ1, and outside it inΩ2 the spline
collocation method is applied. From Eq. (3.37), the boundary condition at x = δ = 0.5 is found to be

y(δ) = yI(0.5) = 0.2327064068. (3.38)

Numerical results using this approach (I), condition (3.38) and the secondboundary condition in (3.28), for different numbers
of mesh points are presented in Table 2. This approach, for boundary conditions given in case B, fails to provide a series
solution with good accuracy. This is as expected since we have a wider interval as compared with case A.
A second approach (II) is implemented for case B, which can be manipulated to improve the approximate solution for

case A. In this approximation, Eq. (3.36) is used to estimate y(δ) and y′(δ) which will be functions of η. Then the spline
collocation, Eq. (2.6), is applied on the interval [δ, b], for j = 1, 2, . . . , n, ignoring the approximate solution at δ (j = 0). The
n× (n+ 3) outcome system requires three additional equations which are given as follows:

y(δ) = yS1(δ), y′(δ) = y′S1(δ), y(b) = µ. (3.39)

Thus, in this case it is not necessary to have the solution to be twice differentiable at x = δ. In Table 2, numerical results
using the two approaches (I and II) are presented and compared with the numerical solutions obtained in reference [7].
Our proposed method using approach (II) yields better results than in [7] with less mesh points used. In Table 3, numerical
solutions of (3.27) are shown for the boundary conditions given in case B. In Fig. 1, the true solution and the numerical
decomposition-spline solution are plotted for the choice of δ = 0.5 and n = 10 for case B.
From Tables 2 and 3 we notice that the numerical solutions converge to the exact solution. Using the double mesh

principle p ≈
∣∣∣ Err(n)Err(2n)

∣∣∣, the order of convergence is verified to be 2.
Regarding the choice of δ, the following algorithm was implemented to calculate the δ:
Assume y(0) = η for a given choice of δ. We consider r terms of the approximate solution obtained by the decomposition

approach, namely yr = Σ ri=0yi on [0, δ]. The numerical scheme is repeated for different choices of the terminal point δ such
that

|ηr+1 − ηr | < τ

for a prescribed choice of the tolerance τ , where ηr is the solution of the boundary condition

αyr(b)+ βy′r(b) = γ .

In other words, the break point δ is chosen by noticing that the computational value of the boundary condition at x = δ
(namely, αy(δ)+βy′(δ) = γ ) stabilizes. The intention of the algorithm is tominimize and control the error in the boundary
condition at x = δ, which will affect the accuracy of the solution obtained by the spline approach on the second subinterval
[δ, 1]. Regarding the value of h used for the spline method on [δ, 1], it can be chosen to be independent of the value
of δ.

Example 2. Consider the following special case of Eq. (1.1):

y′′ +
2
x
y′ = −le−lky, l > 0, k > 0 (3.40)
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Fig. 1. Numerical solutions of Example 1 for case B.

where 0 < x ≤ 1, and subject to the following boundary conditions:

y′(0) = 0, 0.1y(1)+ y′(1) = 0. (3.41)

We will take l = k = 1. So note that for this case, the nonlinear function in Eq. (1.1) is given by f (x, y) = −e−y and also
we havem = 2. Thus, if y(x) =

∑
∞

n=0 yn, then (2.16) and (2.26) imply that the various iterates, for the boundary conditions
(3.41), can be determined as follows:

y0 = y(0)+ y′(0)x = η (3.42)

where y(0) = η will be determined later. We have

y1 = L−1 [A0] = L−1 [f (x, y0)] = −L−1
[
e−y0

]
= −L−1

[
e−η

]
= −

∫ x

0
x−2

∫ x

0
x2 e−η dx dx = −

x2

6
e−η. (3.43)

In a like manner, we find

y2 = L−1 [A1] = L−1
[
fy(x, y0) y1

]
= L−1

[
e−y0y1

]
= L−1

[
e−η

(
−
x2

6
e−η

)]
= −

∫ x

0
x−2

∫ x

0
x2
(
x2

6
e−2η

)
dx dx = −

1
120
x4e−2η (3.44)

y3 = L−1 [A2] = L−1
[
fy(y0) y2 +

1
2
y21fyy(y0)

]
= L−1

[
ey0y2 −

1
2
y21e

y0

]
= −

1
1890

x6e−3η (3.45)

and

y4 = L−1 [A3] = L−1
[
fy(y0) y3 + y1y2fyy(y0)+

1
6
y31fyyy(y0)

]
= −

61
1632960

x8e−4η (3.46)

y5 = L−1 [A4] = −
629

224532000
x10 e−5η. (3.47)

Upon summing these iterates, we observe that the approximate solution is

y(x) ≈ yS2 =
5∑
i=0

yi = η −
x2

6
e−η −

1
120
x4e−2η −

1
1890

x6e−3η −
61

1632960
x8e−4η −

629
224532000

x10 e−5η. (3.48)
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Table 4
Numerical solutions of Example 2 on [0, 1].

x Proposed method (h = 1/20) Method in [7] (h = 1/60)

0.0 1.14704079519111 1.14703993670271
0.1 1.14651141921222 1.14651055946170
0.2 1.14492228171805 1.14492141825538
0.3 1.14227034791619 1.14226947822689
0.4 1.13855053934243 1.13854966085306
0.5 1.13375570287390 1.13375481292594
0.6 1.12787656170330 1.12787566262296
0.7 1.12090166457601 1.12090076206338
0.8 1.11281731735712 1.11281641561478
0.9 1.10360749049872 1.10360659299888
1.0 1.09325371614752 1.09325282603337

Fig. 2. Numerical solutions of Example 2 for δ = 0.5 and n = 10.

Following approach (II) used in Example 1: for a given number of meshes n, we obtain the boundary conditions

y(δ) = yS2(δ), y′(δ) = y′S2(δ)

which are functions of η. These conditions together with the second boundary condition in (3.41), namely 0.1y(1)+y′(1) =
0, are utilized to find the spline approximations for the case δ = 0.5. The numerical results are given in Table 4which clearly
show a good agreement, up to at most 3 × 10−7, with the numerical results given in reference [7]. The advantage in our
proposed approach as compared with [7], is that fewer number of mesh points are required to obtain similar results.
In Fig. 2, the numerical decomposition-spline solution for Example 2 is plotted for δ = 0.5 and n = 10.

Example 3. Consider the following special case of Eq. (1.1):

y′′ +
2
x
y′ =

ny
y+ k

, n > 0, k > 0 (3.49)

where 0 < x ≤ 1, and subject to the following two cases of boundary conditions:

y′(0) = 0, 5y(1)+ y′(1) = 5. (3.50)

Wewill take n = 0.76129, k = 0.03119. So note that for this case, the nonlinear function in Eq. (1.1) is given by f (x, y) = ny
y+k

and also we have m = 2. Thus, if y(x) =
∑
∞

n=0 yn, then (2.16) and (2.26) imply that the various iterates, for the boundary
conditions (3.50), can be determined as follows:

y0 = y(0)+ y′(0)x = η (3.51)

where y(0) = η will be determined later. We have

y1 = L−1 [A0] = L−1 [f (x, y0)] = L−1
[
0.76129η
η + 0.03119

]
= −

∫ x

0
x−2

∫ x

0
x2

0.76129η
η + 0.03119

dx dx =
0.126881666666666η

0.03119+ η
x2 (3.52)
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Table 5
Numerical solutions of Example 3 on [0, 1] for δ = 0.5.

x Proposed method Method in [7]
n = 5 n = 20 n = 40 n = 60

0.0 0.82848300634573 0.82848329481355 0.82848325127828 0.82848327295802
0.1 0.82970580840464 0.82970609688790 0.82970605379256 0.82970607521884
0.2 0.83337444951368 0.83337473804308 0.83337469615261 0.83337471691089
0.3 0.83948962973406 0.83948991833986 0.83948987847273 0.83948989814383
0.4 0.84805250004880 0.84805278876051 0.84805275215744 0.84805277036165
0.5 0.85906463868421 0.85906492753032 0.85906489756682 0.85906491397434
0.6 0.87252803891014 0.87252831569855 0.87252829407669 0.87252830841853
0.7 0.88844505304223 0.88844529949702 0.88844528382436 0.88844529589927
0.8 0.90681833702984 0.90681854179965 0.90681853058322 0.90681854026297
0.9 0.92765082665921 0.92765098305256 0.92765097529878 0.92765098252660
1.0 0.95094568997062 0.95094579480523 0.95094578981933 0.95094579461056

Fig. 3. Numerical solutions of Example 3 for δ = 0.5 and n = 5.

and

y2 = L−1 [A1] = L−1
[
fy(x, y0) y1

]
=
0.00015063794379399η

(0.03119+ η)3
x4. (3.53)

In a like manner, we find the other iterates as in the previous two examples. Upon summing the iterates, we will obtain the
following approximate solution:

y(x) ≈ yS3 =
3∑
i=0

yi = η +
0.1268816666666η
0.03119+ η

x2 +
0.00015063794379399η

(0.03119+ η)3
x4

+
8.5162928752444× 10−8 η − 9.1015206532481× 10−8 η2

(0.03119+ η)5
x6. (3.54)

As in the previous two examples, for a given number of meshes nwe use (3.54) to obtain the boundary conditions:

y(0.5) = yS3(0.5), y′(0.5) = y′S3(0.5).

These two conditions together with the second boundary condition given in (3.50) are utilized to find the spline collocation
approximations. The numerical results (see Table 5) for various number of meshes are compared with the results in
reference [7]. In Fig. 3, the numerical decomposition-spline solution for Example 3 is plotted for δ = 0.5 and n = 5.

4. Conclusion

A new approach, based on a combination of a modified decomposition method and cubic B-spline collocation, has been
introduced for the numerical solution of a class of singular boundary value problems arising in physiology. A special linear
operator is applied to surmount the singularity at the origin followed by a series solution in the neighborhood of the singular
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point. The approach has been tested on some existing physical problems and it is evident from the numerical examples that
the method is of second-order O(h2) accuracy. The results give a better estimation to the solution than the stated existing
numerical methods with the same number of knots. The method is effective and applicable for a wide range of singular
problems and gives very accurate approximations using a relatively small number of mesh points.
A modified version of the decomposition approach was implemented only on a small subinterval that lies in the vicinity

of the singularity. The deficiency of the decomposition scheme is that it diverges very rapidly as the applicable domain in-
creases. To overcome this, the spline procedurewas employedoutside the vicinity, namely on the larger domain. TheB-spline
method gives an accurate global approximation regardless of the size of the interval, nevertheless it has a drawback in han-
dling the singularity at the origin. Spline collocation may not produce an effective approximation near the singularity: the
resulting system of equationsmight become inconsistent due to a loss of an equation that could contain termswhich cannot
be evaluated at the singularity.
The current approach avoids the deficiencies of the decomposition and spline methods and maximizes the advantages

of both methods. In contrast with existing finite-difference methods, this method produces a series solution in the vicinity
of the singularity as well a spline function which can be utilized to obtain a solution at any point in the domain and not
restricted to the values at the chosen knots.
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