
245

Early in Chapter 1, we observed that demography is not only a logically well-
organized and highly quantified scientific discipline in its own right, but that 
it also is one of the most widely applied of all the academic social sciences: in 

government, business, and other areas. By this point in our discussion, it should be 
easier to see why this is so. For the methods and theories that help us understand the 
characteristics of current and past populations, from fertility analysis, to migration 
studies, to the interpretation and creation of life tables, have turned out to be very 
useful in many modern occupations and professions. To extend the theme further, 
in this chapter our attention is turned to a set of techniques that has been developed 
specifically with such practical applications in view; that is, approaches to antici-
pating the nature of future populations—or of present populations with past data. 
These have assumed a unique and indispensable niche in contemporary decision 
making, especially in the fields of urban and regional planning, public administra-
tion, and education, health, and social service management.

Demographers employ several techniques in attempting to understand how pop-
ulations at a future date (or at a date later than that for which data are available) 
will resemble or differ from their current state. These are generally classed into three 
categories, each of which is based on a specific set of assumptions and mathematical 
formulations: (1) estimation, (2) projection, and (3) forecasting. Following a brief 
introduction, the following sections provide explanations of each type, in the order 
mentioned, along with extended mathematical derivations and illustrations using 
census data, current information from other sources, and formal models.1

Before we begin, however, it might help to clear away a source of possible misun-
derstanding. As interesting and useful as projection and the other techniques may be, 
they do not produce certain answers about tomorrow’s populations; demographers 
do not possess crystal balls or tarot cards that let them “in” on what will happen in 
the future. Rather, all of these techniques use factual information about the present 
and the past to help provide educated guesses about what would occur if certain 
assumptions were to hold. In this way, they do reveal much authentic information 
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about the nature of the present and past data on which they are based, but they do 
not and cannot produce “facts” about the future. Nathan Keyfitz (1968:27), one of 
the world’s leading experts on population projection, put the matter succinctly. “The 
object [of projection] is to understand the past rather than to predict the future; 
apparently the way to think effectively about a set of observed birth and death rates 
is to ask what it would lead to if continued.”

APPROACHES TO ANTiCiPATiNG  
POPULATiON CHARACTERiSTiCS

In ordinary conversation, we tend to employ certain words that refer to anticipating 
the future more or less interchangeably. Among the most frequently used are predict, 
estimate, project, and forecast. In scientific applications, however—including popu-
lation science, each of these has a slightly different meaning which, if not respected, 
can lead to serious confusion.

Perhaps the most difficult of these four is the first, predict and the noun form, 
prediction. In ordinary usage, a prediction is a statement about what we think 
will happen in the future, based on fact or intuition; for example, “I predict that 
my car will hold up long enough to get me to work this morning.” As we shall see, 
this is best called a “forecast” in scientific contexts. According to technical usage, 
a prediction is virtually identical to an explanation (see Rudner 1966). It is the 
outcome of a strict deductive process that need not even apply to the future at all. 
In contrast, a population estimate is an assessment of a population’s size or other 
characteristics at a present or near-future date, for which we have no immediately 
current information. Estimates are actually updates of old data, based on the most 
recent data available. When census data are used, the procedure takes place either 
at an intercensal date (e.g., 1985, 1995, or 2005) or immediately following the most 
recent census count. 

Estimates are necessary because it is practically impossible to collect data con-
tinuously, especially the amount and type gathered by government census opera-
tions. Even the kinds of surveys that are regularly conducted by the United States 
and other national census bureaus, which are very useful in validating estimates, are 
out of date the moment they are concluded: people are born, and migrate, and die 
whether or not interviewers are in the field. Yet, a continual demand exists for fresh 
information about population size, structure, and vital events from national, state, 
and local governments to allocate financial resources and for other purposes.

The point in time (usually the most recent point) for which authoritative data 
on demographic characteristics exists, such as Census years 1980, 1990, 2000, is 
referred to as the “central date.” The size of a population at midyear of that central 
date, for example, July 1990, is used as the denominator of crude birth rates, death 
rates, and many other measures, as we saw in earlier chapters. But if we would like 
to know something about vital rates at a date between 1990 and 2000—for instance, 
birth rates in 1996—estimation is necessary so that the appropriate denominator 
can be determined (recall that information about the vital events in the numerator 
is continuously registered). To illustrate, the midyear 2010 U.S. population was enu-
merated at approximately 308,745,538. Based on this and other information, the 
following set of midyear estimates through 2013 (in thousands) was calculated by 
the Census Bureau:2
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2010: 309,326
2011: 311,582
2012: 313,873
2013: 316,128

A projection depicts likely population characteristics at a future date based on 
a set of explicitly stated assumptions about what is expected to occur between the 
time the projection is made and the date to which it applies. The accuracy of a projec-
tion depends upon how closely the assumptions agree with the events that actually 
occur. Because it is usually difficult to assess future trends, several different scenarios 
are employed to account for a range of reasonable outcomes. This results not in one 
single projection but, instead, in a series of projections, of which one might assume 
slow growth, another moderate growth, and a third rapid growth. The U.S. Census 
Bureau has used this technique routinely for many years in its household projections, 
and the results are now regularly updated and posted at the www.census.gov web site. 

More recently, projections of all the world’s national aggregate populations for 
which information is available have been undertaken by the U.S. Census Bureau, 
national governments, the United Nations, and private organizations. Table 10.1 
contains a set of moderate-growth projections for the total size of the world’s popu-
lation and selected nations to midyear 2025 and 2050, drawn from various sources 
by the Population Reference Bureau, Inc. The table shows that the world as a whole 
and most countries will continue to grow fairly rapidly well into the twenty-first 
century. However, a few countries are likely to experience little or no growth, and 
some—including Italy and Russia—are expected to experience significant popula-
tion declines, as they were below ZPG at the time the projections were derived.

With the world’s population size approaching 6.9 billion in 2010, the year on 
which the calculations were based, the total for the year 2025 was projected to be 
just over 8 billion. Using the 2010 world growth rate of 1.2 percent per year and the 
model of exponential growth (see Chapter 8), if no changes occurred in birth and 
death rates, the 2025 total would be slightly over 8 billion.

In the case of the United States’ projection to 2025, with a rate of natural increase 
of 0.6 percent in 2010, the total projected population size in 2025 would be 351 mil-
lion. In contrast, India’s population growth is expected to decelerate over the projec-
tion period, from its then-current rate of 1.6 percent per year to 1.5 percent between 
2010 and 2025. Nevertheless, with just about 1 billion people at the beginning of the 
projection period, this figure will probably reach 1.75 billion by the end of the period.

A forecast is neither fact nor sheer fiction (see Worrall 2014; Goodman 1983). 
Rather, it is an assessment of a future state of affairs, including the future state of 
population characteristics, based on any or all of several sources: projection, scien-
tific theory, intuition, and even sheer guesses. It is the most idiosyncratic and least 
systematic of the three techniques, and often depends upon the personal viewpoint 
of the forecaster. Although a forecast is not as reliable as an estimate or a projec-
tion, and cannot replace these in attempting to anticipate tomorrow’s demographic 
events, it does have its place in the larger scheme of things because it is so eclectic. We 
are well aware that the size, growth rate, rate of vital events, age structure, and other 
aspects of today’s populations were affected not only by yesterday’s size, growth 
rate, and so on, but also by a range of other, nondemographic factors. These include 
population policies and policy shifts, as discussed in Chapter 11, economic condi-
tions, environmental changes, and even natural disasters. The same can be said of the 
range of possible causes today that will affect tomorrow’s populations.
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Table 10.1. Projected Population Sizes (in Millions) of the World and 
Selected Countries to 2025 and 2050

Country
2010 Population 
Size 2025 Projection 2050 Projection

World 6892 8108.0 9485.0

United States 309.6 351.4 422.6
Canada 34.1 39.7 48.4
Mexico 110.6 123.4 129.0
Haiti 9.8 12.2 15.7
Jamaica 2.7 2.9 2.7
Puerto Rico 4.0 4.1 3.7
Argentina 40.5 46.2 52.4
Brazil 193.3 212.4 215.3
Peru 29.5 34.5 39.8
Australia 22.4 26.9 34.0
New Zealand 4.4 5.0 5.6
Papua New Guinea 6.8 9.1 13.4
Algeria 36.0 43.6 50.4
Egypt 80.4 103.6 137.7
Sudan 43.2 56.7 75.9
Ethiopia 85.0 19.8 173.8
Ghana 24.0 31.8 44.6
Nigeria 158.3 217.4 326.4
Kenya 40.0 51.3 65.2
Tanzania 45.0 67.4 109.5
South Africa 49.9 54.4 57.4
Israel 7.6 9.4 11.4
Saudi 29.2 35.7 49.8
Turkey 73.6 85.0 94.7
China 1338.1 1476.0 1437.0
India 1188.8 1444.5 1748.0
Japan 127.4 119.3 95.2
United Kingdom 62.2 68.6 77.0
France 63.0 66.1 70.0
Germany 81.6 79.7 71.5
Albania 3.2 3.3 2.9
Italy 60.5 61.9 61.7
Spain 47.1 48.4 49.1
Poland 38.2 37.4 31.8
Russia 141.9 140.8 126.7
Ukraine 45.9 41.9 35.3

Source: Haub, Gribble, and Jacobsen (2011).

15_605_Weinstein.indb   248 9/16/15   11:40 AM



C H A P T E R  T E N :  P O P U L AT I O N  E ST I M AT E S ,  P R O J EC T I O N S ,  A N D  FO R EC A STS  |  249

When looking to the future, a forecaster can take these nondemographic fac-
tors into account and, under the right circumstances, provide a useful depiction of 
the shape of things to come. We have just noted that recent projections assume that 
India’s growth rate will decline over the next few years, largely because of declining 
fertility rates. But it is within the realm of possibility that the political winds shift in 
India, and a new government is elected which, like that of Iraq, is strongly pronatalist 
and does not view the present growth rate as too high. Such a government might take 
steps to withdraw support from or even close down the country’s extensive system 
of family planning clinics. Now, suppose further that some forecasters with keen 
political insight sense these changes just beginning to unfold and they include such 
information in their characterization of the country’s future population size. If this 
were to happen, the old projections would prove to be less accurate than the forecast.3

POPULATiON ESTiMATiON

Several methods of estimation are used by government census offices and academic 
and private researchers. An estimate is an attempt at arriving at the size of the cur-
rent population based on data that reflect current or recent conditions. Most of these 
rely on mathematical methods, including those based on simple growth models and 
on the fundamental equation of demography: Growth = Natural Increase + Net 
Migration. We have already employed the simple growth models in other contexts, 
but they are analyzed here for the first time.

Simple Growth Models

The simple growth model approach seeks to determine the unknown size of a popu-
lation. This can be (1) at a specific point that lies between two dates for which infor-
mation is available (e.g., an intercensal period), or (2) that occurs soon after a central 
date at which size is known (e.g., immediately following a census count). It uses one 
or more of several mathematical formulas to depict the nature of change and the 
estimated population sizes during a period for which we lack data via the procedure 
known as curve fitting. This technique is easily adapted for deriving projections, as 
will be shown in the following section. 

Four models, the linear, geometric, exponential, and logistic, are commonly 
used, of which the first and third were introduced in Chapter 8 (also see Shryock and 
Siegel 1976: Chap. 13). Although there are infinitely many possible growth formulas, 
these four have been found most effective. One reason is that the curves associated 
with them are smooth. In the case of the first three, they assume that population 
growth occurs in a fairly even and regular manner rather than exhibiting dramatic 
peaks, valleys, reversals, and the like. In addition, records of population growth and 
growth rates taken from the Census Bureau and other sources verify that these give 
the most realistic picture of how populations actually change.

Arithmetic Growth

As we have seen, the linear model—also referred to as arithmetic growth—assumes 
that the rate of change between two dates will be constant throughout the interval. If 
the rate of growth at the beginning of a 10-year interval was 0.90 percent, then this 
model estimates growth as if the rate were 0.90 percent each and every year.
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Arithmetic (linear) Growth: Pt = P0 + (P0 × GR × t).

• Pt is the population size at a later date
• P0 is the size at the earlier date
• GR is the growth rate
• t is the amount of time (number of years) between 0 and t

This is the same method that is used to determine simple interest on a savings 
account. A fixed rate is applied to the initial principal, say 10 percent per annum 
on $1,000, and that amount—$100, is added to the account each year. As shown in 
Figure 10.1, this equation traces a line to indicate the constant rate of change.

The population size of the United States was approximately 281,421,906 in 
midyear 2000, and the growth rate year was in fact 0.90 percent. Thus, if we wanted 
to estimate the population size in 2001, 2003, and 2005, when no Census counts 
were taken, we could use the linear model—provided that we were willing to make 
the constant-growth assumption. With t = 1, 3, and 5 for 2001, 2003, and 2005, 
respectively, the formulas would be:

P2001 = 281,421,906 + (281,421,906 × 1 × 0.009) = 283,954,703
P2003 = 281,421,906 + (281,421,906 × 3 × 0.009) = 289,020,297
P2005 = 281,421,906 + (281,421,906 × 5 × 0.009) = 294,085,891

To illustrate the use of the linear model between two dates for which we have 
data, we first need to rearrange the growth formula to solve for GR. This will then 
allow us to apply that rate (using the linear assumption) to any intervening year.

• First, we subtract P0 from both sides, leaving: Pt – P0 = P0 × GR × t.
• Then, we divide both sides by P0 and t, and switch sides of the equal sign. 
• This gives us: GR = (Pt – P0)/(P0 × t).

Now, the enumerated U.S. population size in 2010 was just under 308,745,600, 
and we saw that the 2000 figure was 281,421,900. Thus the difference, or (Pt 
– P0), is 27,323,700. With t = 10 years (P0 × t) = and GR, or (Pt – P0)/(P0 × t) = 
27,323,700/2,814,219,000 = .0097 or 0.97 percent. Because this is slightly above 
the growth rate at the beginning of the interval, let us make some comparisons. 
We found that the 2005 estimate using the growth rate at one date (2000) was 
294,085,891. But, if we apply the growth rate determined with two dates, then the 
2005 estimate would be:

281,421,900 + (281,421,900 × .0097 × 5) = 295,070,862

Furthermore, since we know the 2010 enumeration total, we can compare that to the 
one-date estimate (with the rate of 0.90 percent) when t = 10 years. That is, P2010 = 
P2000 + (P2000 × .009 × 10) = 281,421,900 + (281,421,900 × .009 × 10) 306,749,871. 
Thus, we find a difference of about 1,995,700 persons between the estimate and the 
enumeration, with the estimate about 2 million too low because it did not account 
for a slight rise in the growth rate during the intercensal period.

Although the linear model did not prove to be perfect when applied to recent dates 
from the United States, it does appear to be fairly accurate. However, the assumption 
of a constant growth rate is generally inappropriate when we deal with more volatile 
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populations and longer time periods. For example, in 1985 the population growth rate 
of Afghanistan was –2.8 percent per year, and its population size was 11,528,977. In 
2010, the total population size was estimated at 28,397,812. During those interven-
ing 25 years, the country, one of the poorest in the world, experienced:

• a civil war, 
• a population explosion, 
• a period of antinatalist policy, and 
• an era of pronatalist Islamic fundamentalist family law, similar to Iran’s under 

the Ayatollah Khomeini
• and a war with U.S. and Allied forces 

Does the linear model explain its population growth? By the formula, the 
2010 population size would be P2010 = 11,528,977+ (11,528,977 × –0.028 × 25) = 
3,458,693, more than 25 million short. Obviously, Afghanistan’s population did not 
grow arithmetically.

Geometric Growth

In Chapter 1, we noted that Thomas Malthus, who lived in an era during which his 
native England and other parts of Europe and America were experiencing civil war, 

Figure 10.1. Four Simple Growth Models

Linear/Arithmetic Growth Geometric Growth

Exponential Growth Logistic Growth
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revolution, and population explosions, argued that populations did not grow at the 
moderately slow pace depicted by the linear model. Rather, he believed that popu-
lations inevitably exhibited what he called “geometric” growth. That is, instead of 
expanding in an arithmetic series (with a constant rate of change) such as this: 1, 2, 
3, 4, 5, and so on, he held that populations expanded in a geometric series (in which 
the rate of change itself increases), such as: 1, 2, 4, 8, 16, and so on. Although we now 
know that no single model or “law” applies to each and every population during any 
time period one chooses, it is true that geometric growth is often a more realistic 
assumption than the linear one. (It traces the step curve shown in Figure 10.1).

Geometric Growth: Pt = P0 × (1 + GR)t

• Pt is the population size at a later date
• P0 is the size at the earlier date
• GR is the growth rate
• t is the amount of time (number of years) between 0 and t

This model is applied to determine interest on savings compounded annually. A 
set interest rate, e.g., 10 percent, is applied to the initial principal, say $1,000, which 
at the end of the first year yields $100. For the second year, the rate is applied to the 
principal plus the interest, $1100, to yield $110 in interest, and so forth.

Let us illustrate, once again with recent U.S. Census data. Using the 2000 total 
of 281,421,900 and growth rate of 0.90 percent, we estimate the population sizes 
for 2001, 2003, 2005, and, for the sake of comparison, 2010.

P2001 =281,421,900 (1 + .009)1 = 283,954,703
P2003 = 281,421,900 (1 + .009)3 = 289,088,888
P2005 = 281,421,900 (1 + .009)5 = 294,315,904
P2010 = 281,421,900 (1 + .009)10 = 307,800,671

We can see that the geometric model yields estimates that are larger than those 
produced by the linear model (or larger in absolute value when growth is negative). 
The 2010 estimate of just over 307 million exceeds the linear estimate by about 1.05 
million, and it is closer to the enumerated figure by about 0.9 million. This better, but 
still not perfect, estimate allows us to conclude that growth between 2000 and 2010 
followed a course between linear and geometric, and closer to geometric.

Because geometric growth is more rapid than linear, it might be more helpful in 
explaining the situation in Afghanistan. Recall that the country’s 1985 population 
size was about 11,528,977. Applying the geometric formula to estimate the 2010 
total, we find that: 

P2010 = 11,528,977 × (1 –2.8)25 = 944,867

which is still far below the estimate of more than 28 million. This leaves several pos-
sibilities, including that another model incorporating even a faster rate of increase 
would be more appropriate. Thus we are led to consider the third type of estimation 
curve, one that is believed to best fit populations undergoing explosive growth, the 
exponential model.
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Exponential Growth

The assumption made by the geometric model, that increments (“interest pay-
ments”) are added to the population base (the “principal”) at the end of each year, 
is not realistic. In demographic applications, our attention is focused on vital events, 
births, deaths, and the comings and goings of migrants. These events occur con-
tinuously, hour by hour, day by day, and week by week. People don’t wait until 
December 31st to bear children, or to pass away, or to change residence; yet, this is 
what geometric growth stipulates. When Malthus spoke of this kind of growth as 
being especially applicable to human populations, he almost certainly did not mean 
it literally. For the family of equations and curves based on the exponential model 
treats incremental (and decremental) factors as they actually occur. It is comparable 
to interest compounded daily, or even hourly, as close to momentarily as is practical. 
Most banks have adopted this method, and it is the kind of bank in which you want 
to keep your money.

Exponential growth traces the smooth, upward sloping curve in Figure 10.1. 
And its formula is

Exponential Growth: Pt = P0 × eGR × t

• Pt is the population size at a later date
• P0 is the size at the earlier date
• GR is the growth rate
• t is the amount of time (number of years) between 0 and t
• e is the exponential constant = 2.71828

Just as we can determine the linear growth rate from its associated equation 
when both intercensal dates Pt and P0 are known, exponential growth rates are deter-
mined by solving the preceding formula for GR. Using the algebraic concept of loga-
rithms mentioned in Chapter 8. 

GR = [ln (Pt/P0)]/t, where ln is the natural log (with the base e).

Once again, we turn to the example of the U.S. population between 2000 and 
2010. We have already seen that the geometric model assumes a rate faster than that 
actually achieved. Thus, we should expect that the estimates that anticipate expo-
nential increase would be even higher and less accurate. With the 2000 population 
size and growth rate given, we solve for 2001, 2003, 2005, and 2010.

P2001 = 281,421,900 × 2.71828(0.009 × 1) = 283,966,128
P2003 = 281,421,900 × 2.71828(0.009 × 3) = 289,123,799
P2005 = 281,421,900 × 2.71828(0.009 × 5) = 294,375,147
P2010 = 281,421,900 × 2.71828(0.009 × 10) = 307,924,605

We see that these estimates are indeed the highest of the three sets, with the 2010 
total close to the enumerated count.

Because all three sets of estimates based on the 2000 growth rate of 0.90 percent 
were inaccurate, it is most likely that actual growth in the 2000–2010 interval did 
not occur at that rate. When we assume exponential growth (a realistic model, as 
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noted) we find that the associated growth rate is slightly below the 1980 figure. That 
is:

GR = [ln (308,745,600/281,421,900)]/10 = 0.92 percent

Recall that this is an annual average over 10 years.
When we fit Afghanistan’s growth between 1985 and 2010 to the exponential 

model, we derive an estimate somewhat closer to the actual situation. For that country,

P2010 = P1985 × 2.78128(–.028 × 25) = 5,764,488

Clearly, even the exponential estimate is low. In this case, it is reasonable to conclude 
that the growth rate at the beginning of the period of –2.80 percent did not continue 
at that level through to the end. In fact, we know that it fluctuated considerably with 
events. In 1985, it had gone to zero or even negative, at about –2.8 percent; by 1990, 
it had soared to 4.5 percent; in 1995 it was 6.5 percent; and in 2000 it was 3.00. 
Taking the exponential average for the period, we find that it is:

GR = [ln (11,528,977/28,397,812)]/25 = 3.61 percent

It is this rate which, when applied over the long range, that explains Afghanistan’s 
uneven, but rapid, population explosion.

Logistic Growth

The logistic model assumes that neither absolute growth nor growth rates remain 
constant over the period under observation. Instead, it depicts a situation in which 
growth is rapid during the early part of the interval, then it slows until, during the 
last portion, it approaches or equals zero (or even goes negative). Its wide applica-
tion in many fields in addition to demography has given the curve several names. 
One is the “S” curve, because of its shape. Another is the “saturation” curve because 
it is a model of how a permeable material, such as a sponge, fills up, taking on large 
amounts of liquid when it is dry but less as it fills and then none when it is saturated. 
A third is the “ogive,” familiar to statisticians as the curve representing cumulative 
frequency. A fourth is “Pareto’s curve” because it applies to a principle of economic 
saturation, Pareto’s Law, developed by the early-twentieth-century Italian social sci-
entist. It is also the mathematical model that best fits demographic transition, as 
Keyfitz (1968:76, 215) first suggested (also see Weinstein 1980:73).4

Table 10.2. Historical Population Data for the United States

Year U.S. Population Year U.S. Population

1900 76,212,168 1960 179,323,798
1910 92,228,496 1970 203,302,031
1920 106,021,537 1980 226,542,199
1930 123,202,624 1990 248,709,873
1940 132,164,569 2000 281,421,906
1950 151,325,798 2010 308,745,538

Source: U.S. Census Bureau Fast Facts.

15_605_Weinstein.indb   254 9/16/15   11:40 AM



C H A P T E R  T E N :  P O P U L AT I O N  E ST I M AT E S ,  P R O J EC T I O N S ,  A N D  FO R EC A STS  |  255

The curve representing logistic growth is shown in the lower right panel of 
Figure 10.1, and its formula is:

Logistic Growth: Pt = k/[(1 + b) × (e–aT)]

• P1 is the population size at a selected date (for which data are unavailable)
• k is an estimate of the largest population size attainable over the observation 

period, based on but usually larger than P0

• b is another estimated constant that represents the length of time between P0 and 
the point at which growth begins to slow

• e is the exponential constant (indicating that this curve is related to the one for 
exponential growth

Box 10.1 Computations for Fitting Historical U.S. Population Sizes, 
1900–2010, to the Logistic Curve

Notes: Computational Procedures

There are several computational procedures to choose from. The one used here is known as 
the method of selected points. Table 10.2 presents historical population data for 12 decades 
commencing from 1900. We selected three data points, 1900 (P0), 1950 (P5), and 2000 (P10). The 
computation procedure involves estimating several coefficients which are used in the final pro-
jection formula.

1. Obtain the reciprocals for the selected years and multiply by 1 million.
 (1/P0) x 1,000,000 = 0.131213
 (1/p5) x 1,000,000 = 0.006608
 (1/p10) x 1,000,000 = 0.003553

2. Calculate the difference between the first two reciprocals, and between the second and the 
third.

 D1 = (1/P0) – (1/P5) = 0.006513
 D2 = (1/P5) – (1/P10) = 0.003055

3. Obtain coefficient “a” = (1/r) x [ln(D1)–ln(D2)] , where “r” is 5 because the three points we chose 
are five units apart. a = (1/5) [–5.033909–5.790975] = 0.1514133.

4. Obtain the second coefficient, k, by first obtaining its reciprocal. 1/k = (1/P0)–(D1
2/(D1–D2)) = 

0.000861. Therefore, k = 1161.575091.

5. Obtain the third coefficient, b. b = [ (k/P0)–1] = 14.241333.

6. We will project the U.S. population to year 2015 first.
 P(2015) = (k/[(1+b) x (e–aT)] where T is (2015–1900)/5
 P(2015) = 1161.57509/3.314488 = 350,453,803 July 2015

The U.S. Population Clock estimates the population midday March 26, 2015 as 320,577,213.
P (2020) = 388,579,308.
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• a is an estimated average rate of growth for the entire period
• T is the number of five year segments (our population data points are five years 

apart) in the duration to the projected date

Table 10.2 shows the results of applying this formula to the U.S. population, with 
the details of the calculations provided in the notes.

In Chapter 8, we saw how this type of change actually occurred in most of 
the populations in Europe between about 1700 and 1900. Just prior to the Indus-
trial Revolution, following millennia of slow, uneven, “Malthusian” growth, general 
mortality rates and IMRs began to decline in England, France, and eventually other 
countries. As the effects of industrialization spread, this process accelerated, resulting 
in the highest rates of natural increase ever experienced in any human populations to 
that time. Then, around 1850, with the increase in the size and influence of the urban 
middle classes and the growing popularity of the family-planning movement, birth 
rates began to decline. They have continued to do so throughout Europe, the United 
States, and other parts of the world. With these declines came progressively slower 
population growth until, today, many countries are at or below ZPG. 

One country that now appears to be in the midst of its transition is Brazil. 
With a total population size of 169 million in 19985 and a rate of natural increase 
of 1.5 percent, it is growing more rapidly than the United States and the European 
countries that have essentially completed their transitions. But it is growing more 
slowly than some of its neighbors such as Bolivia, Colombia, Paraguay, Ecuador, and 
Peru—and much more slowly than many Asian and African nations. Of even greater 
significance, Brazil’s population growth rates have declined substantially over the 
past few decades when, as recently as 1960, the rate was nearly 3 percent. 

Components Methods

Methods based on the fundamental equation of demography apply the fact that the 
size of a population at a date for which data are unavailable can be estimated. This 
requires information about (1) known population size at an earlier or a later date—
or both—and (2) the volume of births, deaths, in-migrations, and out-migrations that 
occur between dates. The simplest of these, the cohort survival method, assumes a 
closed population in which net migration is set at zero. Under these conditions, 

Pt = P0 + B – D or P0 = Pt – B + D

where B is the number of births that occur between 0 and t, and D is the number of 
deaths in the interval. Note that we can either work forward from an earlier date, 
adding births and subtracting deaths, or from a later to earlier date by subtracting 
births and adding deaths. The assumption of a closed population does apply to the 
world, which experiences neither in- nor out-migration (thus far). It also characterizes 
populations in which there is negligible or no movement in or out, and it fairly closely 
approximates those in which in-migration exactly equals out-migration.6 In general, 
when applied to today’s dynamic national aggregate, state, provincial, and urban pop-
ulations, this method is prone to inaccuracy, for which adjustments must be made.

Cohort Survival

This issue aside, the cohort survival method is more precise than the simple growth 
models because in the place of crude rates it employs age-specific measures, in a 
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manner similar to life table analysis. The three basic variables are: (1) the age-sex 
structure of the population: the size of each cohort of males and females taken sepa-
rately, (2) the age and sex-specific survival rates, derived from the life table, and 
(3) age-specific fertility rates (ASFRs). The data can be unabridged, using one-year 
cohorts, 0–1, 1–2, and so forth; or, more commonly, abridged, using five- or 10-year 
cohorts (except for the 0–1 group). In the latter case, the highest age category is open 
and includes all individuals ages 65 and above, 70 and above, or 85 and above. Sur-
vival is measured by the forward rates (Sx), which indicate the probability of surviv-
ing from one age to another, for example, from 35 to 40. 

The estimation procedure is illustrated in Table 10.3, which shows an initial 
population, P0—that of the United States as enumerated in 2010, divided into cohorts 
for males and females separately. The total size is 308,749,000 with 151,784,000 
males and 156,965,000 females. Cohort survival is employed to estimate the size of 
each cohort and of the population 10 years later, Pt (because we are using 10-year 
cohorts). Once this is accomplished, the exponential growth model is used to esti-
mate the population size in various intervening years. The survival and ASFRs are 
realistic but hypothetical.

The procedure occurs in three steps. First, we obtain the estimated number of 
children in the 0–9 cohort in Pt. This is done by multiplying the age specific birth 
rates by the female population of each cohort with a fertility rate above 0 (column 4) 
x (column 7), and summing the products. This sum is then multiplied by 0.51 to 
obtain the male births and by 0.49 to obtain the number of female births. (This 
assumes that there are 510 males in every 1,000 births.) 

The second step is to derive the size of each of the remaining cohorts in Pt, from 
ages 10–19 to 60–69 (the size of the last cohort with an open age interval is calcu-
lated separately). This is accomplished by applying the survival rates to the respective 
cohorts, multiplying column 3 by column 5 to obtain the estimated age-specific male 
population, and column 4 by column 6 for the female population. For example, to esti-
mate the number of 20–29-year-old males in Pt, the 10–19 cohort in P0 is diminished 
by applying its 10-year survival rate. That is, 21,084,000 × .975 = 206,050,000. 

Table 10.3. Components Method for Estimating Population Size

Initial Population 
(P0) Survival Rates

Estimated
Population (Pt)

Age Males Females Males Females ASFR Males Females

0–9 20709.0 19841.0 0.995 0.996 23045.00 22141.00
10–19 21884.0 20834.0 0.975 0.980 0.04 20605.45 19761.63
20–29 21650.0 21038.0 0.965 0.970 1.60 21336.89 20417.32
30–39 20039.0 20104.0 0.950 0.960 0.51 20892.25 20406.86
40–49 21603.0 21997.0 0.930 0.950 0.02 19037.05 19299.84
50–59 20457.0 21506.0 0.920 0.940 20090.79 20897.14
60–69 18175.0 20357.0 0.900 0.930 18820.44 20215.64
70+ 7267.0 11288.0 0.890 0.910 22824.00 29204.0

Note: Survival refers to forward survival. Thus, a woman’s probability of surviving from ages 20–29 to 30–39 is 
.0.97, etc. This hypothetical model assumes higher survival rates for females at all ages and no fertility before age 
15 or after age 49.

Source: P0 based on data from Howden and Meyer (2010: Table 2).
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The third step is to obtain the estimated size of the last age cohort. In Pt, this 
group will contain the base population in the age group 60–69 surviving to the next 
age category plus those in the 70+ category surviving the 10 years between time 0 
and time t. For example, the projected female population age 70+ is obtained as fol-
lows: (20,357,000 × 0.930) + (11,288,000 × 0.910) = 29,204,000.

This procedure yielded a total size for Pt of 338,994,000, of whom 166,651,000 
are male and 172,343,000 are female. Now, with two population sizes at two differ-
ent dates, one actual and the other estimated, we can derive estimates for intervening 
dates. The exponential growth model indicates that the average annual growth rate 
for the interval, based on our assumptions, is:

GR = [ln (338,994,000/308,345,000)]/10 = .00947 or 0.947 percent

Applying this rate in the formula:

Pt = P0 × eGR × t

where t = 2011, 2012, 2013, and 2014, we derive these estimates:

P2011 = 311,278,000
P2012 = 317,504,000
P2013 = 323,730,000
P2014 = 329,955,000

Because this method uses age- and sex-specific data, estimates can be derived 
not only for total population sizes but also for the sizes of cohorts, male, female, 
and combined, at dates between the base and terminal years. Two cohorts of special 
interest in planning and administrative contexts, one a school-age group (10–19) 
and the other seniors (70+), were selected and their sizes estimated for the same four 
dates, also assuming exponential growth. These are:

10–19 cohort: P2010 = 42,717,000 70 + cohort: P2010 = 14,555,000
P2011 = 43,123,000  P2011 = 18,731,000
P2012 = 43,985,000 P2012 = 19,106,000
P2013 = 44,848,000  P2013 = 19,480,000
P2014 = 48,710,000 P2014 = 19,885,000

When we observe the estimates for the entire aggregate and the cohort sizes together, 
we see clearly how a population simultaneously grows and gets older, as is the case 
in the United States and other industrialized nations.

Components Methods that Include Migration

The more complex components methods take migration into consideration. In pre-
paring its estimates, the U.S. Census Bureau uses this approach, choosing among 
several models that differ from each other with respect to the techniques used to 
estimate the net migration component.7 These include (1) the components II method, 
(2) the administrative records method, and (3) the ratio correlation method. This 
section summarizes the first two of these approaches.
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1. The components II method is widely used (Ferlay et al. 2013; CPR 1976; Ray-
mondo 1992) and can be applied to national aggregates, regions, states, and other 
local areas. Like the cohort survival method, it begins by establishing the size and 
age-sex distribution of the central-year population from the most recent census data 
available. In this case, however, only the civilian population under age 65 is con-
sidered; that is, special groups such as members of the military, long-term hospital 
residents, and college dormitory residents are subtracted from the base total. Natural 
increase is derived by subtracting the total number of deaths from the total number 
of births during the period, using data obtained from vital-statistics registers. 

2. The administrative records method is used by the Census Bureau to estimate 
the sizes of state, county, and subcounty (e.g., urban) populations. Like the compo-
nents II method, it employs the demographic accounting formula. Thus it requires 
information about (1) population size for the estimate area (state, county, and so 
on) at a base date, and (2) the number of births, deaths, in-migrations, and out-
migrations in the interval between the base date and the date for which an estimate 
is to be determined. These vital statistics are taken from the records of non-Census 
administrative organizations, and it is this practice that gives the method its name. 

Data on deaths and births are obtained from the NCHS and the State health 
departments via the Census Bureau’s Federal-State Cooperative Program for Popula-
tion Estimates (FSCPE). The number of internal migrants is determined using Federal 
income tax returns provided by the Internal Revenue Service. Tax returns include the 
social security number and the address of the person filing, which can be compared 
at the base and estimate years. Those who file from two different addresses during 
the estimation period are classed as movers or as migrants, depending on whether 
the change of address is within a county (mover) or between counties (migrant), or 

Table 10.4. Estimates Based on Components Method, 2013–2014 for the 
United States, Regions, and Selected States

Population
2013 Births Deaths NIM NDM Change

Population
2014

United States 316,128,839 3,957,577 2,593,996 995,944 0 2,359,525 318,488,364
Northeast 55,943,073 637,853 478,007 262,204 -286,696 124,113 56,067,186
Midwest 67,547,890 829,620 586,099 127,607 -182,057 177,237 67,725,127
South 118,383,453 1,511,280 1,007,640 358,956 365,289 1,249,132 119,632,585
West 74,254,423 978,824 522,250 247,177 103,464 809,043 75,063,466
Arizona 6,626,624 86,868 51,748 14,234 41,975 96,487 6,723,111
California 38,332,521 505,903 255,787 161,318 -32,090 371,107 38,703,628
Florida 5,268,367 214,567 187,102 112,306 138,546 292,986 5,561,353
Michigan 19,552,860 112,748 90,366 20,094 -28,679 11,684 19,564,544
Nevada 9,895,622 35,153 21,702 8,456 23,623 47,605 9,943,227
N. Dakota 2,790,136 10,780 5,879 1,290 8,974 15,625 2,805,761
Pennsylvania 723,393 142,032 128,600 29,060 -31,448 5,913 729,306
Rhode Island 12,773,801 10,918 9,543 4,290 -3,387 1,819 1,277,562
West Virginia 1,051,511 20,466 21,735 1,164 -2,749 -3,269 1,048,242

Notes: NIM is net international migration, NDM is net domestic migration.

Source: U.S. Bureau of the Census: State Totals Vintage 2013 Estimates of the Components of Resident Population 
Change for the United States, Regions, States, and Puerto Rico: April 1, 2010 to July 1, 2013.
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