CHAPTEHR

Tools You Will Need

The following items are considered
essential background material for this
chapter. If you doubt your knowledge

of any of these items, you should review
the appropriate chapter or section before
proceeding.

e Variability (Chapter 4)
Sum of squares
Sample variance
Degrees of freedom
Introduction to hypothesis testing
(Chapter 8)
The logic of hypothesis testing

¢ Independent-measures t statistic
(Chapter 10)

Introduction
to Analysis
of Variance

Preview

12.1 Introduction

12.2 The Logic of ANOVA

12.3 ANOVA Notation and Formulas
12.4 The Distribution of F-Ratios

12.5 Examples of Hypothesis Testing
and Effect Size with ANOVA

12.6 Post Hoc Tests

12.7 The Relationship Between
ANOVA and t Tests

Summary

Focus on Problem Solving
Demonstrations 12.1 and 12.2
Problems



Preview

“But I read the chapter four times! How could I possibly
have failed the exam?!”

Most of you probably have had the experience of
reading a textbook and suddenly realizing that you have
no idea of what was said on the past few pages. Although
you have been reading the words, your mind has
wandered off, and the meaning of the words has never
reached memory. In an influential paper on human
memory, Craik and Lockhart (1972) proposed a levels of
processing theory of memory that can account for this
phenomenon. In general terms, this theory says that all
perceptual and mental processing leaves behind a memory
trace. However, the quality of the memory trace depends
on the level or the depth of the processing. If you superfi-
cially skim the words in a book, your memory also is
superficial. On the other hand, when you think about the
meaning of the words and try to understand what you are
reading, the result is a good, substantial memory that
should serve you well on exams. In general, deeper
processing results in better memory.

Rogers, Kuiper, and Kirker (1977) conducted an
experiment demonstrating the effect of levels of process-
ing. Participants in this experiment were shown lists of
words and asked to answer questions about each word.
The questions were designed to require different levels of
processing, from superficial to deep. In one experimental
condition, participants were simply asked to judge the
physical characteristics of each printed word (“Is it
printed in capital letters or lowercase letters?”). A second
condition asked about the sound of each word (“Does it
rhyme with ‘boat’?”). In a third condition, participants
were required to process the meaning of each word (“Does
it have the same meaning as ‘attractive’?””). The final
condition required participants to understand each word
and relate its meaning to themselves (“Does this word
describe you?”). After going through the complete list, all
participants were given a surprise memory test. As you can
see in Figure 12.1, deeper processing resulted in better
memory. Remember that the participants were not trying
to memorize the words; they were simply reading through
the list answering questions. However, the more they
processed and understood the words, the better they
recalled the words on the test.

The Problem: In terms of human memory, the
Rogers, Kuiper, and Kirker experiment is notable
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FIGURE 12.1

Mean recall as a function of the level of processing.

Rogers, T. B., Kuiper, N. A., & Kirker, W. S. (1977). Self-
reference and the encoding of personal information. Journal of
personality and Social Psychology, 35, 677-688. Copyright
(1977) by the American Psychological Association. Adapted
by permission of the author.

because it demonstrates the importance of “self” in
memory. You are most likely to remember material
that is directly related to you. In terms of statistics,
however, this study is notable because it compares
four different treatment conditions in a single
experiment. We now have four different means
and need a hypothesis test to evaluate the mean
differences. Unfortunately, the ¢ tests introduced in
Chapter 10 and 11 are limited to comparing only
two treatments. A new hypothesis test is needed for
this kind of data.

The Solution: In this chapter we introduce a new
hypothesis test known as analysis of variance that is
designed to evaluate the mean differences from research
studies producing two or more sample means. Although
“two or more” may seem like a small step from

“two,” this new hypothesis testing procedure provides
researchers with a tremendous gain in experimental
sophistication. In this chapter, and the two that follow,
we examine some of the many applications of analysis
of variance.
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INTRODUCTION

Analysis of variance (ANOVA) is a hypothesis-testing procedure that is used to eval-
uate mean differences between two or more treatments (or populations). As with all
inferential procedures, ANOVA uses sample data as the basis for drawing general
conclusions about populations. It may appear that ANOVA and ¢ tests are simply two
different ways of doing exactly the same job: testing for mean differences. In some
respects, this is true—both tests use sample data to test hypotheses about population
means. However, ANOVA has a tremendous advantage over ¢ tests. Specifically,
t tests are limited to situations in which there are only two treatments to compare. The
major advantage of ANOVA is that it can be used to compare two or more treatments.
Thus, ANOVA provides researchers with much greater flexibility in designing
experiments and interpreting results.

Figure 12.2 shows a typical research situation for which ANOVA would be used.
Note that the study involves three samples representing three populations. The goal of
the analysis is to determine whether the mean differences observed among the samples
provide enough evidence to conclude that there are mean differences among the three
populations. Specifically, we must decide between two interpretations:

1. There really are no differences between the populations (or treatments). The
observed differences between the sample means are caused by random, unsys-
tematic factors (sampling error) that differentiate one sample from another.

2. The populations (or treatments) really do have different means, and these
population mean differences are responsible for causing systematic differences
between the sample means.

You should recognize that these two interpretations correspond to the two hypotheses
(null and alternative) that are part of the general hypothesis-testing procedure.

Before we continue, it is necessary to introduce some of the terminology that is used to
describe the research situation shown in Figure 12.2. Recall (from Chapter 1) that when
a researcher manipulates a variable to create the treatment conditions in an experiment,
the variable is called an independent variable. For example, Figure 12.2 could represent

FIGURE 12.2

A typical situation in which
ANOVA would be used.
Three separate samples are
obtained to evaluate the mean
differences among three
populations (or treatments)
with unknown means.

Population 1 Population 2 Population 3
(Treatment 1) (Treatment 2) (Treatment 3)

Sample 1 Sample 2 Sample 3
n=15 n=15 n=15
M = 23.1 M = 28.5 M =20.8

S§=114 55 =130 5§ =101
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a study examining driving performance under three different telephone conditions: driv-
ing with no phone, talking on a hands-free phone, and talking on a hand-held phone.
Note that the three conditions are created by the researcher. On the other hand, when a
researcher uses a nonmanipulated variable to designate groups, the variable is called a
quasi-independent variable. For example, the three groups in Figure 12.2 could repre-
sent 6-year-old, 8-year-old, and 10-year-old children. In the context of ANOVA, an
independent variable or a quasi-independent variable is called a factor. Thus, Figure 12.2
could represent an experimental study in which the telephone condition is the factor
being evaluated or it could represent a nonexperimental study in which age is the factor
being examined.

In ANOVA, the variable (independent or quasi-independent) that designates the
groups being compared is called a factor.

In addition, the individual groups or treatment conditions that are used to make up
a factor are called the levels of the factor. For example, a study that examined perfor-
mance under three different telephone conditions would have three levels of the factor.

The individual conditions or values that make up a factor are called the levels
of the factor.

Like the ¢ tests presented in Chapters 10 and 11, ANOVA can be used with
either an independent-measures or a repeated-measures design. Recall that an
independent-measures design means that there is a separate group of participants for each
of the treatments (or populations) being compared. In a repeated-measures design, on the
other hand, the same group is tested in all of the different treatment conditions. In addi-
tion, ANOVA can be used to evaluate the results from a research study that involves more
than one factor. For example, a researcher may want to compare two different therapy
techniques, examining their immediate effectiveness as well as the persistence of their
effectiveness over time. In this situation, the research study could involve two different
groups of participants, one for each therapy, and measure each group at several different
points in time. The structure of this design is shown in Figure 12.3. Notice that the study
uses two factors, one independent-measures factor and one repeated-measures factor:

1. Factor 1: Therapy technique. A separate group is used for each technique (inde-
pendent measures).

2. Factor 2: Time. Each group is tested at three different times (repeated measures).

In this case, the ANOVA would evaluate mean differences between the two thera-
pies as well as mean differences between the scores obtained at different times. A study
that combines two factors, like the one in Figure 12.3, is called a two-factor design or
a factorial design.

The ability to combine different factors and to mix different designs within one
study provides researchers with the flexibility to develop studies that address scientific
questions that could not be answered by a single design using a single factor.

Although ANOVA can be used in a wide variety of research situations, this
chapter introduces ANOVA in its simplest form. Specifically, we consider only
single-factor designs. That is, we examine studies that have only one independent
variable (or only one quasi-independent variable). Second, we consider only
independent-measures designs; that is, studies that use a separate group of
participants for each treatment condition. The basic logic and procedures that are
presented in this chapter form the foundation for more complex applications of
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FIGURE 12.3

TIME
Before After 6 Months
Therapy Therapy After Therapy
Scores for Scores for Scores for
group 1 group 1 group 1
Therapy | measured measured measured
(Group 1) before after 6 months after
Therapy | Therapy | Therapy |
THERAPY
TECHNIQUE
Scores for Scores for Scores for
Therapy || group 2 group 2 group 2
(Group 2) measured measured measured
before after 6 months after
Therapy I Therapy I Therapy I
A research design with two factors. The research study uses two factors: One factor uses two levels of therapy technique
(I versus II), and the second factor uses three levels of time (before, after, and 6 months after). Also notice that the therapy factor
uses two separate groups (independent measures) and the time factor uses the same group for all three levels (repeated measures).

STATISTICAL HYPOTHESES

FOR ANOVA

ANOVA. For example, in Chapter 13, we extend the analysis to single-factor,
repeated-measures designs and in Chapter 14, we introduce two-factor designs.
But for now, in this chapter, we limit our discussion of ANOVA to single-factor,
independent-measures research studies.

The following example introduces the statistical hypotheses for ANOVA. Suppose
that a researcher examined driving performance under three different telephone con-
ditions: no phone, a hands-free phone, and a hand-held phone. Three samples of
participants are selected, one sample for each treatment condition. The purpose of the
study is to determine whether using a telephone affects driving performance. In sta-
tistical terms, we want to decide between two hypotheses: the null hypothesis (Hy),
which states that the telephone condition has no effect, and the alternative hypothe-
sis (H), which states that the telephone condition does affect driving. In symbols, the
null hypothesis states

Ho: i = po = p3

In words, the null hypothesis states that the telephone condition has no effect on
driving performance. That is, the population means for the three telephone conditions
are all the same. In general, H; states that there is no treatment effect.

The alternative hypothesis states that the population means are not all the same:

H;: There is at least one mean difference among the populations.

In general, H, states that the treatment conditions are not all the same; that is, there
is a real treatment effect. As always, the hypotheses are stated in terms of population
parameters, even though we use sample data to test them.

Notice that we are not stating a specific alternative hypothesis. This is because
many different alternatives are possible, and it would be tedious to list them all.
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One alternative, for example, is that the first two populations are identical, but that the
third is different. Another alternative states that the last two means are the same, but
that the first is different. Other alternatives might be

H: py # po # s (All three means are different.)
H;: p; = p3, but p, is different.

We should point out that a researcher typically entertains only one (or at most a
few) of these alternative hypotheses. Usually a theory or the outcomes of previous stud-
ies dictate a specific prediction concerning the treatment effect. For the sake of sim-
plicity, we state a general alternative hypothesis rather than try to list all of the possible
specific alternatives.

The test statistic for ANOVA is very similar to the independent-measures ¢ statistic
used in Chapter 10. For the ¢ statistic, we first computed the standard error, which
measures how much difference is expected between two sample means if there is
no treatment effect (that is, if Hy is true). Then we computed the 7 statistic with the
following structure:

obtained difference between two sample means

standard error (the difference expected with no treatment effect)

For ANOVA, however, we want to compare differences among two or more sam-
ple means. With more than two samples, the concept of “difference between sample
means” becomes difficult to define or measure. For example, if there are only two sam-
ples and they have means of M = 20 and M = 30, then there is a 10-point difference
between the sample means. Suppose, however, that we add a third sample with a mean
of M = 35. Now how much difference is there between the sample means? It should
be clear that we have a problem. The solution to this problem is to use variance to
define and measure the size of the differences among the sample means. Consider the
following two sets of sample means:

Set 1 Set 2
Ml - 20 Ml = 28
M2 =30 M2 =30
M; =35 My =31

If you compute the variance for the three numbers in each set, then the variance is
5% = 58.33 for set 1 and the variance is s> = 2.33 for set 2. Notice that the two vari-
ances provide an accurate representation of the size of the differences. In set 1, there
are relatively large differences between sample means and the variance is relatively
large. In set 2, the mean differences are small and the variance is small.

Thus, we can use variance to measure sample mean differences when there are two
or more samples. The test statistic for ANOVA uses this fact to compute an F-ratio with
the following structure:

variance (differences) between sample means
variance (differences) expected with no treatment effect

F =

Note that the F-ratio has the same basic structure as the ¢ statistic but is based
on variance instead of sample mean difference. The variance in the numerator of the
F-ratio provides a single number that measures the differences among all of the sample
means. The variance in the denominator of the F-ratio, like the standard error in the
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denominator of the 7 statistic, measures the mean differences that would be expected if
there were no treatment effect. Thus, the ¢ statistic and the F-ratio provide the same
basic information. In each case, a large value for the test statistic provides evidence that
the sample mean differences (numerator) are larger than would be expected if there
were no treatment effects (denominator).

If we already have t tests for comparing mean differences, you might wonder why
ANOVA is necessary. Why create a whole new hypothesis-testing procedure that sim-
ply duplicates what the ¢ tests can already do? The answer to this question is based in a
concern about Type I errors.

Remember that each time you do a hypothesis test, you select an alpha level that
determines the risk of a Type I error. With a = .05, for example, there is a 5%, or a
1-in-20, risk of a Type I error. Often a single experiment requires several hypothesis
tests to evaluate all the mean differences. However, each test has a risk of a Type I
error, and the more tests you do, the more risk there is.

For this reason, researchers often make a distinction between the festwise alpha level
and the experimentwise alpha level. The testwise alpha level is simply the alpha level that
you select for each individual hypothesis test. The experimentwise alpha level is the total
probability of a Type I error accumulated from all of the separate tests in the experiment.
As the number of separate tests increases, so does the experimentwise alpha level.

The testwise alpha level is the risk of a Type I error, or alpha level, for an
individual hypothesis test.

When an experiment involves several different hypothesis tests, the experiment-
wise alpha level is the total probability of a Type I error that is accumulated
from all of the individual tests in the experiment. Typically, the experimentwise
alpha level is substantially greater than the value of alpha used for any one of the
individual tests.

For example, an experiment involving three treatments would require three separate
t tests to compare all of the mean differences:

Test 1 compares treatment I with treatment I1.
Test 2 compares treatment I with treatment I11.
Test 3 compares treatment II with treatment III.

If all tests use a = .05, then there is a 5% risk of a Type I error for the first test, a
5% risk for the second test, and another 5% risk for the third test. The three separate
tests accumulate to produce a relatively large experimentwise alpha level. The advan-
tage of ANOVA is that it performs all three comparisons simultaneously in one hy-
pothesis test. Thus, no matter how many different means are being compared, ANOVA
uses one test with one alpha level to evaluate the mean differences, and thereby avoids
the problem of an inflated experimentwise alpha level.

THE LOGIC OF ANOVA

The formulas and calculations required in ANOVA are somewhat complicated, but the
logic that underlies the whole procedure is fairly straightforward. Therefore, this sec-
tion gives a general picture of ANOVA before we start looking at the details. We
introduce the logic of ANOVA with the help of the hypothetical data in Table 12.1.
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TABLE 12.1

Hypothetical data from an
experiment examining driving
performance under three
telephone conditions.*

BETWEEN-TREATMENTS
VARIANCE

Treatment 1: Treatment 2: Treatment 3:
No Phone Hand-Held Hands-Free
(Sample 1) (Sample 2) (Sample 3)

4 0 1

3 1 2

6 3 2

3 1 0
_4 _0 _0
M=4 M=1 M=1

*Note that there are three separate samples, with n = 5 in each
sample. The dependent variable is a measure of performance in
a driving simulator.

These data represent the results of an independent-measures experiment comparing
performance in a driving simulator under three telephone conditions.

One obvious characteristic of the data in Table 12.1 is that the scores are not all the
same. In everyday language, the scores are different; in statistical terms, the scores are
variable. Our goal is to measure the amount of variability (the size of the differences)
and to explain why the scores are different.

The first step is to determine the total variability for the entire set of data. To com-
pute the total variability, we combine all of the scores from all of the separate samples
to obtain one general measure of variability for the complete experiment. Once we have
measured the total variability, we can begin to break it apart into separate components.
The word analysis means dividing into smaller parts. Because we are going to analyze
variability, the process is called analysis of variance. This analysis process divides the
total variability into two basic components.

1. Between-Treatments Variance. Looking at the data in Table 12.1, we clearly
see that much of the variability in the scores results from general differences
between treatment conditions. For example, the scores in the no-phone condi-
tion tend to be much higher (M = 4) than the scores in the hand-held condition
(M = 1). We calculate the variance between treatments to provide a measure of
the overall differences between treatment conditions. Notice that the variance
between treatments is really measuring the differences between sample means.

2. Within-Treatment Variance. In addition to the general differences between
treatment conditions, there is variability within each sample. Looking again at
Table 12.1, we see that the scores in the no-phone condition are not all the
same; they are variable. The within-treatments variance provides a measure of
the variability inside each treatment condition.

Analyzing the total variability into these two components is the heart of ANOVA.
We now examine each of the components in more detail.

Remember that calculating variance is simply a method for measuring how big the dif-
ferences are for a set of numbers. When you see the term variance, you can automati-
cally translate it into the term differences. Thus, the between-treatments variance
simply measures how much difference exists between the treatment conditions. There
are two possible explanations for these between-treatment differences:

1. The differences between treatments are not caused by any treatment effect but
are simply the naturally occurring, random, and unsystematic differences that
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exist between one sample and another. That is, the differences are the result of
sampling error.

2. The differences between treatments have been caused by the treatment effects.
For example, if using a telephone really does interfere with driving performance,
then scores in the telephone conditions should be systematically lower than
scores in the no-phone condition.

Thus, when we compute the between-treatments variance, we are measuring dif-
ferences that could be caused by a systematic treatment effect or could simply be ran-
dom and unsystematic mean differences caused by sampling error. To demonstrate that
there really is a treatment effect, we must establish that the differences between treat-
ments are bigger than would be expected by sampling error alone. To accomplish this
goal, we determine how big the differences are when there is no systematic treatment
effect; that is, we measure how much difference (or variance) can be explained by ran-
dom and unsystematic factors. To measure these differences, we compute the variance
within treatments.

Inside each treatment condition, we have a set of individuals who all receive exactly the
same treatment; that is, the researcher does not do anything that would cause these in-
dividuals to have different scores. In Table 12.1, for example, the data show that five
individuals were tested while talking on a hand-held phone (sample 2). Although these
five individuals all received exactly the same treatment, their scores are different. Why
are the scores different? The answer is that there is no specific cause for the differences.
Instead, the differences that exist within a treatment represent random and unsystem-
atic differences that occur when there are no treatment effects causing the scores to be
different. Thus, the within-treatments variance provides a measure of how big the dif-
ferences are when H,, is true.

Figure 12.4 shows the overall ANOVA and identifies the sources of variability that
are measured by each of the two basic components.

Once we have analyzed the total variability into two basic components (between treat-
ments and within treatments), we simply compare them. The comparison is made by

FIGURE 12.4

The independent-measures
ANOVA partitions, or ana-
lyzes, the total variability into
two components: variance
between treatments and
variance within treatments.

Total
variability
Between- Within-
treatments tfreatments

variance varionce
Measures differences Measures differences
caused by caused by
1. Systematic treatment effects 1. Random, unsystematic factors
2.Random, unsystematic factors
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F =

DEFINITION

computing an F-ratio. For the independent-measures ANOVA, the F-ratio has the
following structure:

variance between treatments _ differences including any treatment effects

. — : ; (12.1)
variance within treatments differences with no treatment effects

When we express each component of variability in terms of its sources (see Figure
12.4), the structure of the F-ratio is

systematic treatment effects + random, unsystematic differences

random, unsystematic differences (12.2)

The value obtained for the F-ratio helps determine whether any treatment effects
exist. Consider the following two possibilities:

1. When there are no systematic treatment effects, the differences between
treatments (numerator) are entirely caused by random, unsystematic factors.
In this case, the numerator and the denominator of the F-ratio are both
measuring random differences and should be roughly the same size. With
the numerator and denominator roughly equal, the F-ratio should have a
value around 1.00. In terms of the formula, when the treatment effect is
zero, we obtain

0 + random, unsystematic differences
F =

random, unsystematic differences

Thus, an F-ratio near 1.00 indicates that the differences between treatments
(numerator) are random and unsystematic, just like the differences in the
denominator. With an F-ratio near 1.00, we conclude that there is no evidence
to suggest that the treatment has any effect.

2. When the treatment does have an effect, causing systematic differences
between samples, then the combination of systematic and random differences
in the numerator should be larger than the random differences alone in the
denominator. In this case, the numerator of the F-ratio should be noticeably
larger than the denominator, and we should obtain an F-ratio that is substan-
tially larger than 1.00. Thus, a large F-ratio is evidence for the existence of
systematic treatment effects; that is, there are consistent differences
between treatments.

Because the denominator of the F-ratio measures only random and unsystematic
variability, it is called the error term. The numerator of the F-ratio always includes the
same unsystematic variability as in the error term, but it also includes any systematic
differences caused by the treatment effect. The goal of ANOVA is to find out whether
a treatment effect exists.

For ANOVA, the denominator of the F-ratio is called the error term. The
error term provides a measure of the variance caused by random, unsystematic
differences. When the treatment effect is zero (H,, is true), the error term
measures the same sources of variance as the numerator of the F-ratio, so the
value of the F-ratio is expected to be nearly equal to 1.00.
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LEARNING CHECK 1. ANOVA is a statistical procedure that compares two or more treatment conditions

ANSWERS

2.

for differences in variance. (True or false?)

In ANOVA, what value is expected, on the average, for the F-ratio when the null
hypothesis is true?

. What happens to the value of the F-ratio if differences between treatments are

increased? What happens to the F-ratio if variability inside the treatments is increased?

. In ANOVA, the total variability is partitioned into two parts. What are these two

variability components called, and how are they used in the F-ratio?

. False. Although ANOVA uses variance in the computations, the purpose of the test is to

evaluate differences in means between treatments.

. When H, is true, the expected value for the F-ratio is 1.00 because the top and bottom of

the ratio are both measuring the same variance.

. As differences between treatments increase, the F-ratio increases. As variability within

treatments increases, the F-ratio decreases.

. The two components are between-treatments variability and within-treatments variability.

Between-treatments variance is the numerator of the F-ratio, and within-treatments variance
is the denominator.

ANOVA NOTATION AND FORMULAS

Because ANOVA typically is used to examine data from more than two treatment

conditions (and more than two samples), we need a notational system to keep track of
all the individual scores and totals. To help introduce this notational system, we use the
hypothetical data from Table 12.1 again. The data are reproduced in Table 12.2 along
with some of the notation and statistics that are described in the following list.

1. The letter & is used to identify the number of treatment conditions—that is, the
number of levels of the factor. For an independent-measures study, k also speci-
fies the number of separate samples. For the data in Table 12.2, there are three
treatments, so k = 3.

2. The number of scores in each treatment is identified by a lowercase letter n. For
the example in Table 12.2, n = 5 for all the treatments. If the samples are of
different sizes, you can identify a specific sample by using a subscript. For
example, 1, is the number of scores in treatment 2.

3. The total number of scores in the entire study is specified by a capital letter N.
When all of the samples are the same size (n is constant), N = kn. For the data
in Table 12.2, there are n = 5 scores in each of the k = 3 treatments, so we
have a total of N = 3(5) = 15 scores in the entire study.

4. The sum of the scores (2X) for each treatment condition is identified by the
capital letter 7 (for treatment total). The total for a specific treatment can be
identified by adding a numerical subscript to the 7. For example, the total for
the second treatment in Table 12.2 is 7, = 5.

5. The sum of all of the scores in the research study (the grand total) is identified by
G. You can compute G by adding up all N scores or by adding up the treatment
totals: G = XT.

6. Although there is no new notation involved, we also have computed SS and M
for each sample, and we have calculated SX? for the entire set of N = 15 scores
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TABLE 12.2
The same data that appeared in
Table 12.1 with summary values

and notation appropriate for an
ANOVA.

ANOVA FORMULAS

Because ANOVA formulas
require %X for each treatment
and XX for the entire set of
scores, we have introduced

new notation (7 and G) to help
identify which XX is being
used. Remember: T stands

for treatment total, and G stands
for grand total.

Telephone Conditions

Treatment 1 Treatment 2 Treatment 3
No Phone Hand-Held Phone Hands-Free Phone
(Sample 1) (Sample 2) (Sample 3)
4 0 1 X% =106
3 1 2 G= 30
6 3 2 N= 15
3 1 0 k= 3
4 0 0
T, =20 T, =5 ;=5
SS;= 6 SS, =6 SS; =4
n= 5 n, =15 ny =
M] = 4 M2 = M3 =

in the study. These values are given in Table 12.2 and are important in the
formulas and calculations for ANOVA.

Finally, we should note that there is no universally accepted notation for ANOVA.
Although we are using Gs and Ts, for example, you may find that other sources use
other symbols.

Because ANOVA requires extensive calculations and many formulas, one common
problem for students is simply keeping track of the different formulas and numbers.
Therefore, we examine the general structure of the procedure and look at the organiza-
tion of the calculations before we introduce the individual formulas.

1. The final calculation for ANOVA is the F-ratio, which is composed of
two variances:

variance between treatments
variance within treatments

F:

2. Each of the two variances in the F-ratio is calculated using the basic formula
for sample variance.

sample variance = s> = 55
: df

Therefore, we need to compute an SS and a df for the variance between treat-
ments (numerator of F), and we need another SS and df for the variance within
treatments (denominator of F). To obtain these SS and df values, we must go
through two separate analyses: First, compute SS for the total study, and ana-
lyze it in two components (between and within). Then compute df for the total
study, and analyze it in two components (between and within).

Thus, the entire process of ANOVA requires nine calculations: three values for S,
three values for df, two variances (between and within), and a final F-ratio. However,
these nine calculations are all logically related and are all directed toward finding the
final F-ratio. Figure 12.5 shows the logical structure of ANOVA calculations.
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FIGURE 12.5

The structure and sequence
of calculations for the
ANOVA.

The final goal for the
ANOVA is an F-ratio

_ Variance between freatments
Variance within tfreatments

the total variability
is analyzed into the
two components

the SS and df values,

Each vo_rio_nce in Variance SS between Vorior)ce SS within
the Fratio is between = ————— within = ———
computed as SS/df | treatments dfbetween treatments  Af within
To obtain each of SS total df total

SN N

SSbetween  SSwithin dfbetween  df within

ANALYSIS OF THE SUM OF
SQUARES (55)

The ANOVA requires that we first compute a total sum of squares and then partition this
value into two components: between treatments and within treatments. This analysis is
outlined in Figure 12.6. We will examine each of the three components separately.

1. Total Sum of Squares, SS;yw1. As the name implies, SS; is the sum of
squares for the entire set of N scores. As described in Chapter 4 (pp. 111-112),
this SS value can be computed using either a definitional or a computational
formula. However, ANOVA typically involves a large number of scores and the
mean is often not a whole number. Therefore, it is usually much easier to calcu-
late SSoa using the computational formula:

8§ =3X* — cx?

N

FIGURE 12.6

Partitioning the sum
of squares (SS) for the
independent-measures
ANOVA.

gl
S
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To simplify the notation, we use
the subscripts between and within
in place of between treatments
and within treatments.

To make this formula consistent with the ANOV A notation, we substitute the
letter G in place of X and obtain

G2
SSiot = X — N (12.3)

Applying this formula to the set of data in Table 12.2, we obtain

30°
SStotal = 106_?
= 106 — 60

= 46

2. Within-Treatments Sum of Squares, SS ;imin treatmentss NOW we are looking
at the variability inside each of the treatment conditions. We already have
computed the SS within each of the three treatment conditions (Table 12.2):
SS, = 6,85, = 6, and SS3 = 4. To find the overall within-treatment sum of
squares, we simply add these values together:

SS. within treatments ES Sinside each treatment (l 24)

For the data in Table 12.2, this formula gives
SSwithin treatments 6 + 6 + 4
=16

3. Between-Treatments Sum of Squares, SSpeiween treatmentss Before we intro-
duce any equations for SSpeiween treatmentss consider what we have found so far.
The total variability for the data in Table 12.2 is SS,,1 = 46. We intend to
partition this total into two parts (see Figure 12.5). One part, SSyithin treatmentss
has been found to be equal to 16. This means that SSpeiween treatments MUst be
equal to 30 so that the two parts (16 and 30) add up to the total (46). Thus, the
value for SSpetween treatments €an be found simply by subtraction:

SSbetween = SStotal — SSyithin (125)

However, it is also possible to compute SSpeiween independently, then check your
calculations by ensuring that the two components, between and within, add up to the
total. Box 12.1 presents two different formulas for calculating SSperween directly from
the data.

Computing SSyetween Including the two formulas in Box 12.1, we have presented
three different equations for computing SSperween- Rather than memorizing all three,
however, we suggest that you pick one formula and use it consistently. There are
two reasonable alternatives to use. The simplest is Equation 12.5, which finds SSpeiween
simply by subtraction: First you compute SS;¢ and SSyimin, then subtract:

SSbetween = SStotal - SSwithin

The second alternative is to use Equation 12.7, which computes SSyiween UsSing the
treatment totals (the 7 values). The advantage of this alternative is that it provides a way
to check your arithmetic: Calculate SS .1, SSpetweens and SSyimin Separately, and then
check to be sure that the two components add up to equal SSo1.
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ALTERNATIVE FORMULAS FOR SSpctween

Recall that the variability between treatments is
measuring the differences between treatment means.
Conceptually, the most direct way of measuring the
amount of variability among the treatment means is to
compute the sum of squares for the set of sample means,
SSmeans- For the data in Table 12.2, the samples means
are 4, 1, and 1. These three values produce SSp,cans = 6.
However, each of the three means represents a group of
n = 5 scores. Therefore, the final value for SSyetween 18
obtained by multiplying SS,cans DY 7.
SSbetween = n(SSmeans)
For the data in Table 12.2, we obtain
SSbetween = n(SSmeans) = 5(6) = 30
Unfortunately, Equation 12.6 can only be used when

all of the samples are exactly the same size (equal zs), and
the equation can be very awkward, especially when the

(12.6)

treatment means are not whole numbers. Therefore, we
also present a computational formula for SSpeiween that uses
the treatment totals (7)) instead of the treatment means.

T> G’

SSbetween = 2 —
n

N (12.7)

For the data in Table 12.2, this formula produces:

200 | 5° 50 30°
PemT5 55 I

=80+5+5—060
=90 — 60
= 30
Note that all three techniques (Equations 12.5, 12.6,
and 12.7) produce the same result, SSpeiween = 30.

Using Equation 12.6, which computes SS for the set of sample means, is usually
not a good choice. Unless the sample means are all whole numbers, this equation can
produce very tedious calculations. In most situations, one of the other two equations is

a better alternative.

THE ANALYSIS OF DEGREES
OF FREEDOM (DF)

The analysis of degrees of freedom (df) follows the same pattern as the analysis of SS.
First, we find df for the total set of N scores, and then we partition this value into two

components: degrees of freedom between treatments and degrees of freedom within
treatments. In computing degrees of freedom, there are two important considerations to

keep in mind:

1. Each df value is associated with a specific SS value.

2. Normally, the value of df is obtained by counting the number of items that were
used to calculate SS and then subtracting 1. For example, if you compute SS for
a set of n scores, then df = n — 1.

With this in mind, we examine the degrees of freedom for each part of the analysis.

1. Total Degrees of Freedom, dfi ;. To find the df associated with SS,.;, you
must first recall that this SS value measures variability for the entire set of
N scores. Therefore, the df value is

dftotal =N-1

(12.8)

For the data in Table 12.2, the total number of scores is N = 15, so the total
degrees of freedom are

dftotal =15-1
= 14
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2. Within-Treatments Degrees of Freedom, df ;mi,. To find the df associated

with SSyimin, W& must look at how this SS value is computed. Remember, we
first find SS inside of each of the treatments and then add these values together.
Each of the treatment SS values measures variability for the n scores in the
treatment, so each SS has df = n — 1. When all of these individual treatment
values are added together, we obtain

dfwithin = E(fl - 1) = Edfm each treatment (]29)

For the experiment we have been considering, each treatment has n = 5 scores.
This means there are n — 1 = 4 degrees of freedom inside each treatment.
Because there are three different treatment conditions, this gives a total of

12 for the within-treatments degrees of freedom. Notice that this formula for
df simply adds up the number of scores in each treatment (the n values)

and subtracts 1 for each treatment. If these two stages are done separately,

you obtain

dfwithin = N — k (12.10)

(Adding up all the n values gives N. If you subtract 1 for each treatment, then
altogether you have subtracted k because there are k treatments.) For the data in
Table 12.2, N = 15 and k = 3, so

dfwithin =15-3
=12

. Between-Treatments Degrees of Freedom, dfjciween The df associated with

SSpetween can be found by considering how the SS value is obtained. This SS
formulas measure the variability for the set of treatments (totals or means). To
find dfpeiweens Simply count the number of treatments and subtract 1. Because
the number of treatments is specified by the letter k, the formula for df is

dfverween = k — 1 (12.11)

For the data in Table 12.2, there are three different treatment conditions (three
T values or three sample means), so the between-treatments degrees of freedom
are computed as follows:

dfbetween =3-1
=2

Notice that the two parts we obtained from this analysis of degrees of freedom
add up to equal the total degrees of freedom:

dftotal = dfwithin + dfbetween

14=12+2

The complete analysis of degrees of freedom is shown in Figure 12.7.
As you are computing the SS and df values for ANOVA, keep in mind that the

labels that are used for each value can help you understand the formulas. Specifically,

1. The term total refers to the entire set of scores. We compute SS for the whole

set of N scores, and the df value is simply N — 1.
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FIGURE 12.7
Partitioning degrees of
freedom (df') for the

independent-measures
ANOVA.

df total

N—1

df between treatments df within treatments

k=1 X(n—-1)=N—k

CALCULATION OF VARIANCES
(MS) AND THE F-RATIO

2. The term within treatments refers to differences that exist inside the individual
treatment conditions. Thus, we compute SS and df inside each of the separate
treatments.

3. The term between treatments refers to differences from one treatment to
another. With three treatments, for example, we are comparing three different
means (or totals) and have df =3 — 1 = 2.

The next step in the ANOVA procedure is to compute the variance between treatments and
the variance within treatments, which are used to calculate the F-ratio (see Figure 12.5).

In ANOVA, it is customary to use the term mean square, or simply MS, in place
of the term variance. Recall (from Chapter 4) that variance is defined as the mean of
the squared deviations. In the same way that we use SS to stand for the sum of the
squared deviations, we now use MS to stand for the mean of the squared deviations. For
the final F-ratio we need an MS (variance) between treatments for the numerator and
an MS (variance) within treatments for the denominator. In each case

S
daf

MS (variance) = s> = (12.12)

For the data we have been considering,

MS. =5 —Tbetween — T~ _14

between between df;) e 2

and

MS =5’ ~=——wihin___—] 33
within within dfwithm 1 2



402 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE

We now have a measure of the variance (or differences) between the treatments
and a measure of the variance within the treatments. The F-ratio simply compares these
two variances:

2
F= Sbetween — MSbelween
2o M, (12.13)

For the experiment we have been examining, the data give an F-ratio of

F=£=11.28
1.33

For this example, the obtained value of F = 11.28 indicates that the numerator of
the F-ratio is substantially bigger than the denominator. If you recall the conceptual
structure of the F-ratio as presented in Equations 12.1 and 12.2, the F value we obtained
indicates that the differences between treatments are more than 11 times bigger than
what would be expected if there were no treatment effect. Stated in terms of the exper-
imental variables: using a telephone while driving does appear to have an effect on driv-
ing performance. However, to properly evaluate the F-ratio, we must select an a level
and consult the F-distribution table that is discussed in the next section.

ANOVA Summary Tables It is useful to organize the results of the analysis in one
table called an ANOVA summary table. The table shows the source of variability
(between treatments, within treatments, and total variability), SS, df, MS, and F. For the
previous computations, the ANOVA summary table is constructed as follows:

Source SS df MS

Between treatments 30 2 15 F=11.28
Within treatments 16 12 1.33

Total 46 14

Although these tables are no longer used in published reports, they are a common
part of computer printouts, and they do provide a concise method for presenting the re-
sults of an analysis. (Note that you can conveniently check your work: Adding the first
two entries in the SS column, 30 + 16, produces SS;.- The same applies to the df col-
umn.) When using ANOVA, you might start with a blank ANOVA summary table and
then fill in the values as they are calculated. With this method, you are less likely to
“get lost” in the analysis, wondering what to do next.

m 1. Calculate SSioa, SSbetween> and SSyimin for the following set of data:

Treatment 1 Treatment 2 Treatment 3
n=10 n=10 n=10 N= 30
T=10 T=20 T =30 G = 60
SS =127 SS =16 SS =23 SX? =206

2. A researcher uses an ANOVA to compare three treatment conditions with a sample
of n = 8 in each treatment. For this analysis, find dfiow1, @fvetweens a0d dfithin-
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A researcher reports an F-ratio with dfpeqween = 2 and dfwimin = 30 for an
independent-measures ANOVA. How many treatment conditions were compared
in the experiment? How many subjects participated in the experiment?

A researcher conducts an experiment comparing four treatment conditions with a
separate sample of n = 6 in each treatment. An ANOVA is used to evaluate the
data, and the results of the ANOVA are presented in the following table. Complete
all missing values in the table. Hint: Begin with the values in the df column.

Source SS df MS
Between treatments - _ F=
Within treatments _ _ 2

Total 58

SStolal = 86’ SSbetween = 20’ SSwithin = 66
dﬁoml = 23’ dfbetween = 2; dfwithin =21

3. There were 3 treatment conditions (dfpeween = K — 1 = 2). A total of N = 33 individuals

participated (dfyimin = 30 = N — k).

. Source SS df MS
Between treatments 18 3 6 F =3.00
Within treatments 40 20 2
Total 58 23

THE DISTRIBUTION OF F-RATIOS

In ANOVA, the F-ratio is constructed so that the numerator and denominator of

the ratio are measuring exactly the same variance when the null hypothesis is true (see
Equation 12.2). In this situation, we expect the value of F' to be around 1.00.

If the null hypothesis is false, then the F-ratio should be much greater than 1.00.

The problem now is to define precisely which values are “around 1.00” and which are
“much greater than 1.00.” To answer this question, we need to look at all of the pos-
sible F' values—that is, the distribution of F-ratios.

Before we examine this distribution in detail, you should note two obvious

characteristics:

1. Because F-ratios are computed from two variances (the numerator and denomi-
nator of the ratio), F' values always are positive numbers. Remember that
variance is always positive.

2. When H, is true, the numerator and denominator of the F-ratio are measuring
the same variance. In this case, the two sample variances should be about the
same size, so the ratio should be near 1. In other words, the distribution of
F-ratios should pile up around 1.00.

With these two factors in mind, we can sketch the distribution of F-ratios. The dis-

tribution is cut off at zero (all positive values), piles up around 1.00, and then tapers off
to the right (Figure 12.8). The exact shape of the F distribution depends on the degrees
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FIGURE 12.8

The distribution of F-ratios
with df = 2, 12. Of all the
values in the distribution,
only 5% are larger than

F = 3.88, and only 1% are
larger than F = 6.93.

—> 5%
\—»]%
— r
0 1 2 3 4 5 6 7
3.88 6.93

THE F DISTRIBUTION TABLE

of freedom for the two variances in the F-ratio. You should recall that the precision of
a sample variance depends on the number of scores or the degrees of freedom. In gen-
eral, the variance for a large sample (large df) provides a more accurate estimate of the
population variance. Because the precision of the MS values depends on df, the shape
of the F distribution also depends on the df values for the numerator and denominator
of the F-ratio. With very large df values, nearly all of the F-ratios are clustered very
near to 1.00. With the smaller df values, the F distribution is more spread out.

For ANOVA, we expect F near 1.00 if Hy is true, and we expect a large value for F if H
is not true. In the F distribution, we need to separate those values that are reasonably near
1.00 from the values that are significantly greater than 1.00. These critical values are pre-
sented in an F distribution table in Appendix B, page 705. A portion of the F distribution
table is shown in Table 12.3. To use the table, you must know the df values for the F-ratio
(numerator and denominator), and you must know the alpha level for the hypothesis test.
It is customary for an F table to have the df values for the numerator of the F-ratio printed
across the top of the table. The df values for the denominator of F are printed in a column
on the left-hand side. For the experiment we have been considering, the numerator of the
F-ratio (between treatments) has df = 2, and the denominator of the F-ratio (within treat-
ments) has df = 12. This F-ratio is said to have “degrees of freedom equal to 2 and 12.”
The degrees of freedom would be written as df = 2, 12. To use the table, you would first
find df = 2 across the top of the table and df = 12 in the first column. When you line
up these two values, they point to a pair of numbers in the middle of the table. These
numbers give the critical cutoffs for a« = .05 and o = .01. With df = 2, 12, for example,
the numbers in the table are 3.88 and 6.93. Thus, only 5% of the distribution (o = .05)
corresponds to values greater than 3.88, and only1% of the distribution (e« = .01) corre-
sponds to values greater than 6.93 (see Figure 12.8).

In the experiment comparing driving performance under different telephone con-
ditions, we obtained an F-ratio of 11.28. According to the critical cutoffs in Figure 12.8,
this value is extremely unlikely (it is in the most extreme 1%). Therefore, we would
reject Hy with an a level of either .05 or .01, and conclude that the different telephone
conditions significantly affect driving performance.



TABLE 12.3

A portion of the F distribution
table. Entries in roman type are
critical values for the .05 level
of significance, and bold type
values are for the .01 level of
significance. The critical values
for df = 2, 12 have been
highlighted (see text).
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Degrees of Freedom: Numerator
Degrees of Freedom:

Denominator 1 2 3 4 5 6

10 4.96 4.10 3.71 3.48 3.33 3.22
10.04 7.56 6.55 5.99 5.64 5.39

11 4.84 3.98 3.59 3.36 3.20 3.09

9.65 7.20 6.22 5.67 5.32 5.07

12 4.75 3.88 3.49 3.26 3.11 3.00

9.33 6.93 5.95 541 5.06 4.82

13 4.67 3.80 3.41 3.18 3.02 2.92

9.07 6.70 5.74 5.20 4.86 4.62

14 4.60 3.74 3.34 3.11 2.96 2.85

8.86 6.51 5.56 5.03 4.69 4.46

1. A researcher obtains F' = 4.18 with df = 2, 15. Is this value sufficient to reject H
with o = .05? Is it big enough to reject Hy if o = .01?

2. With a = .05, what value forms the boundary for the critical region in the distribution
of F-ratios with df = 2, 247

1. For a = .05, the critical value is 3.68 and you should reject H,. For o = .01, the critical
value is 6.36 and you should fail to reject H.

2. The critical value is 3.40.

EXAMPLE 12.1

EXAMPLES OF HYPOTHESIS TESTING AND EFFECT SIZE
WITH ANOVA

Although we have now seen all the individual components of ANOVA, the following
example demonstrates the complete ANOVA process using the standard four-step
procedure for hypothesis testing.

The data in Table 12.4 were obtained from an independent-measures experiment
designed to examine people’s preferences for viewing distance of a 42-inch,
high-definition television. Four viewing distances were evaluated, 9 feet, 12 feet,

15 feet, and 18 feet, with a separate group of participants tested at each distance.
Each individual watched a 30-minute television program from a specific distance and
then completed a brief questionnaire measuring their satisfaction with the experience.
One question asked them to rate the viewing distance on a scale from 1 (Very
Bad—definitely need to move closer or farther away) to 7 (Excellent—perfect
viewing distance). The purpose of the ANOVA is to determine whether there are any
significant differences among the four viewing distances that were tested.

Before we begin the hypothesis test, note that we have already computed several
summary statistics for the data in Table 12.4. Specifically, the treatment totals (7) and
SS values are shown for each sample, and the grand total (G) as well as N and SX*
are shown for the entire set of data. Having these summary values simplifies the



406 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE

TABLE 12.4

Satisfaction with different
viewing distances of a 42-inch
high-definition television.

STEP 1:

STEP 2:

Often it is easier to postpone
finding the critical region until
after step 3, where you compute
the df values as part of the
calculations for the F-ratio.

STEP 3:

9 feet 12 feet 15 feet 18 feet
3 4 7 6 N= 20
0 3 6 3 G= 60
2 1 5 4 3X? =262
0 1 4 3
0 1 3 4

T= T=10 T=25 T=20

S§=28 S§= 8 SS =10 SS= 6

computations in the hypothesis test, and we suggest that you always compute these
summary statistics before you begin an ANOVA.

State the hypotheses and select an alpha level.
Hy: w1 = po = w3 = g (There is no treatment effect.)
H,: At least one of the treatment means is different.

We use o = .05.

Locate the critical region.

We first must determine degrees of freedom for MSyciween weatments @1d MSyihin
weatments (the numerator and denominator of the F-ratio), so we begin by analyzing
the degrees of freedom. For these data, the total degrees of freedom are

dfiora = N — 1
=20-1
=19
Analyzing this total into two components, we obtain
dfvetween =k —1=4—-1=3
dfwithin = 2dfinside cach treatment = 4 T 4 + 4 + 4 =16

The F-ratio for these data has df = 3, 16. The distribution of all the possible
F-ratios with df = 3, 16 is presented in Figure 12.9. Note that F-ratios larger than
3.24 are extremely rare (p < .05) if Hy is true and, therefore, form the critical region
for the test.

Compute the F-ratio.
The series of calculations for computing F is presented in Figure 12.5 and can be
summarized as follows:
a. Analyze the SS to obtain SSperween aNd SSwithin-

b. Use the SS values and the df values (from step 2) to calculate the two variances,
MSbetween and M. Swithin-

c. Finally, use the two MS values (variances) to compute the F-ratio.

Analysis of SS. First, we compute the total SS and then the two components, as
indicated in Figure 12.6.

SSiotal 18 simply the SS for the total set of N = 20 scores.
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FIGURE 12.9

The distribution of F-ratios
with df = 3, 16. The critical
value fora = .051is F = 3.24.

df=3,16

5%

3.24

2

S = SX? — %
2
—262-20
20

=262 — 180

=82
SSwithin combines the SS values from inside each of the treatment conditions.
SSWithin = 2SSinside cach treatment 8 + 8 + 10 + 6 = 32

SShetween Measures the differences among the four treatment means (or treatment
totals). Because we have already calculated SSi o and SSyimin, the simplest way to
obtain SSpeiween 18 by subtraction (Equation 12.5).

SSbetween = SStotal - SSwithin
=82 —-32
=50

Calculation of mean squares. Because we already found dfpeiween = 3 and
dfwimin = 16 (Step 2), we now can compute the variance or MS value for each
of the two components.

SS.
MS, . .= —fbe“”ee“ = ? =16.67
between
= _SSwithin = 2 =2.00

Calculation of F. We compute the F-ratio:

MS
F= between 1667 :833
MS 2.00

within
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STEP 4:

MEASURING EFFECT SIZE
FOR ANOVA

Make a decision.

The F value we obtained, F = 8.33, is in the critical region (see Figure 12.9). It
is very unlikely (p < .05) that we would obtain a value this large if Hj is true.
Therefore, we reject Hy and conclude that there is a significant treatment effect.

Example 12.1 demonstrated the complete, step-by-step application of the ANOVA
procedure. There are two additional points that can be made using this example.

First, you should look carefully at the statistical decision. We have rejected H,,
and concluded that not all the treatments are the same. But we have not determined
which ones are different. Is a 9-foot distance different from 12 feet? Is 12 feet
different from 15 feet? Unfortunately, these questions remain unanswered. We do
know that at least one difference exists (we rejected Hy), but additional analysis is
necessary to find out exactly where this difference is. We address this problem in
Section 12.6.

Second, as noted earlier, all of the components of the analysis (the SS, df, MS, and F)
can be presented together in one summary table. The summary table for the analysis in
Example 12.1 is as follows:

Source SS df MS

Between treatments 50 3 16.67 F =8.33
Within treatments 32 16 2.00

Total 82 19

Although these tables are very useful for organizing the components of an
ANOVA, they are not commonly used in published reports. The current method for
reporting the results from an ANOVA is presented on page 409.

As we noted previously, a significant mean difference simply indicates that the dif-
ference observed in the sample data is very unlikely to have occurred just by chance.
Thus, the term significant does not necessarily mean large, it simply means larger
than expected by chance. To provide an indication of how large the effect actually
is, researchers should report a measure of effect size in addition to the measure of
significance.

For ANOVA, the simplest and most direct way to measure effect size is to com-
pute the percentage of variance accounted for by the treatment conditions. Like the
* value used to measure effect size for the ¢ tests in Chapters 9, 10, and 11, this
percentage measures how much of the variability in the scores is accounted for by the
differences between treatments. For ANOVA, the calculation and the concept of the
percentage of variance is extremely straightforward. Specifically, we determine how
much of the total SS is accounted for by the SSpeiween treatments-

SSbetween treatments (1 2.1 4)

The percentage of variance accounted for =
SStotal

For the data in Example 12.1, the percentage of variance accounted for = 58% = 0.61
(or 61%).
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In published reports of ANOVA results, the percentage of variance accounted for
by the treatment effect is usually called m> (the Greek letter eta squared) instead of
using r°. Thus, for the study in Example 12.1, > = 0.61.

IN THE LITERATURE

REPORTING THE RESULTS OF ANOVA

The APA format for reporting the results of ANOVA begins with a presentation of
the treatment means and standard deviations in the narrative of the article, a table, or
a graph. These descriptive statistics are not part of the calculations for the ANOVA,
but you can easily determine the treatment means from n and 7' (M = T/n) and the
standard deviations from the SS and n—1 values for each treatment. Next, report the
results of the ANOVA. For the study described in Example 12.1, the report might
state the following:

The means and standard deviations are presented in Table 1. The analysis of
variance indicates that there are significant differences among the four viewing
distances, F(3, 16) = 8.33, p < .05, "r]2 = 0.61.

TABLE 1
Ratings of satisfaction with different television viewing distances.
9 Feet 12 Feet 15 Feet 18 Feet
M 1.00 2.00 5.00 4.00
SD 1.41 1.41 1.58 1.22

Note how the F-ratio is reported. In this example, degrees of freedom for between
and within treatments are df = 3, 16, respectively. These values are placed in
parentheses immediately following the symbol F. Next, the calculated value for F is
reported, followed by the probability of committing a Type I error (the alpha level)
and the measure of effect size.

When an ANOVA is done using a computer program, the F-ratio is usually
accompanied by an exact value for p. The data from Example 12.1 were analyzed
using the SPSS program (see Resources at the end of this chapter) and the computer
output included a significance level of p = .001. Using the exact p value from the
computer output, the research report would conclude, “The analysis of variance
revealed significant differences among the four viewing distances, F(3, 16) = 8.33,
p=.001,m>=061."

Because ANOVA requires relatively complex calculations, students encountering this
statistical technique for the first time often tend to be overwhelmed by the formulas
and arithmetic and lose sight of the general purpose for the analysis. The following
two examples are intended to minimize the role of the formulas and shift attention
back to the conceptual goal of the ANOVA process.
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EXAMPLE 12.2 The following data represent the outcome of an experiment using two separate

EXAMPLE 12.3

samples to evaluate the mean difference between two treatment conditions. Take a
minute to look at the data and, without doing any calculations, try to predict the
outcome of an ANOVA for these values. Specifically, predict what values should be
obtained for the between-treatments variance (MS) and the F-ratio. If you do not
“see” the answer after 20 or 30 seconds, try reading the hints that follow the data.

Treatment | Treatment I
4 2 = 8
0 1 G =16
1 0 3X% =56
3 5
T= 8 T= 8
SS =10 SS =14

If you are having trouble predicting the outcome of the ANOVA, read the
following hints, and then go back and look at the data.

Hint I: Remember: SSpetween aNd MSperween provide a measure of how much difference
there is between treatment conditions.

Hint 2: Find the mean or total (7) for each treatment, and determine how much difference
there is between the two treatments.

You should realize by now that the data have been constructed so that there is
zero difference between treatments. The two sample means (and totals) are identical,
SO SShetween = 0, MSperween = 0, and the F-ratio is zero.

Conceptually, the numerator of the F-ratio always measures how much difference
exists between treatments. In Example 12.2, we constructed an extreme set of scores
with zero difference. However, you should be able to look at any set of data and quickly
compare the means (or totals) to determine whether there are big differences or small
differences between treatments.

Being able to estimate the magnitude of between-treatment differences is a good
first step in understanding ANOVA and should help you to predict the outcome of an
ANOVA. However, the between-treatment differences are only one part of the analysis.
You must also understand the within-treatment differences that form the denominator of
the F-ratio. The following example is intended to demonstrate the concepts underlying
SSwithin and MSimin- In addition, the example should give you a better understanding of
how the between-treatment differences and the within-treatment differences act together
within the ANOVA.

The purpose of this example is to present a visual image for the concepts of
between-treatments variability and within-treatments variability. In this example,
we compare two hypothetical outcomes for the same experiment. In each case, the
experiment uses two separate samples to evaluate the mean difference between
two treatments. The following data represent the two outcomes, which we call
experiment A and experiment B.
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Experiment A Experiment B

Treatment Treatment
| Il | ]
8 12 4 12
8 13 11 9
7 12 2 20
9 11 17 6
8 13 0 16
9 12 8 18
7 11 14 3
M= M =12 M = M =12
s =0.82 s= 0.82 s=635 s= 635

The data from experiment A are displayed in a frequency distribution graph in
Figure 12.10(a). Notice that there is a 4-point difference between the treatment means
(M, = 8 and M, = 12). This is the between-treatments difference that contributes to
the numerator of the F-ratio. Also notice that the scores in each treatment are
clustered closely around the mean, indicating that the variance inside each treatment
is relatively small. This is the within-treatments variance that contributes to the
denominator of the F-ratio. Finally, you should realize that it is easy to see the mean
difference between the two samples. The fact that there is a clear mean difference
between the two treatments is confirmed by computing the F-ratio for experiment A.

FIGURE 12.10

A visual representation of the
between-treatments variability
and the within-treatments
variability that form the
numerator and denominator,
respectively, of the F-ratio. In
(a), the difference between
treatments is relatively large
and easy to see. In (b), the
same 4-point difference
between treatments is
relatively small and is
overwhelmed by the
within-treatments variability.
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_ between-treatments difference ~ MSpeiween 56

= = 83.96
within-treatments differences MS ithin 0.667

An F-ratio of F' = 83.96 is sufficient to reject the null hypothesis, so we
conclude that there is a significant difference between the two treatments.

Now consider the data from experiment B, which are shown in Figure 12.10(b)
and present a very different picture. This experiment has the same 4-point difference
between treatment means that we found in experiment A (M, = 8 and M, = 12).
However, for these data the scores in each treatment are scattered across the entire
scale, indicating relatively large variance inside each treatment. In this case, the large
variance within treatments overwhelms the relatively small mean difference between
treatments. In the figure it is almost impossible to see the mean difference between
treatments. For these data, the F-ratio confirms that there is no clear mean difference
between treatments.

 — between-treatments difference _ MSpeiween 56

= = 1.39
within-treatments differences MSyithin 40.33

For experiment B, the F-ratio is not large enough to reject the null hypothesis,
so we conclude that there is no significant difference between the two treatments.
Once again, the statistical conclusion is consistent with the appearance of the data in
Figure 12.10(b). Looking at the figure, we see that the scores from the two samples
appear to be intermixed randomly with no clear distinction between treatments.

As a final point, note that the denominator of the F-ratio, MSy;min, 1S @ measure
of the variability (or variance) within each of the separate samples. As we have noted
in previous chapters, high variability makes it difficult to see any patterns in the data.
In Figure 12.10(a), the 4-point mean difference between treatments is easy to see
because the sample variability is small. In Figure 12.10(b), the 4-point difference gets
lost because the sample variability is large. In general, you can think of variance as
measuring the amount of “noise” or “confusion” in the data. With large variance,
there is a lot of noise and confusion and it is difficult to see any clear patterns.

Although Examples 12.2 and 12.3 present somewhat simplified demonstrations
with exaggerated data, the general point of the examples is to help you see what hap-
pens when you perform an ANOVA. Specifically:

1. The numerator of the F-ratio (MSperween) Mmeasures how much difference exists
between the treatment means. The bigger the mean differences, the bigger the
F-ratio.

2. The denominator of the F-ratio (MSy,;nin) Measures the variance of the scores
inside each treatment; that is, the variance for each of the separate samples. In
general, larger sample variance produces a smaller F-ratio.

We should note that the number of scores in the samples also can influence the out-
come of an ANOVA. As with most other hypothesis tests, if other factors are held con-
stant, increasing the sample size tends to increase the likelihood of rejecting the null
hypothesis. However, changes in sample size have little or no effect on measures of
effect size such as mZ.

Finally, we should note that the problems associated with high variance often can
be minimized by transforming the original scores to ranks and then conducting an
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alternative statistical analysis known as the Kruskal-Wallis test, which is designed
specifically for ordinal data. The Kruskal-Wallis test is presented in Appendix E,
which also discusses the general purpose and process of converting numerical scores
into ranks. The Kruskal-Wallis test also can be used if the data violate one of the
assumptions for the independent-measures ANOVA, which are outlined at the end
of section 12.7.

You may have recognized that the two research outcomes presented in Example 12.3
are similar to those presented earlier in Example 10.5 in Chapter 10. Both examples are
intended to demonstrate the role of variance in a hypothesis test. Both examples show
that large values for sample variance can obscure any patterns in the data and reduce
the potential for finding significant differences between means.

For the independent-measures ¢ statistic in Chapter 10, the sample variance con-
tributed directly to the standard error in the bottom of the # formula. Now, the sample
variance contributes directly to the value of MS,,;q;, in the bottom of the F-ratio. In the
t-statistic and in the F-ratio the variances from the separate samples are pooled together
to create one average value for sample variance. For the independent-measures ¢ statis-
tic, we pooled two samples together to compute

SS1 + 85,

pooled variance = slz, =
dfy + df>

Now, in ANOVA, we are combining two or more samples to calculate

MS thin = SSWithin _ ESS — SSI + SS2 + SS3 + -
Y A 2df dfy v dfs +dfs +

Notice that the concept of pooled variance is the same whether you have exactly
two samples or more than two samples. In either case, you simply add the SS values and
divide by the sum of the df values. The result is an average of all of the different sam-
ple variances.

In the previous examples, all of the samples were exactly the same size (equal ns).
However, the formulas for ANOVA can be used when the sample size varies within an
experiment. You also should note, however, that the general ANOVA procedure is
most accurate when used to examine experimental data with equal sample sizes.
Therefore, researchers generally try to plan experiments with equal ns. However, there
are circumstances in which it is impossible or impractical to have an equal number of
subjects in every treatment condition. In these situations, ANOVA still provides a valid
test, especially when the samples are relatively large and when the discrepancy between
sample sizes is not extreme.

The following example demonstrates an ANOVA with samples of different sizes.

A researcher is interested in the amount of homework required by different
academic majors. Students are recruited from Biology, English, and Psychology
to participant in the study. The researcher randomly selects one course that each
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STEP 1:

STEP 2:

STEP 3:

TABLE 12.5

Average hours of homework per
week for one course for students
in three academic majors.

student is currently taking and asks the student to record the amount of out-of-class
work required each week for the course. The researcher used all of the volunteer
participants, which resulted in unequal sample sizes. The data are summarized in
Table 12.5.

State the hypotheses, and select the alpha level.
Ho: oy = po = 3
H,: At least one population is different.

a=.05

Locate the critical region.
To find the critical region, we first must determine the df values for the F-ratio:

Qs =N—1=20—1=19
dfbetween:k_1:3_1:2
dfwithin:N_k:20_3:17

The F-ratio for these data has df = 2, 17. With a = .05, the critical value for the
F-ratio is 3.59.

Compute the F-ratio.

First, compute the three SS values. As usual, SS is the SS for the total set of
N = 20 scores, and SS;ni, combines the SS values from inside each of the treatment
conditions.

G2
SStotal = EXZ - W
250°
=3377 — SSWithin = 2SSinside each treatment
= 3377 — 3125 =37 + 90 + 60
=252 = 187

SSpetween can be found by subtraction (Equation 12.5).
SSbetween = SStotal - SSwithin

=252 — 187

=65
Biology English Psychology
n= 4 n= 10 n= 6 N= 20
M= 9 M= 13 M=14 G = 250
T=36 T =130 T=284 SX* = 3377

8§ =37 SS= 90 SS =60
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Or, SSpetween can be calculated using the computation formula (Equation 12.7). If
you use the computational formula, be careful to match each treatment total (7) with
the appropriate sample size (n) as follows:

T2 2
§Sy = - &

bet
etween n N

2 2 2 2
_ 36" 130° 84" 250

4 10 6 20
324 +1690 + 1176 — 3125

=65

Finally, compute the MS values and the F-ratio:

SS 65
MSbetween = % = 7 =325
ms, =35 I8 _ 4
within df 17
F = MSbetween — 325 — 295
MSwithin 11

STEP 4: Make a decision.
Because the obtained F-ratio is not in the critical region, we fail to reject the null
hypothesis and conclude that there are no significant differences among the three
populations of students in terms of the average amount of homework each week.

1. A researcher used ANOVA and computed F = 4.25 for the following data.

Treatments
| 1l 1l

n= 10 n= 10 n= 10
M= 20 M= 28 M= 35
SS = 1005 SS = 1391 SS = 1180

a. If the mean for treatment III were changed to M = 25, what would happen to
the size of the F-ratio (increase or decrease)? Explain your answer.

b. If the SS for treatment I were changed to SS = 1400, what would happen to the
size of the F-ratio (increase or decrease)? Explain your answer.

2. A research study comparing three treatment conditions produces 7 = 20 with n = 4
for the first treatment, 7 = 10 with n = 5 for the second treatment, and 7' = 30
with n = 6 for the third treatment. Calculate SSy.iween treatments fOT these data.

ANSWERS 1. a. If the mean for treatment III were changed to M = 25, it would reduce the size of the
mean differences (the three means would be closer together). This would reduce the size
of MS}ciween and would reduce the size of the F-ratio.

b. If the SS in treatment I were increased to SS = 1400, it would increase the size of the
variability within treatments. This would increase MS,,;mnin and would reduce the size of
the F-ratio.

2. With G = 60 and N = 15, SSpetween = 30.
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DEFINITION

POSTTESTS AND TYPE |
ERRORS

POST HOC TESTS

As noted earlier, the primary advantage of ANOVA (compared to ¢ tests) is that it
allows researchers to test for significant mean differences when there are more than
two treatment conditions. ANOVA accomplishes this feat by comparing all the indi-
vidual mean differences simultaneously within a single test. Unfortunately, the process
of combining several mean differences into a single test statistic creates some difficulty
when it is time to interpret the outcome of the test. Specifically, when you obtain a sig-
nificant F-ratio (reject Hy), it simply indicates that somewhere among the entire set of
mean differences there is at least one that is statistically significant. In other words, the
overall F-ratio only tells you that a significant difference exists; it does not tell exactly
which means are significantly different and which are not.

Consider, for example, a research study that uses three samples to compare three
treatment conditions. Suppose that the three sample means are M| = 3, M, = 5, and
M5 = 10. In this hypothetical study there are three mean differences:

1. There is a 2-point difference between M, and M.
2. There is a 5-point difference between M, and Ms.

3. There is a 7-point difference between M; and Ms.

If an ANOVA were used to evaluate these data, a significant F-ratio would indicate
that at least one of the sample mean differences is large enough to satisfy the criterion
of statistical significance. In this example, the 7-point difference is the biggest of the
three and, therefore, it must indicate a significant difference between the first treatment
and the third treatment (., 7 p3). But what about the 5-point difference? Is it also large
enough to be significant? And what about the 2-point difference between M, and M,? Is
it also significant? The purpose of post hoc tests is to answer these questions.

Post hoc tests (or posttests) are additional hypothesis tests that are done after
an ANOVA to determine exactly which mean differences are significant and
which are not.

As the name implies, post hoc tests are done after an ANOVA. More specifically,
these tests are done after ANOVA when

1. You reject Hy and
2. There are three or more treatments (k = 3).

Rejecting H, indicates that at least one difference exists among the treatments. If
there are only two treatments, then there is no question about which means are different
and, therefore, no need for posttests. However, with three or more treatments (k = 3),
the problem is to determine exactly which means are significantly different.

In general, a post hoc test enables you to go back through the data and compare the
individual treatments two at a time. In statistical terms, this is called making pairwise
comparisons. For example, with k = 3, we would compare |, versus ., then ., versus
w3, and then p; versus ps. In each case, we are looking for a significant mean differ-
ence. The process of conducting pairwise comparisons involves performing a series of
separate hypothesis tests, and each of these tests includes the risk of a Type I error. As
you do more and more separate tests, the risk of a Type I error accumulates and is called
the experimentwise alpha level (see p. 391).



TUKEY'S HONESTLY
SIGNIFICANT DIFFERENCE
(HSD) TEST

The g value used in Tukey’s
HSD test is called a Studentized
range statistic.

EXAMPLE 12.5

TABLE 12.6

Hypothetical results from a
research study comparing three
treatment conditions. Summary
statistics are presented for each
treatment along with the
outcome from the ANOVA.
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We have seen, for example, that a research study with three treatment conditions
produces three separate mean differences, each of which could be evaluated using a
post hoc test. If each test uses a = .05, then there is a 5% risk of a Type I error for the
first posttest, another 5% risk for the second test, and one more 5% risk for the third
test. Although the probability of error is not simply the sum across the three tests, it
should be clear that increasing the number of separate tests definitely increases the
total, experimentwise probability of a Type I error.

Whenever you are conducting posttests, you must be concerned about the experi-
mentwise alpha level. Statisticians have worked with this problem and have developed
several methods for trying to control Type I errors in the context of post hoc tests. We
consider two alternatives.

The first post hoc test we consider is Tukey’s HSD test. We selected Tukey’s HSD test
because it is a commonly used test in psychological research. Tukey’s test allows you
to compute a single value that determines the minimum difference between treatment
means that is necessary for significance. This value, called the honestly significant dif-
ference, or HSD, is then used to compare any two treatment conditions. If the mean dif-
ference exceeds Tukey’s HSD, then you conclude that there is a significant difference
between the treatments. Otherwise, you cannot conclude that the treatments are signif-
icantly different. The formula for Tukey’s HSD is

MSwithin
HSD = q\|—2 (12.15)

where the value of ¢ is found in Table B.5 (Appendix B, p. 708), MSinin is the within-
treatments variance from the ANOVA, and #n is the number of scores in each treatment.
Tukey’s test requires that the sample size, n, be the same for all treatments. To locate the
appropriate value of ¢, you must know the number of treatments in the overall experi-
ment (k), the degrees of freedom for MS,, i, (the error term in the F-ratio), and you
must select an alpha level (generally the same o used for the ANOVA).

To demonstrate the procedure for conducting post hoc tests with Tukey’s HSD, we use
the hypothetical data shown in Table 12.6. The data represent the results of a study com-
paring scores in three different treatment conditions. Note that the table displays sum-
mary statistics for each sample and the results from the overall ANOVA. With k = 3
treatments, df,imin = 24, and a = .05, you should find that the value of ¢ for the test is
q = 3.53 (see Table B.5). Therefore, Tukey’s HSD is

[Ms__ .
HSD = g,|—xtin = 3 53 % =236
n

Treatment Treatment Treatment Source SS df MS
A B C
Between 73.19 2 36.60
n=19 n=9 n=19 Within 96.00 24 4.00
r=127 r=49 r=063 Total 169.19 26
M= 3.00 M= 544 M= 7.00 Overall F(2, 24) =915
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THE SCHEFFE TEST

EXAMPLE 12.6

Thus, the mean difference between any two samples must be at least 2.36 to be
significant. Using this value, we can make the following conclusions:
1. Treatment A is significantly different from treatment B (M, — Mg = 2.44).
2. Treatment A is also significantly different from treatment C (M, — Mc = 4.00).
3. Treatment B is not significantly different from treatment C (Mg — Mc = 1.56).

Because it uses an extremely cautious method for reducing the risk of a Type I error,
the Scheffé test has the distinction of being one of the safest of all possible post hoc
tests (smallest risk of a Type I error). The Scheffé test uses an F-ratio to evaluate the
significance of the difference between any two treatment conditions. The numerator of
the F-ratio is an MSyeween that is calculated using only the two treatments you want to
compare. The denominator is the same MS ;i that was used for the overall ANOVA.
The “safety factor” for the Scheffé test comes from the following two considerations:

1. Although you are comparing only two treatments, the Scheffé test uses the
value of k from the original experiment to compute df between treatments.
Thus, df for the numerator of the F-ratio is k — 1.

2. The critical value for the Scheffé F-ratio is the same as was used to evaluate the
F-ratio from the overall ANOVA. Thus, Scheffé requires that every posttest
satisfy the same criterion that was used for the complete ANOVA. The follow-
ing example uses the data from Table 12.6 to demonstrate the Scheffé posttest
procedure.

Remember that the Scheffé procedure requires a separate SSpciweens MSpetween, and
F-ratio for each comparison being made. Although Scheffé computes SSpciween
using the regular computational formula (Equation 12.7), you must remember that
all of the numbers in the formula are entirely determined by the two treatment
conditions being compared. We begin by comparing treatment A (with 7 = 27
and n = 9) and treatment B (with 7 = 49 and n = 9). The first step is to compute
SSbetween for these two groups. In the formula for SS, notice that the grand total
for the two groups is G = 27 + 49 = 76, and the total number of scores for the
two groupsis N =9 + 9 = 18.

2 2
5, -xl @
ctween n N
2 2 2
2T A T6
9 9 18
=81+ 266.78 — 320.89
=26.89

Although we are comparing only two groups, these two were selected from a
study consisting of k = 3 samples. The Scheffé test uses the overall study to
determine the degrees of freedom between treatments. Therefore, dfpeiween
=3 — 1 = 2, and the MSyciween 18

SS
MS,., =l — 26289 = 1345

between df;) e
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Finally, the Scheffé procedure uses the error term from the overall ANOVA to
compute the F-ratio. In this case, MS,nin = 4.00 with df,;min = 24. Thus, the
Scheffé test produces an F-ratio of

MSbetween _ 1345

= = 3.36
MS yithin 4.00

FAverusB =

With df = 2, 24 and a = .05, the critical value for F'is 3.40 (see Table B.4).
Therefore, our obtained F-ratio is not in the critical region, and we must conclude that
these data show no significant difference between treatment A and treatment B.

The second comparison involves treatment B (7' = 49) and treatment C (T = 63).
This time the data produce SSyeiween = 10.89, MSpeiween = 5.45, and F(2, 24) = 1.36
(check the calculations for yourself). Once again the critical value for F is 3.40, so we
must conclude that the data show no significant difference between treatment B and
treatment C.

The final comparison is treatment A (7 = 27) and treatment C (7' = 63). This
time the data produce SSperween = 72, MSpetween = 36, and F(2, 24) = 9.00 (check the
calculations for yourself). Once again the critical value for F is 3.40, and this time we
conclude that the data show a significant difference.

Thus, the Scheffé posttest indicates that the only significant difference is between
treatment A and treatment C.

There are two interesting points to be made from the posttest outcomes pre-
sented in the preceding two examples. First, the Scheffé test was introduced as being
one of the safest of the posttest techniques because it provides the greatest protec-
tion from Type I errors. To provide this protection, the Scheffé test simply requires
a larger difference between sample means before you may conclude that the differ-
ence is significant. For example, using Tukey’s test in Example 12.5, we found that
the difference between treatment A and treatment B was large enough to be signifi-
cant. However, this same difference failed to reach significance according to the
Scheffé test (Example 12.6). The discrepancy between the results is an example of
the Scheffé test’s extra demands: The Scheffé test simply requires more evidence
and, therefore, it is less likely to lead to a Type I error.

The second point concerns the pattern of results from the three Scheffé tests in
Example 12.6. You may have noticed that the posttests produce what are apparently
contradictory results. Specifically, the tests show no significant difference between A
and B and they show no significant difference between B and C. This combination of
outcomes might lead you to suspect that there is no significant difference between A
and C. However, the test did show a significant difference. The answer to this apparent
contradiction lies in the criterion of statistical significance. The differences between A
and B and between B and C are too small to satisfy the criterion of significance.
However, when these differences are combined, the total difference between A and C
is large enough to meet the criterion for significance.

1. With k = 2 treatments, are post hoc tests necessary when the null hypothesis is
rejected? Explain why or why not.

2. An ANOVA comparing three treatments produces an overall F-ratio with df = 2, 27.
If the Scheffé test was used to compare two of the three treatments, then the Scheffé
F-ratio would also have df = 2, 27. (True or false?)



420

CHAPTER 12

INTRODUCTION TO ANALYSIS OF VARIANCE

ANSWERS

3. Using the data and the results from Example 12.1,
a. Use Tukey’s HSD test to determine whether there is a significant mean difference
between a 12-foot and a 15-foot distance. Use a = .05.
b. Use the Scheffé test to determine whether there is a significant mean difference
between 12 feet and 15 feet. Use @ = .05.

1. No. Post hoc tests are used to determine which treatments are different. With only two
treatment conditions, there is no uncertainty as to which two treatments are different.

2. True

3. a. For this test, ¢ = 4.05 and HSD = 2.55. There is a 3-point mean difference between
12 feet and 15 feet, which is large enough to be significant.
b. The Scheffé F = 3.75, which is greater than the critical value of 3.24. Conclude that the
mean difference between 12 feet and 15 feet is significant.

m THE RELATIONSHIP BETWEEN ANOVA AND ¢ TESTS

When you are evaluating the mean difference from an independent-measures study com-
paring only two treatments (two separate samples), you can use either an independent-
measures ? test (Chapter 10) or the ANOVA presented in this chapter. In practical terms,
it makes no difference which you choose. These two statistical techniques always result
in the same statistical decision. In fact the two methods use many of the same calcula-
tions and are very closely related in several other respects. The basic relationship
between ¢ statistics and F-ratios can be stated in an equation:

F=¢

This relationship can be explained by first looking at the structure of the formulas
for F and ¢. The ¢ statistic compares distances: the distance between two sample means
(numerator) and the distance computed for the standard error (denominator). The
F-ratio, on the other hand, compares variances. You should recall that variance is a
measure of squared distance. Hence, the relationship: F = 1>,

There are several other points to consider in comparing the ¢ statistic to the F-ratio.

1. It should be obvious that you are testing the same hypotheses whether you
choose a ¢ test or an ANOVA. With only two treatments, the hypotheses for
either test are

Hy: oy = pa
Hytpy # pa

2. The degrees of freedom for the ¢ statistic and the df for the denominator of the
F-ratio (dfy;imin) are identical. For example, if you have two samples, each with
six scores, the independent-measures ¢ statistic has df = 10, and the F-ratio has
df = 1, 10. In each case, you are adding the df from the first sample (n — 1)
and the df from the second sample (n — 1).

3. The distribution of ¢ and the distribution of F-ratios match perfectly if you
take into consideration the relationship F = r*. Consider the  distribution
with df = 18 and the corresponding F' distribution with df = 1, 18 that are
presented in Figure 12.11. Notice the following relationships:

a. If each of the r values is squared, then all of the negative values become
positive. As a result, the whole left-hand side of the # distribution (below
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FIGURE 12.11

The distribution of # statis-
tics with df = 18 and the
corresponding distribution
of F-ratios with df = 1, 18.
Notice that the critical
values for « = .05 are

t = +2.101 and that

F =2.101% = 4.41.
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INDEPENDENT-MEASURES
ANOVA

zero) is flipped over to the positive side. This creates an asymmetrical, posi-
tively skewed distribution—that is, the F' distribution.

b. For a = .05, the critical region for ¢ is determined by values greater than
+2.101 or less than —2.101. When these boundaries are squared, you get
+2.101° = 4.41

Notice that 4.41 is the critical value for a = .05 in the F distribution. Any value
that is in the critical region for ¢ ends up in the critical region for F-ratios after it is
squared.

The independent-measures ANOVA requires the same three assumptions that were
necessary for the independent-measures ¢ hypothesis test:

1. The observations within each sample must be independent (see p. 254).
2. The populations from which the samples are selected must be normal.

3. The populations from which the samples are selected must have equal variances
(homogeneity of variance).

Ordinarily, researchers are not overly concerned with the assumption of normality,
especially when large samples are used, unless there are strong reasons to suspect that
the assumption has not been satisfied. The assumption of homogeneity of variance is an
important one. If a researcher suspects that it has been violated, it can be tested by
Hartley’s F-max test for homogeneity of variance (Chapter 10, p. 338).

Finally, if you suspect that one of the assumptions for the independent-measures
ANOVA has been violated, you can still proceed by transforming the original scores
into ranks and then using an alternative statistical analysis known as the Kruskal-
Wallis test, which is designed specifically for ordinal data. The Kruskal-Wallis test is
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presented in Appendix E. As noted earlier, the Kruskal-Wallis test also can be useful
if large sample variance prevents the independent-measures ANOVA from producing

a significant result.

LEARNING CHECK 1. A researcher uses an independent-measures # test to evaluate the mean difference

or false?)

ANSWERS 1. True. F = 7

obtained in a research study, and obtains a ¢ statistic of + = 3.00. If the researcher
had used an ANOVA to evaluate the results, the F-ratio would be F = 9.00. (True

2. An ANOVA produces an F-ratio with df = 1, 34. Could the data have been ana-
lyzed with a ¢ test? What would be the degrees of freedom for the ¢ statistic?

2. If the F-ratio has df = 1, 34, then the experiment compared only two treatments, and you
could use a 7 statistic to evaluate the data. The ¢ statistic would have df = 34.

1. Analysis of variance (ANOVA) is a statistical technique
that is used to test the significance of mean differences
among two or more treatment conditions. The null
hypothesis for this test states that, in the general
population, there are no mean differences among the
treatments. The alternative states that at least one mean
is different from another.

2. The test statistic for ANOVA is a ratio of two variances
called an F-ratio. The variances in the F-ratio are called
mean squares, or MS values. Each MS is computed by

= E
df

3. For the independent-measures ANOVA, the F-ratio is

MS

MS

F — between

MS

within
The MSpeween measures differences between the
treatments by computing the variability of the treatment
means or totals. These differences are assumed to be
produced by

a. Treatment effects (if they exist)
b. Random, unsystematic differences (chance)

The MSinin measures variability inside each of the
treatment conditions. Because individuals inside a
treatment condition are all treated exactly the same, any

differences within treatments cannot be caused by
treatment effects. Thus, the within-treatments MS is
produced only by random, unsystematic differences.
With these factors in mind, the F-ratio has the
following structure:

_ treatment effect + differences due to chance
differences due to chance

When there is no treatment effect (H, is true), the
numerator and the denominator of the F-ratio are
measuring the same variance, and the obtained ratio
should be near 1.00. If there is a significant treatment
effect, then the numerator of the ratio should be larger
than the denominator, and the obtained F value should
be much greater than 1.00.

. The formulas for computing each SS, df, and MS value

are presented in Figure 12.12, which also shows the
general structure for the ANOVA.

. The F-ratio has two values for degrees of freedom, one

associated with the MS in the numerator and one
associated with the MS in the denominator. These df
values are used to find the critical value for the F-ratio
in the F distribution table.

. Effect size for the independent-measures ANOVA is

measured by computing eta squared, the percentage of
variance accounted for by the treatment effect.
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FIGURE 12.12
‘ Total
Formulas for ANOVA. 2
SS=3X?>- =
N
df=N-1
Between treatments Within treatments
= SSToTcI _2 SSW”hin SS = ZSsecch treatment
or33=zL_% df=N-k
n
ms= 5%
df=k-1 df
Ms=
af
, MS between tfreatments
F-ratio =
MS within treatments
two treatment conditions, it is necessary to continue the
5 SS SS

n= between — ZThetweer analysis with a post hoc test, such as Tukey’s HSD test
S Sbetween +S Swithin AN or the Scheffé test. The purpose of these tests is to
determine exactly which treatments are significantly
different and which are not.

total

7. When the decision from an ANOVA is to reject the null
hypothesis and when the experiment contains more than

KEY TERMS

analysis of variance (ANOVA) (386) within-treatments variance (393) Kruskal-Wallis test (413)
factor (388) F-ratio (394) post hoc tests (416)

levels (388) error term (394) pairwise comparisons (416)
testwise alpha level (391) mean square (MS) (401) Tukey’s HSD test (417)
experimentwise alpha level (391) ANOVA summary table (402) Scheffé test (418)
between-treatments variance (392) distribution of F-ratios (403)

treatment effect (393) eta squared (1]2) (408)

RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter.
You can find a tutorial quiz and other learning exercises for Chapter 12 on the book
companion website.
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aplia
Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.
CENGAGEbrain

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform The Single-Factor, Independent-Measures
Analysis of Variance (ANOVA) presented in this chapter.

Data Entry

1. The scores are entered in a stacked format in the data editor, which means that all
of the scores from all of the different treatments are entered in a single column
(VARO00001). Enter the scores for treatment #2 directly beneath the scores from
treatment #1 with no gaps or extra spaces. Continue in the same column with the
scores from treatment #3, and so on.

2. In the second column (VARO00002), enter a number to identify the treatment
condition for each score. For example, enter a 1 beside each score from the
first treatment, enter a 2 beside each score from the second treatment,
and so on.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on One-Way
ANOVA.

2. Highlight the column label for the set of scores (VAR0001) in the left box and click
the arrow to move it into the Dependent List box.

3. Highlight the label for the column containing the treatment numbers (VAR0002) in
the left box and click the arrow to move it into the Factor box.

4. If you want descriptive statistics for each treatment, click on the Options box,
select Descriptives, and click Continue.

5. Click OK.
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SPSS Output

We used the SPSS program to analyze the data from the television viewing study in
Example 12.1 and the program output is shown in Figure 12.13. The output begins with
a table showing descriptive statistics (number of scores, mean, standard deviation, stan-
dard error for the mean, a 95% confidence interval for the mean, maximum and mini-
mum scores) for each sample. The second part of the output presents a summary table
showing the results from the ANOVA.

FOCUS ON PROBLEM SOLVING

1. It can be helpful to compute all three SS values separately, then check to verify that
the two components (between and within) add up to the total. However, you can

Descriptives
VARO00001
95% Confidence Interval
for Mean
N Mean Std. Deviation| Std. Error |Lower Bound | Upper Bound | Minimum | Maximum
1.00 5 1.0000 1.41421 .63246 —.7560 2.7560 .00 3.00
2.00 5 2.0000 1.41421 .63246 .2440 3.7560 1.00 4.00
3.00 5 5.0000 1.58114 70711 3.0368 6.9632 3.00 7.00
4.00 5 4.0000 1.22474 .54772 2.4793 5.5207 3.00 6.00
Total 20 3.0000 2.07745 .46453 2.0277 3.9723 .00 7.00
ANOVA
VARO00001
Sum of
Squares df Mean Square F Sig.
Between Groups 50.000 3 16.667 8.333 .001
Within Groups 32.000 16 2.000
Total 82.000 19
FIGURE 12.13

SPSS output of the ANOVA for the television-viewing distance study in Example 12.1.
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DEMONSTRATION 12.1

greatly simplify the calculations if you simply find SS,.; and SSy;min, then obtain
SShetween DY subtraction.

2. Remember that an F-ratio has two separate values for df: a value for the numerator
and one for the denominator. Properly reported, the dfyoween Value is stated first.
You will need both df values when consulting the F distribution table for the critical
F value. You should recognize immediately that an error has been made if you see
an F-ratio reported with a single value for df.

3. When you encounter an F-ratio and its df values reported in the literature, you
should be able to reconstruct much of the original experiment. For example, if you
see “F(2, 36) = 4.80,” you should realize that the experiment compared k = 3
treatment groups (because dfyeiween = kK — 1 = 2), with a total of N = 39 subjects
participating in the experiment (because df,;min = N — k = 36).

STEP 1

STEP 2

ANALYSIS OF VARIANCE

A human-factors psychologist studied three computer keyboard designs. Three samples of
individuals were given material to type on a particular keyboard, and the number of errors
committed by each participant was recorded. The data are as follows:

Keyboard A Keyboard B Keyboard C
0 6 6 N= 15
4 8 5 G= 60
0 5 9 3X* =356
1 4 4
0 2 6
T= 5 T=25 T =30
S§ =12 SS =20 S§S =14

Are these data sufficient to conclude that there are significant differences in typing
performance among the three keyboard designs?

State the hypotheses, and specify the alpha level. The null hypothesis states that there
is no difference among the keyboards in terms of number of errors committed. In symbols,
we would state
Hy: g = o = 3 (Type of keyboard used has no effect.)
As noted previously in this chapter, there are a number of possible statements for
the alternative hypothesis. Here we state the general alternative hypothesis:
H,: At least one of the treatment means is different.

We set alpha at oo = .05.

Locate the critical region. To locate the critical region, we must obtain the values for
df between and df within*
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dfbetweenzk_1=3_1=2
dfwithinzN_k=15_3=12

The F-ratio for this problem has df = 2, 12, and the critical F value for a = .05 is
F = 3.88.

STEP 3 Perform the analysis. The analysis involves the following steps:
1. Perform the analysis of SS.
2. Perform the analysis of df.
3. Calculate mean squares.

4. Calculate the F-ratio.

Perform the analysis of SS. We compute SS,., followed by its two components.

2 2
SSM=ZX2—% =356—61i5 = 356 — 2090

15
=356—240=116
SSWithin = ZSSinside each treatment
=12+ 20 + 14
=46
77 G’
SSbetween =27 - W

2 2 2 2
3 30 607
55 5 15
_25 625,900 3600
55 5 15
=5+ 125+ 180 — 240

=170

Analyze degrees of freedom. We compute dfio- Its components, dfpeiween a0d dfyithins
were previously calculated (see step 2).

dfo =N—1=15—1= 14
dfbetween =2
dfwithin =12

Calculate the MS values. We determine the values for MSyciween aNd MSyithin-

S
MSb . — between _ "~ __ 35
e df;aetween 2

MSwithin
df within 1 2

Compute the F-ratio. Finally, we can compute F.
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STEP 4 Make a decision about H,, and state a conclusion. The obtained F of 9.14 exceeds the
critical value of 3.88. Therefore, we can reject the null hypothesis. The type of keyboard
used has a significant effect on the number of errors committed, F(2, 12) = 9.14, p < .05.

The following table summarizes the results of the analysis:

Source SS df MS

Between treatments 70 2 35 F=9.14
Within treatments 46 12 3.83

Total 116 14

DEMONSTRATION 12.2

COMPUTING EFFECT SIZE FOR ANOVA

We compute eta squared (n?), the percentage of variance explained, for the data that were
analyzed in Demonstration 12.1. The data produced a between-treatments SS of 70 and a
total SS of 116. Thus,

PROBLEMS

. Explain why the F-ratio is expected to be near 1.00

when the null hypothesis is true.

Describe the similarities between an F-ratio and a
t statistic.

Several factors influence the size of the F-ratio. For
each of the following, indicate whether it would
influence the numerator or the denominator of the
F-ratio, and indicate whether the size of the F-ratio
would increase or decrease.

a. Increase the differences between the sample means.
b. Increase the size of the sample variances.

Why should you use ANOVA instead of several  tests
to evaluate mean differences when an experiment
consists of three or more treatment conditions?

Posttests are done after an ANOVA.

a. What is the purpose of posttests?

b. Explain why you do not need posttests if the
analysis is comparing only two treatments.

c. Explain why you do not need posttests if the
decision from the ANOVA is to fail to reject the
null hypothesis.

. An independent-measures research study compares

three treatment conditions with a sample of n = 10 in

each condition. The sample means are M| =2, M, =3,

and M 3= 7.

a. Compute SS for the set of 3 treatment means. (Use the
three means as a set of n = 3 scores and compute SS.)

b. Using the result from part a, compute 7(SSeans)-
Note that this value is equal to SSpeween (S€€
Equation 12.6).

c. Now, compute SSpeiween With the computational
formula using the 7 values (Equation 12.7). You
should obtain the same result as in part b.

7. The following data summarize the results from an

independent-measures study comparing three treatment
conditions.

n= 6 n= 6 n= 6
=1 M= 5 M= 6 N= 18
=6 T=30 T =36 G= 72
SS=30 SS=35 SS=40 X% = 477




a. Use an ANOVA with a = .05 to determine whether
there are any significant differences among the
three treatment means.

b. Calculate n* to measure the effect size for this study.

c. Write a sentence demonstrating how a research
report would present the results of the hypothesis
test and the measure of effect size.

. For the preceding problem you should find that there
are significant differences among the three treatments.
The primary reason for the significance is that the
mean for treatment I is substantially smaller than the
means for the other two treatments. To create the
following data, we started with the values from
problem 7 and added 3 points to each score in
treatment 1. Recall that adding a constant causes the
mean to change but has no influence on the variability
of the sample. In the resulting data, the mean
differences are much smaller than those in problem 7.

n= 6 n= 6 n= 6

M= 4 M= 5 M= 6 = 18
T =24 T =30 T =36 = 90
S§=30 SS=35 SS =40 XIX* =567

a. Before you begin any calculations, predict how the
change in the data should influence the outcome of
the analysis. That is, how will the F-ratio and the
value of n? for these data compare with the values
obtained in problem 7?

b. Use an ANOVA with o = .05 to determine whether
there are any significant differences among the
three treatment means. (Does your answer agree
with your prediction in part a?)

c. Calculate ? to measure the effect size for this
study. (Does your answer agree with your
prediction in part a?)

9. The following data summarize the results from an

independent-measures study comparing three treatment
conditions.

n= 5 n= 5 n= 5

M=2 M=5 M= 38 N=15
T=10 T=25 T = 40 G=15
SS=16 S§S=20 S§S=24 3=X*=525

a. Calculate the sample variance for each of the three
samples.

b. Use an ANOVA with a = .05 to determine whether
there are any significant differences among the
three treatment means.
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10. For the preceding problem you should find that there

11.

are significant differences among the three treatments.
One reason for the significance is that the sample
variances are relatively small. To create the following
data, we started with the values from problem 9 and
increased the variability (the SS values) within each
sample.

n= 5 n= 5 n= 5

M= 2 M= 5 M= 38 = 15
T=10 T=25 T =40 G= 175
SS = 64 §S§=80 S§=96 IXX>=705

a. Calculate the sample variance for each of the three
samples. Describe how these sample variances
compare with those from problem 9.

b. Predict how the increase in sample variance should
influence the outcome of the analysis. That is, how
will the F-ratio for these data compare with the
value obtained in problem 9?

¢. Use an ANOVA with a = .05 to determine whether
there are any significant differences among the
three treatment means. (Does your answer agree
with your prediction in part b?)

Binge drinking on college campuses has been a hot topic
in the popular media and in scholarly research. Flett,
Goldstein, Wall, Hewitt, Wekerle, and Azzi (2008)
report the results of a study relating perfectionism to
binge drinking. In the study, students were classified into
three groups based on the number of binge drinking
episodes they experienced during the past month (0, 1, 2
or more). The students then completed a perfectionism
questionnaire including one scale measuring parental
criticism. One sample item is “I never felt that I could
meet my parents’ standards.” Students rated their level
of agreement with each item, and the total score was
calculated for each student. The following results are
similar to those obtained by the researchers.

Binge Drinking Episodes in Past Month

0 1 2 or more
8 10 13 N= 15
8 12 14
10 8 12 G= 165
9 9 15
10 11 16 X2 = 1909
M= 9 M=10 M=14
T=45 T=50 T =170

S§= 4 S§5=10 §§ =10
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12.

13.

14.
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a. Use an ANOVA with a = .05 to determine whether
there are any significant differences among the
three treatment means.

b. Calculate v” to measure the effect size for this
study.

c. Write a sentence demonstrating how a research
report would present the results of the hypothesis
test and the measure of effect size.

A researcher reports an F-ratio with df = 3, 36 from an

independent-measures research study.

a. How many treatment conditions were compared in
the study?

b. What was the total number of participants in the
study?

A research report from an independent-measures study

states that there are significant differences between

treatments, F(2, 54) = 3.58, p < .05.

a. How many treatment conditions were compared in
the study?

b. What was the total number of participants in the
study?

There is some evidence that high school students
justify cheating in class on the basis of poor teacher
skills or low levels of teacher caring (Murdock, Miller,
and Kohlhardt, 2004). Students appear to rationalize
their illicit behavior based on perceptions of how their
teachers view cheating. Poor teachers are thought not
to know or care whether students cheat, so cheating in
their classes is okay. Good teachers, on the other hand,
do care and are alert to cheating, so students tend not
to cheat in their classes. Following are hypothetical
data similar to the actual research results. The scores
represent judgments of the acceptability of cheating
for the students in each sample.

c. Write a sentence demonstrating how a research
report would present the results of the hypothesis
test and the measure of effect size.

15. The following summary table presents the results from
an ANOVA comparing three treatment conditions with
n = 8 participants in each condition. Complete all
missing values. (Hint: Start with the df column.)

Source SsS df MS

Between treatments ___ 15 F=__
Within treatments

Total 93

16. A pharmaceutical company has developed a drug that
is expected to reduce hunger. To test the drug, two
samples of rats are selected with n = 20 in each
sample. The rats in the first sample receive the drug
every day and those in the second sample are given a
placebo. The dependent variable is the amount of food
eaten by each rat over a 1-month period. An ANOVA
is used to evaluate the difference between the two
sample means and the results are reported in the
following summary table. Fill in all missing values in
the table. (Hint: Start with the df column.)

Source SS df MS

Between treatments 20 F=4.00
Within treatments

Total

Poor Average Good
Teacher Teacher Teacher

n= 6 n= 8 n=10 N= 24
M= 6 M= 2 M= 2 G= 72
SS =30 S =33 SS = 42 3X% =393

17. A developmental psychologist is examining the
development of language skills from age 2 to age 4.
Three different groups of children are obtained, one
for each age, with n = 16 children in each group. Each
child is given a language-skills assessment test. The
resulting data were analyzed with an ANOVA to test
for mean differences between age groups. The results
of the ANOVA are presented in the following table.
Fill in all missing values.

a. Use an ANOVA with a = .05 to determine whether
there are significant differences in student judgments
depending on how they see their teachers.

b. Calculate n? to measure the effect size for this study.

Source SS df MS
Between treatments 20 F =
Within treatments

Total 200




18. The following data were obtained from an

19.

20.

independent-measures research study comparing three
treatment conditions. Use an ANOVA with a = .05 to
determine whether there are any significant mean
differences among the treatments.

Treatment
| 1l 1
2 5 7 = 14
5 2 3 G= 42
0 1 6 X% =182
1 2 4
2
2
T=12 T=10 T =120
S§=14 SS= 9 SS =10

The following values summarize the results from an
independent-measures study comparing two treatment
conditions.

a. Use an independent-measures ¢ test with a = .05 to
determine whether there is a significant mean
difference between the two treatments.

b. Use an ANOVA with a = .05 to determine whether
there is a significant mean difference between the
two treatments.

Treatment

| 1
n= 8 n= 4
M= 4 M=10 N= 12
T=32 T=40 G= 72
SS=45 SS=15 3IX? =588

The following data represent the results from an

independent-measures study comparing two treatment

conditions.

a. Use an independent-measures ¢ test with o = .05 to
determine whether there is a significant mean
difference between the two treatments.

b. Use an ANOVA with a = .05 to determine whether

there is a significant mean difference between the
two treatments.
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Treatment
| Il
8 2 N= 10
7 3 G= 50
6 3 3X? =306
5 5
9 2
M= 17 M= 3
T=35 T=15

S§=10 S§S= 6

21. One possible explanation for why some birds migrate

and others maintain year round residency in a single
location is intelligence. Specifically, birds with small
brains, relative to their body size, are simply not smart
enough to find food during the winter and must migrate
to warmer climates where food is easily available

(Sol, Lefebvre, & Rodriguez-Teijeiro, 2005). Birds
with bigger brains, on the other hand, are more creative
and can find food even when the weather turns harsh.
Following are hypothetical data similar to the actual
research results. The numbers represent relative brain
size for the individual birds in each sample.

Short- Long-
Non- Distance Distance
Migrating Migrants Migrants
18 6 4 N= 18
13 11 9 G = 180
19 7 5 3X? = 2150
12 9 6
16 8 5
12 13 7
M =15 M= 9 M= 6
T =90 T =54 T =36
SS =48 SS =34 S§S =16

a. Use an ANOVA with a = .05 to determine whether
there are any significant mean differences among
the three groups of birds.

b. Compute 1%, the percentage of variance explained
by the group differences, for these data.
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22.
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c. Write a sentence demonstrating how a research
report would present the results of the hypothesis
test and the measure of effect size.

d. Use the Tukey HSD posttest to determine which
groups are significantly different.

There is some research indicating that college students
who use Facebook while studying tend to have lower
grades than non-users (Kirschner & Karpinski, 2010).

A representative study surveys students to determine

the amount of Facebook use during the time they are
studying or doing homework. Based on the amount of
time spent on Facebook, students are classified into three
groups and their grade point averages are recorded. The
following data show the typical pattern of results.

Facebook Use While Studying

Non-User Rarely Use Regularly Use
3.70 3.51 3.02
345 342 2.84
2.98 3.81 342
3.94 3.15 3.10
3.82 3.64 2.74
3.68 3.20 3.22
3.90 2.95 2.58
4.00 3.55 3.07
3.75 3.92 3.31
3.88 345 2.80

a. Use an ANOVA with a = .05 to determine whether
there are significant mean differences among the
three groups.

b. Compute m” to measure the size of the effect.

¢. Write a sentence demonstrating how the result from
the hypothesis test and the measure of effect size
would appear in a research report.

23. New research suggests that watching television,

especially medical shows such as Grey’s Anatomy and
House can result in more concern about personal health
(Ye, 2010). Surveys administered to college students
measure television viewing habits and health concerns
such as fear of developing the diseases and disorders
seen on television. For the following data, students are
classified into three categories based on their television
viewing patterns and health concerns are measured on a
10-point scale with 0 indicating “none.”

Television Viewing

Little or None Moderate Substantial

~
[}
o)
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a. Use an ANOVA with a = .05 to determine whether
there are significant mean differences among the
three groups.

b. Compute 1 to measure the size of the effect.

¢. Use Tukey’s HSD test with a = .05 to determine
which groups are significantly different.

Improve your statistical skills with
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