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History: 

J.Fourier (1768-1830) is the initiator of the theory of integral equations. 

A term integral equation first suggested by Du Bois Reymond in 1888. 

Du Bois Reymond define an integral equation is understood an 

equation in which the unknown function occurs under one or more 

signs of definite integration. Late 18th and early 19th century Laplace, 

Fourier, Poisson, Liouville and Able studies some special type of integral 

equation. The pioneering systematic investigation goes back to late 19th 

and 20th century work of Volterra, Fredholm and Hilbert. In 1887, 

Volterra published a series of famous papers in which he singled out 

the notion of a functional and pioneered in the development of a 

theory of functional in theory of linear integral equation of special type. 

Fredholm presented the fundamentals of the Fredholm integral 

equation theory in a paper published in 1903 in the Acta Mathematica. 

This paper became famous almost overnight and soon took its rightful 

place among the gems of the modern mathematics. 

By contrast with the differential equation, which got off a flying start 

with Isaac Newton’s second law of motion, integral equation arrived 

late. They made their first appearance during the 3rd and 4th decade of 

the 19th century. Even the name ‘integral equation’ was not suggested 

until the late 1880’s and it was adopted only in the early 1900’s. In the 

last four or five years of the 19th century Vito Volterra and Ivar 

Fredholm succeeded in working out fundamental linear theories of two 

types which have since carried their name. 

 

 

 



Introduction: 

An integral equation is a mathematical expression that includes a 

required function under an integration sign. 

The integral equation 

( ) ( ) K( , ) (t)dt (1)u x f x x t u= + ò   

may be written in the operational (abbreviated) form or notation 

as  

( ) ( ) (Ku)(x)

or u f u

u x f x

K

= +

= +
  

Where ’ k’ is an integral operator for the integral  in (1) that maps 

the function, u, as an input to an output 

 ( ) ( ) K( , ) (t)dtKu x x t u= ò   

in the range of the integral operator K. 

The most general linear integral equation in u(x) can be 

presented as   

( )

( ) ( ) ( ) ( , ) ( ) (2)

( ) ( ) ( ) (Ku)(x) , a x

b x

a
h x u x f x K x u d

or in operational notation

h x u x f x

x x x= +

- = £

ò
  

Where K defines the above integration operation on the function 

u in (2).  

 

 



Types of Integral Equation: 

Integral equation fall under two main categories 

· Volterra Integral Equation 

An integral equation with variable limits of integration is called 

Volterra integral equation. The equation (2) is called Volterra 

integral equation when b(x)=x, i.e 

( ) ( ) ( ) ( , ) ( )
x

a
h x u x f x K x u dx x x= + ò   

Further there are two kinds of Volterra integral equation: 

§ When  h(x)=0 it is called a Volterra integral equation of the 

first kind, 

( ) ( , ) ( )
x

a
f x K x u dx x x- = ò   

§ When h(x)=1 it is called a Volterra integral equation of the 

second kind, 

  ( ) ( ) ( , ) ( )
x

a
u x f x K x u dx x x= + ò   

Examples: 

   0

' int (y)

( )
2 ( )

int .

y

Abel s egral equation in

g f y d
y

is egral equation of the first kind

f

f h
h

h
- =

-
ò   

int

( ) ( ) ( , ) ( )

int sec .

t

The egral equation for the torsion of wire

m t h t t d

is the Fredholm egral equation of the ond kind

w f t w t t
-¥

= + ò   



 

· Fredholm Integral Equation 

An integral equation with fixed limits of integration is called Fredholm 

integral equation.  The equation (2) is called Fredholm integral equation 

if b(x)=b, a constant, 

             ( ) ( ) ( ) ( , ) ( )
b

a
h x u x f x K x u dx x x= + ò   

Further there are two types of Fredholm of integral equation: 

§ When h(x)=0  it is called Fredholm integral equation of the 

first kind, 

     ( ) ( , ) ( )
b

a
f x K x u dx x x- = ò  

§ When h(x)=1 it is called Fredholm integral equation of the 

second kind, 

( ) ( ) ( , ) ( )
b

a
u x f x K x u dx x x= + ò   

Examples: 

( ) ( )i x

The Fourier transform

U e u x dxll
¥

-

-¥
= ò

  

is the Fredholm integral equation of first kind. 

The integral equation 

2

0
( ) ( , ) ( ) ( )

l

y x F x x y dw x r x x= ò   

  is the Fredholm integral equation of the second kind. 

 

 



Homogeneous Integral Equation: 

In the case either Volterra or the Fredholm integral equation, the 

integral equation is termed homogenous when f(x)=0 in equation (2), 

                    ( ) ( ) ( , ) ( )
x

a
h x u x K x u dx x x= ò             

                    ( ) ( ) ( , ) ( )
b

a
h x u x K x u dx x x= ò  

Examples: 

Homogenous Volterra integral equation is the Bernoulli equation 

       
0

( ) ( )
x

kf x f dx x= ò   

While the deflection of the rotating shaft in y(x), 

       2

0
( ) ( , ) ( ) ( )

l

y x F x x y dw x r x x= ò  

is a homogenous Fredholm equation. 

Singular integral equation: 

An integral equation is termed as singular if the range of the integration 

is infinite or the kernel K(x, ) becomes infinite in the range of 

integration. 

The Fourier integral in u(x), 

                      ( ) ( )i xU e u x dxll
¥

-

-¥
= ò  

is singular. 

 

 



A study on various model problems as 

integral equations:

· Shape of an elastic thread ( The hanging chain )

An example of a physical problem that results naturally in an 

integral equation is to find how a variable density 

distributed along an elastic thread in order that the thread 

assumes a given shape f(x). 

First we consider an elastic string und

tension T0 and a vertical force F acting at a one point. Then we 

derive the equation for the case of distributed forces along the 

string, for example, the variable gravitational force due to a 

variable linear density of the string.

Displace due to a single vertical force:

Consider the string AB of length ‘l’ under initial constant tension 

T0. We take y(x) to be positive in the downward direction of 

gravity. Let F be a constant vertical force acting on the distance 
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x=ξ to displace it by a small vertical distance y(ξ) which  is very 

small compared to ξ. If we equate the vertical forces assuming that 

the tension is constant (T0) along the string, we have 

               F=T0sinϕ+T0sinθ                  (1) 

     

0 0

0

0

0

sin tan sin tan

( ) ( )
sin , sin

(1)

( ) ( )

( )
( )

( )

y( )
(l )

( ) ( ) (2)

when and are very small

and

y y

l

equation becomes

T y T y
F

l

l
F T y

l

T l
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F
y l

T l

q f

q q f f

x x
f q
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x x

x x
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In similar triangles ratios of lengths of corresponding sides are 

equal. Thus, we consider the similar triangles ACD and AHE 

0
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Thus  

0

0

( )
, 0

( )
,

( ) ( , )

( ) (3)

x l
x

T l

l x
x l

T l

y x FG x

y x F

x
x

x
x

x
-

£ £

-
£ £

=

ìï
= í

ïî

  

It is important to note the two branches of the function G(x,ξ), 

where the first branch satisfies the boundary condition y(0)=0, for 

the first end of the elastic string at x=0 to be fixed. 

While the second branch satisfies the boundary condition y(l)=0, 

for a fixed end at x=l. 

Displacement due to distributed vertical force:  

We now consider the vertical force not at one point x=ξ only, but 

distributed continuously along the string, for example the 

gravitational force due to the variable linear density ρ(ξ) of a 

string. For such a string the gravitational force acting on the 

element △ξ of the string is ( ) ( )F gx r x xD = D  . According to equation 

(3)  

( ) ( ) ( , ) ( , ) ( ) (4)

( , ) (3).

y x F G x G x g

where G x is given by equation

x x x r x x

x

D = D = D
   

The total displacement due to the gravity force along the whole 

string is obtained by superimposing all these displacements of the 

elements of the string or in other words integrating from ξ=0 to 

ξ=l, 

   
0

( ) ( , ) ( )
l

y x g G x dx r x x= ò     



This is a Fredholm integral equation of the first kind in ρ(x) that relates 

how the linear density must be distributed along the string so that the 

string may assume the prescribed shape y(x). 

 

Human population: 

The study of population growth includes the forecasting of any 

future surge in birthrates, which is of great importance for future 

planning throughout the world.  

Let the number of people present at time t=0 by n0. If we look at 

survival or insurance tables, we find that there is some sort of a 

survival function f(t) similar to that shown in figure, which gives 

the fraction of people surviving to age t. It is assumed that these 

people are either male or female. The surviving population ns(t) at 

time t is then 

                       0( ) ( ) (1)sn t n f t=   

0 0.(0) (0)swhere n n f n= =  

Under normal circumstances there is a continuous addition to the 

population through new births. If children are born at an average 

rate r(t), then in a particular time interval itD  about the time τi, 

there are ( )i ir t tD  added who, if they survive, will be of age it t-  at 

time t. 



        

But according to figure only a fraction 

will survive to age ( )t -

at time t, from the children born in the interval 

is 

                  ( ) ( )i i if t rt t t- D  

Now if this process is repeated for

interval  (0,t), we obtain the partial sum

               
1

( ) ( ) ( ) (2)
m

m i i i
i

b t f t r
=

= - Då

As the number of people added through new births which, if

the limit (as m→∞), becomes the integral

             
0

( ) ( ) ( ) d . (3)
t

b t f t r= -ò

If this is added to ( )sn t  in equation (1) (the survivors of the initial 

population), we obtain the total population at time t as

( ) ( ) ( ) ( ) ( ) ( ) (4)sn t n t b t n f t f t r d= + = + -

It is reasonable now to assume that the rate of birthrate 

proportional  to n(t), the number of the population present at time t,
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interval  (0,t), we obtain the partial sum 

( ) ( ) ( ) (2)m i i ib t f t rt t t= - Då   

As the number of people added through new births which, if

), becomes the integral 

( ) ( ) ( ) d . (3)b t f t rt t t= -   

in equation (1) (the survivors of the initial 

population), we obtain the total population at time t as 

0 0
( ) ( ) ( ) ( ) ( ) ( ) (4)

t

n t n t b t n f t f t r dt t t= + = + -ò  

It is reasonable now to assume that the rate of birthrate ( )r t

proportional  to n(t), the number of the population present at time t,

of these children 

, so the final addition to the population 

about time it  

all the m subintervals of the time 

As the number of people added through new births which, if passed to 

in equation (1) (the survivors of the initial 

( )
dn

dt
t =  is 

proportional  to n(t), the number of the population present at time t, 



                 ( ) ( ) (5)r t k n t=   

From equations (3) and (5), it follows that 

                  0
0

( ) ( ) ( ) n( )
t

n t n f t k f t dt t t= + -ò   

Which is a Volterra integral equation of the second kind in n(t) with a 

difference kernel ( )k f t t-  .  

Now we formulate the problem of finding the rate dr/dt at which 

equipment should be replaced, to keep a specified number f(t) in 

operating system at any time t. 

We first assume that we have s(t), the function that determines 

the number of pieces of new equipment bought at t=0 that 

survives to time t. If we start with f(0) as the number of new 

pieces bought at time t=0, then due to loss or wear , only the 

fraction (0) ( )f s t  will survive to time t.  

To keep a specified number larger than (0) ( )f s t   at time t we must 

continuously add equipment at the desired rate from time t=0 to 

time t. If the desired rate of replacement at which we must add 

new equipment at time τ is  

( )dr

d

t

t
 , 

 then at time t this equipment will be of age t t-  with a survival 

function  

( )s t t-  

 that is dependent on their age t t- .From  



( )
dr

d
t

t
D , what we replace in time interval tD  , only a  fraction                 

( )( )
dr

s t
d

t t
t

- D   

will survive to time t. 

Hence if these survivals of the continuous replacements are 

added along the time interval (0,t), we obtain 

0
( ) 0 (t ) , 0

t dr
r t s d t

d
t t

t
= -ò f   

The number of pieces of equipment surviving to time t, which 

were purchased as replacements during the time 0 ttp p  . 

If we add this to (0) ( )f s t , the surviving number of pieces of 

original equipment (new at time t=0), we obtain the desired total 

number of pieces of equipment in operating condition at time t, 

     
0

( ) (0) ( ) ( )
t dr

f t f s t s t d
d

t t
t

= + -ò   

Which is Volterra integral equation of the first kind in the 

unknown rate of replacement dr
dt

 . 

Abel’s Problem: Sliding a Bead along a Wire 

Abel’s problem is one of the earliest problems modeled as an integral 

equation. It deals with finding the path y(x) in the vertical xy-plane 

along which a particle, under the influence of gravity and starting from 

rest at y0, must move in order that it descends a distance y0 in a 

prescribed time 0( )t f y=  . 



To simplify problem, we consider the path of the particle to be known 

when we know α, the angle that the tangent to the path makes with 

the x axis. In this case  

                                 tan
dy

dx
=

               sin , .
dy ds

so where v
ds dt

a= - =

For particle starting from rest at y=y

is governed by 

                          

2
02 ( )

2 ( ) (1)

v g y y

ds
v g y y

dt

= -

= = -

Where g is the acceleration of gravity. To have the desired 

for dt, we write  

To simplify problem, we consider the path of the particle to be known 

, the angle that the tangent to the path makes with 

tana  

sin , .
dy ds

so where v
ds dt

= - =   

For particle starting from rest at y=y0, under gravity, the velocity v at y

0

2 ( )

2 ( ) (1)

v g y y

v g y y

= -

= = -
      

 

Where g is the acceleration of gravity. To have the desired expression 

To simplify problem, we consider the path of the particle to be known 

, the angle that the tangent to the path makes with 

, under gravity, the velocity v at y 

expression 



0

0

2 ( ) sin

(2)
2 ( ) sin

dy dy ds
g y y

dt ds dt

dy
dt

g y y

a

a

= = - -

-
=

-
  

Realizing that α depends on y, we let  

                

0

1
( ) (2), then

sin

( )dy
dt

2 ( )

y in equation

y

g y y

f
a

f

=

-
=

-

  

And integrate from initial time of descent 0 0( ) ( )t y f y=  to the final time 

( 0) 0t y = = . 

0 0

0

0(0)

( )

0

0

0 0

0

( ) dy

2 ( )

( ) dy
0 ( ) ( ) (3)

2 ( )

t

t y y

y

y
t

g y y

y
t y f y

g y y

f

f

= -
-

- = - = -
-

ò

ò
  

Hence equation (3) is the final integral equation in φ(y) that relates the 

form of the path φ(y) to the predetermined time of descent f(y0) of the 

particle, 

                       
0

0 0
0

(y)
2 ( ) (4)

y dy
g f y

y y

f
- =

-ò   

To avoid having the variable y0 looks like a constant, we replace the two 

variables y0  and y by y and η, respectively, to write equation (4) in the 

form of Abel’s integral equation  

                         
0

0

( )
2 ( )

y d
g f y

y

f h h

h
- =

-ò   

We note that taking the final time ( 0) 0t y = =  , we are making a 

negative initial time 0 0( ) ( ) 0t y f y= p  .  



Conclusion: 

Integral equations are very important in real life. We formulated 

different modeled problems as integral equations of different kinds. We 

represented a human population, the hanging chain and the Abel’s 

problem as integral equations. There are different methods to solve 

these integral equations. 

There are many other problems that are modeled as integral equations 

that include the propagation of nervous impulse, the smoke filtration in 

a cigarette, and the chance to find a time gape T in order to cross a 

dense traffic. 


