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In robust estimation one frequently needs an initial or auxiliary estimate of scale. For this one usually takes the median abso- 
lute deviation MAD, = 1.4826 med, { I x, - med,x, 1 } ,  because it has a simple explicit formula, needs little computation time, and 
is very robust as witnessed by its bounded influence function and its 5090 breakdown point. But there is still room for improve- 
ment in two areas: the fact that MAD, is aimed at symmetric distributions and its low (3790) Gaussian efficiency. In this article 
we set out to construct explicit and 5090 breakdown scale estimators that are more efficient. We consider the estimator S, 
= 1.1926 med, {med, I x, - x, ) and the estimator Q, given by the .25 quantile of the distances { I xi - x, ; i <j )  . Note that S, and 
Q, do not need any location estimate. Both S, and Q, can be computed using O(n log n) time and O(n)  storage. The Gaussian 
efficiency of S, is 5870, whereas Q,, attains 8290. We study S, and Q, by means of their influence functions, their bias curves (for 
implosion as well as explosion), and their finite-sample performance. Their behavior is also compared at non-Gaussian models, 
including the negative exponential model where S,,has a lower gross-error sensitivity than the MAD. 
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I. INTRODUCTION The MAD has the best possible breakdown point (5070, twice 
as much as the interquartile range), and its influence function Although many robust estimators of location exist, the is bounded, with the sharpest possible bound among all scale sample median is still the most widely known. If { x , ,  . . . , estimators. The MAD was first promoted by Hampel (1974), x,} is a batch of numbers, we will denote its sample median who attributed it to Gauss. The constant b in ( 1.2) is needed \ , 

to make the estimator consistent for the parameter of interest.  
In the case of the usual parameter a at Gaussian distributions,  
we need to set b = 1.4826. (In the same situation, the average  which is simply the middle order statistic when n is odd. deviation in ( l .  l )  needs to be multiplied by .2533to become When n is even, we shall use the average of the order statistics  

with ranks (n/2)and (n /2)+ The median has a breakdown consistent.)  
The median and the MAD are simple and easy to 

point 50% (which is the highest P  ~ ~because ~the ~ ~ ~ ) > very useful. Their extreme ~ compute, but 
estimate remains bounded when fewer than 50% ofthe data diness makes them ideal for screening the data forpoints are replaced by arbitrary numbers. Its influence func- in a quick way, by computingtion is also bounded, with the sharpest bound for any location 
estimator (see Hampel, Ronchetti, Rousseeuw, and Stahel I XI - medjxj l 
1986). These are but a few results attesting to the median's MAD, (1.3) 
robustness. 

Robust estimation of scale appears to have gained some- for each x, and flagging those x, as spurious for which this 

what less acceptance among general users of statistical meth- statistic exceeds a certain cutoff (say, 2.5 or 3.0). Also, the 
median and the MAD are often used as initial values for the ods. The only robust scale estimator to be found in most 

statistical packages is the interquartile range, which has a computation of more efficient robust estimators. It was con- 

breakdown point of 25% (which is rather good, although it firmed by simulation (Andrews et al. 1972) that it is very 

can be improved on). Some people erroneously consider the important to have robust starting values for the computation 

average deviation of M-estimators, and that it won't do to start from the average 
and the standard deviation. Also note that location M- 
estimators need an ancillary estimate of scale to make them 
equivariant. It has turned out that the MAD'S high break- 

(where ave stands for "average") to be a robust estimator, down property makes it a better ancillary scale estimator 
although its breakdown point is 0 and its influence function than the interquartile range, also in regression problems. This 
is unbounded. If in (1.1) one of the averages is replaced by led Huber (1981, p. 107) to conclude that "the MAD has 
a median, we obtain the "median deviation about the av- emerged as the single most useful ancillary estimate of scale." 
erage" and the "average deviation about the median," both In spite of all these advantages, the MAD also has some 
of which suffer from a breakdown point of 0 as well. drawbacks. First, its efficiency at Gaussian distributions is 

A very robust scale estimator is the median absolute de- very low; whereas the location median's asymptotic efficiency 
viation about the median, given by is still 6496, the MAD is only 37% efficient. Second, the MAD 

takes a symmetric view on dispersion, because one first es- 
timates a central value (the median) and then attaches equal 

This estimator is also known under the shorter name of me- importance to positive and negative deviations from it. Ac- 
dian absolute deviation (MAD) or even median deviation. tually, the MAD corresponds to finding the symmetric in- 
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terval (around the median) that contains 50% of the data (or 
50% of the probability), which does not seem to be a natural 
approach at asymmetric distributions. The interquartile 
range does not have this problem, as the quartiles need not 
be equally far away from the center. In fact, Huber (1981, 
p. 114) presented the MAD as the symmetrized version of 
the interquartile range. This implicit reliance on symmetry 
is at odds with the general theory of M-estimators, in which 
the symmetry assumption is not needed. Of course, there is 
nothing to stop us from using the MAD at highly skewed 
distributions, but it may be rather inefficient and artificial 
to do so. 

2. THE ESTIMATOR S, 

The purpose of this article is to search for alternatives to 
the MAD that can be used as initial or ancillary scale esti- 
mates in the same way but that are more efficient and not 
slanted towards symmetric distributions. Two such estima- 
tors will be proposed and investigated; the first is 

This should be read as follows. For each i we compute the 
median of { ( xi - xj ( ;j = 1, . . . ,n ) . This yields n numbers, 
the median of which gives our final estimate S,. (The factor 
c is again for consistency, and its default value is 1.1926, as 
we will see later.) In our implementation of (2.1) the outer 
median is a low median, which is the order statistic of rank 
[(n + 1)/2], and the inner median is a high median, which 
is the order statistic of rank h = [n/2] + 1. The estimator 
S, can be seen as an analog of Gini's average difference (Gini 
19 12), which one would obtain when replacing the medians 
by averages in (2.1). Note that (2.1) is very similar to formula 
(1.2) for the MAD, the only difference being that the med, 
operation was moved outside the absolute value. The idea 
to apply medians repeatedly was introduced by Tukey (1977) 
for estimation in two-way tables and by Siege1 (1982) for 
estimating regression coefficients. Rousseeuw and Bassett 
(1990) used recursive medians for estimating location in large 
data sets. 

Note that (2.1) is an explicit formula; hence S, is always 
uniquely defined. We also see immediately that S, does be- 
have like a scale estimator, in the sense that transforming 
the observations xi to axi + b will multiply S, by 1 a 1 .  We 
will refer to this property as afine equivariance. 

Like the MAD, the new estimator S, is a simple combi- 
nation of medians and absolute values. Instead of the ab- 
solute values, we could also use squares and then take a 
square root at the end, which would yield exactly the same 
estimate. (If we would replace the medians by averages in 
that formula, we would recover the standard deviation.) 

On the other hand, S, is unlike the MAD in that it does 
not need any location estimate of the data. Instead of mea- 
suring how far away the observations are from a central value, 
S, looks at a typical distance between observations, which 
is still valid at asymmetric distributions. 

A straightforward algorithm for computing (2.1) would 
need O(n2)  computation time. However, Croux and Rous- 
seeuw (1992b) have constructed an O(n log n)-time algo- 
rithm for S,. Its source code can be obtained from the authors 

Table 7 .  Average Estimated Value of MAD,, S,, Q,, 
and SD, at Gaussian Data 

Average estimated value 

n MAD, sn Qn sDn 

10 ,911 ,992 
20 .959 ,999 
40 ,978 ,999 
60 ,987 1.001 
80 ,991 1.002 

100 .992 ,997 
200 ,996 1.000 
02 1.000 1.000 

NOTE: Based on 10,000samples for each n. 

(rousse@wins.uia.ac.be),and it has been incorporated in 
Statistical Calculator (T. Dusoir, fbgj23@ujvax.ulster.ac.uk) 
and in Statlib (statlib@stat.cmu.edu) . 

To check whether the correction factor c = 1.1926 (ob- 
tained through an asymptotic argument) succeeds in making 
S, approximately unbiased for finite samples, we performed 
a modest simulation study. The estimators in Table 1 are 
the MAD,, S,, the estimator Q, (which will be described in 
Section 3), and the sample standard deviation SD,. Each 
table entry is the average scale estimate on 10,000 batches 
of Gaussian observations. We see that S, behaves better than 
MAD, in this experiment. Moreover, Croux and Rousseeuw 
(1992b) have derived finite-sample correction factors that 
render MAD,, S,, and Q, almost exactly unbiased. 

In the following theorem we prove that the finite sample 
breakdown point of S, is the highest possible. We use the 
replacement version of the breakdown point: For any sample 
X = {x,, . . . ,x,) , the breakdown point of S, is defined by 

where 

E;(S,, X )  = min 

and c;(S,, X )  = min 

and X'  is obtained by replacing any m observations of X by 
arbitrary values. The quantities c,+ and c; are called the ex- 
plosion breakdown point and the implosion breakdown 
point. 

Theorem 1. At any sample X = {x , ,  . . . ,x,) in which 
no two points coincide, we have 

E;(S,, X )  = [(n + 1)/2]/n and e;(S,, X )  = [n /2 l ln .  
The breakdown point of the scale estimator S, thus is given 
by 

&,*(Sn,X )  = [n /2 l ln ,  
which is the highest possible value for any affine equivariant 
scale estimator. (The proof is given in the Appendix.) 

We now turn to the asymptotic version of our estimator. 
Let X and Y be independent stochastic variables with dis- 
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tribution function G .  If we denote g G ( x )= medy I x - Y I ,  
then 

S ( G ) = c med g G ( X )  (2.3)
X 

is the desired functional. If G, is the empirical distribution 
function, then S(G, )  = S,,. 

Let us consider a location-scale model F B , b ( ~ )= F ( ( x- 0)/ 
a ) , where F is called the model distribution. We want our 
estimator to be Fisher-consistent, which means that S(F,,,) 
= a for all O and all a > 0. It is easily verified that S is Fisher- 
consistent if we take 

where X is distributed according to the model distribution 
F .  The following theorem gives the value of c in case F = @, 
where @ ( x )is the standard Gaussian distribution function. 

Theorem 2. For F = @, the constant c satisfies the equa- 
tion 

Equivalently, c-I is the square root of the median of the 
noncentral chi-squared distribution with 1 degree of freedom 
and noncentrality parameter ( 3  14).  Numerical calcu- 
lation yields c = 1.1926. (If we want to work with another 
model distribution, we must take a different c,  as in the 
examples in Sec. 4.) 

The influence function of the functional S at the distri- 
bution F is defind by 

S ( ( l  - & ) F+ & A X )- S ( F )
I F ( x ;  S ,  F )  = lim 

C ~ O  E (2 ' 5 )  

where AX has its mass in (Hampel 1974)' 
gives the expression of I F ( x ;  S ,  F ) .  

Theorem 3. Assume that the following conditions hold: 

1 .  There exists an xo such that g F ( x )is increasing on 
[ x o ,co[and decreasing on ]-a,xo].  

2. There exist q ,  < xo and q2> xo for which gF(ql) = c-I 
= gF(q2) .Assume that F has a density f in neighborhoods 
of q ,  and q2,with f ( q l )> 0 and f ( q 2 )> 0 .  Assume further 
that g, has a strictly positive derivative in a neighbor-
hood of q2and a strictly negative derivative in a neighborhood 
of 41. 

3. f exists in neighborhoods of the points ql t c-I and 
42 't c-I . 
Then the influence function of S is given by 

I F ( x ;  S ,  F )  = c  F(q2) - F ( ~ I )- I ( ~ I< x < 42){ 
- f(42)sgn(I42 - xl - c-I)  

2 ( f ( q 2f c - ' )  - f ( q 2  - c - ' ) )  

(2.6) 

(A more general "chain rule" for influence functions was 
given by Rousseeuw and Croux 1992.) Let us consider the 
special case where F = @. We will use the notation q 
= @ - I  ( 3  14) .  From the proof of Theorem 2, it follows that 
41= -4, 42 = q ,  and g k ( q ) = -gk( -q) .  Because we have 

for all x ,  it follows that 

This yields the expression 

The influence function of S is plotted in Figure 1 .  We ,see 
that it is a step function that takes on four values (which are 
symmetric about 0 ) , unlike I F ( x ;  MAD, a ) ,which takes 
on only two values. Let us also consider the gross-error sen- 
sitivity 

y * ( S ,  a )= sup 1 I F ( x ;  S ,  @) I = 1.625, (2.8) 
X 

which is rather small, indicating that S is quite robust against 
outliers. In contrast, y*(SD, @) = m ,  whereas y*(MAD, a )  
= 1.167 is the smallest value that we can obtain for anv scale 
estimator at the Gaussian distribution. 

The influence function of the classical standard deviation 
is given by I F ( x ; SD, @)= ( x 2- 1 ) / 2 .Note that I F ( x ;  S ,  
@) looks more like that U-shaped curve than does I F ( x ;  
MAD, a), indicating that S will be more efficient than the 
MAD. Indeed, the asymptotic variance of S ,  is given by 

V ( S ,@)= I F ( x ;  S ,  d a ( x ) = .8573. (2.9) 

r,  

-

0 

-
I 

Figure 1. Influence Functions of the MAD, the Estimator S, and the 
Estimator Q When the Model Distribution is Gaussian. 
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Table 2. Standardized Variance of MAD,, S,, Q,, 
and SD, at Gaussian Data 

where g+is defined implicitly by 

Standardized variance 

n MAD, sn Qn SDn The implosion bias curve is given by 

NOTE Based on 10,000 samples for each n 

(The asymptotic normality of S, was proved in Hossjer, 
Croux, and Rousseeuw 1993.) This yields an efficiency of 
58.2396, which is a marked improvement relative to the MAD 
whose efficiency at Gaussian distributions is 36.74%. We pay 
for this by a slight increase in the gross-error sensitivity and 
in the required computation time. 

We carried out a simulation to verify this efficiency gain 
at finite samples. For each n in Table 2, we computed the 
variance var,(S,) of the scale estimator S, over m = 10,000 
samples. Table 2 lists the standardized variances 

where ave,(S,) is the average estimated value as given in 
Table 1. (It was argued by Bickel and Lehmann (1976) that 
the denominator of (2.10) is needed to obtain a natural mea- 
sure of accuracy for scale estimators.) The results show that 
the asymptotic variance provides a good approximation for 
(not too small) finite samples, and that S, is more efficient 
than MAD, even for small n .  

Whereas the influence function describes how the esti- 
mator reacts to a single outlier, the bias curve tells us how 
much the estimator can change (in the worst case) when a 
fraction c of the data is contaminated. Bias curves were briefly 
mentioned by Hampel et al. (1986, p. 177), but their full 
potential was not realized until the work of Martin and Za- 
mar (1989, 199 l) ,  Martin, Yohai and Zamar (1989), and 
He and Simpson (1 993). 

In the case of scale estimators, we distinguish between an 
increase of the estimate (explosion) and a decrease (implo- 
sion). For c > 0, we define 9,= {G;  G = (1 - c ) F  + C H I ,  
where H ranges over all distributions. Then the explosion 
bias curve of S is defined as 

(plotted as a function of c), and the implosion bias curve of 
S is given by 

B-(E, F )  = inf S(G) .  
(?€Ye 

Theorem 4. For a distribution F that is symmetric 
around the origin, is unimodal, and has a strictly positive 
density, we have 

where g-  is defined implicitly by 

Figure 2 displays both bias curves at F = @. We see that the 
explosion bias curve of S is nearly as good as that of the 
MAD, and for c close to the breakdown point it is even 
better. For the implosion bias curve the MAD performs 
slightly better than Soverall. Note that [dB+(&, @)/dc] 
= y*(S, a )  and [dB-(&, @)/a&] =I,=,, -y*(S, @).Moreover, 
at the breakdown point (c + 4 )  we find B+(E,  @) + co and 
BP(c, @ )+ 0. 

0.0 0.1 0.2 0.3 0.4 0.5 
eps i lon  

(a) 

epsi lon 
(b) 

3 - 2c (2.1 1 ) Figure 2. Bias Curves of the MAD, S, and Q as a Function of the Fraction 
of Contamination: (a) for Explosion; (b) for Implosion. 
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Note that the influence function and the bias curve are 
asymptotic concepts. For finite samples, we have confirmed 
the above results by computing the corresponding sensitivity 
curves and empirical bias curves. 

3. THE ESTIMATOR Q, 

A drawback of MAD, and S, is that their influence func- 
tions have discontinuities. In the location framework, the 
sample median has the same drawback, unlike the Hodges- 
Lehmann ( 1963) estimator 

which possesses a smooth influence function (see, for ex- 
ample, Hampel et al. 1986, p. 1 12). Therefore, the Hodges- 
Lehmann estimator might be viewed as a "smooth version" 
of the median. 

An analogous scale estimator, mentioned by Shamos 
(1976, p. 260) and Bickel and Lehmann (1979, p. 38), is 
obtained by replacing the pairwise averages by pairwise dis- 
tances, yielding 

This resembles definition (2.1) of S,, where separate medians 
were taken over i andj, whereas (3.2) uses an overall median 
over (;) pairs. We propose to multiply (3.2) by 1.0483 to 
achieve consistency for the parameter a of Gaussian distri- 
butions. Like the Hodges-Lehmann estimator, this scale es- 
timator has only a 29% breakdown point, but a rather high 
Gaussian efficiency (about 86%). 

But we want an estimator with a 50% breakdown point 
like the MAD. We found that, somewhat surprisingly, this 
goal can be attained by replacing the median in (3.2) by a 
different order statistic. Therefore, we propose the estimator 

where d is a constant factor and k = (:) = (5)/4, where h 
= [n/2] + 1 is roughly half the number of observations. 
That is, we take the kth order statistic of the (5) interpoint 
distances. This bears some resemblance to S,, because the 
double median of the interpoint distances is at least as large 
as their .25 quantile. 

The estimator Q, shares the attractive properties of S,:a 
simple and explicit formula, a definition that is equally suit- 
able for asymmetric distributions, and a 50% breakdown 
point. In addition, we will see that its influence function is 
smooth, and that its efficiency at Gaussian distributions is 
very high (about 82%). At first sight, these advantages are 
offset by a larger computational complexity, because the na- 
ive algorithm (which begins by computing and storing all 
(5) painvise distances) needs O(n2) space and O(n2) time. 
But Croux and Rousseeuw (1992b) have constructed an al- 
gorithm for computing Q, with O(n) space and O(n log n) 
time. Due to the availability of fast algorithms for S, and 
Q,, a financial company is now using these estimators on 
a daily basis in analyses of the behavior of stocks, with n 
= 8000. 

We first show that the finite sample breakdown point of 
Q, attains the optimal value. 

Theorem 5 .  At any sample X = {XI ,. . . ,x,) in which no 
two points coincide, we have e;(Q,, X) = [(n + 1)/2]/n 
and e;(Q,, X)  = [n/2]/n; thus the breakdown point of Q, 
is 

We now give the asymptotic version of our estimator. Let 
X and Y be independent random variables with distribution 
G. Then we define 

Q(G)=dHG1(;) with H , = L ( I X - YI). (3.4) 

Note that Q(G,) is not exactly the same as Q, (where we 
take an order statistic among (5) elements instead of n2), 
but asymptotically this makes no difference. Representation 
(3.4) belongs to the class of generalized L-statistics, as intro- 
duced by Serfling (1984). Because X - Y is symmetric, we 
could also write 

Q(G) = d ~ ; ' ( i )  with KG= L(X - Y) (3.5) 

instead of (3.4). Finally, we obtain 

G(t + d-Is) dG(t) r 518 

In the parametric model F#,#(x) = F((x - B) /a ) , the 
functional Q is Fisher-consistent for a if we choose the con- 
stant d according to 

For symmetric F this reduces to d = 1/( (F*~)- ' (5 /8)) ,  
where F* * denotes the convolution F*  F. In the case F = a, 
we obtain KF = L ( X  - Y) = L ( X  + Y) = L ( f i ~ ) ;  
hence 

In Table 1 we see that with this constant the estimator Q, 
has a considerable small-sample bias, but we can use the 
correction factors derived by Croux and Rousseeuw (1 992b). 

By means of some standard calculations (or using expres- 
sion (2.12) in Serfling 1984), one obtains the following for- 
mula for the influence function. 

Theorem 6 .  If KF has a positive derivative at 1 Id,  then 

If F has a density f ,  then (3.8) becomes 
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In Figure 1 we plotted the function ZF(x; Q, a ) .  It turns 
out that the gross-error sensitivity y*( Q, cP) = 2.069 is larger 
than that of the MAD and S .  Note that this influence func- 
tion is unbalanced: The influence of an inlier at the center 
of the distribution is smaller (in absolute value) than the 
influence of an outlier at infinity. 

With the aid of numerical integration, Equations (2.9) 
and (3.9) yield V(Q, cP) = .6077. By applying Theorem 3.1 
in Serfling (1 984), we obtain a rigorous proof of the asymp- 
totics of Q, under the same conditions as in our Theorem 
6. The resulting Gaussian efficiency of 82.27% is surprisingly 
high. 

In Table 2 we see that Q, is considerably more efficient 
than either MAD, or S,,. For instance, Q40 has about the 
same precision as MADBO. But Q, looses some of its efficiency 
at small sample sizes. 

Theorem 7. If F is symmetric about 0 and possesses a 
density, then 

and the implosion bias is given by the solution of the equation 

Figure 2 displays the bias curves of Q (at F = cP) along 
with those of the MAD and S.Note that the MAD is slightly 
more robust than Q regarding their explosion bias curves, 
whereas Q is more robust than MAD for implosion bias. It 
is also interesting to note (see the derivation in the Appendix) 
that the supremum bias of Q does not correspond to con- 
tamination by a point mass moving to infinity, but rather 
to a contaminating distribution of which both location and 
scale tend to infinity. This explains why the slope of the 
explosion bias curve at E = 0 is not equal to the supremum 
of the influence function in this case. 

Figure 3. Influence Functions of the MAD, S, and Q at the Cauchy Dis- 
tribution. 

Journal of the American Statistical Association, December 1993 

Table 3. Simulation Results for Cauchy Data, 
Based on 10,000Samples for Each n 

Average value Standardized variance 

n MAD, sn Qn MAD, sn Qn 

4. ROBUSTNESS AT NON-GAUSSIAN MODELS 

Quite often one uses a parametric model F,,dX) = F( (x  
- 8) la)  in which the model distribution F is itself non- 
Gaussian. In this section we investigate the behavior of S, 
and Q, for a heavy-tailed model distribution and for an 
asymmetric model distribution. 

Let us first consider the Cauchy distribution 

At this heavy-tailed distribution, the sample standard devia- 
tion is not a useful estimator of a because the second moment 
of F,,, does not exist. But we can still use MAD,, S,, and 
Q,, whose consistency factors become b = 1, c = .707 1, and 
d = 1.2071 in this model. Figure 3 shows the influence func- 
tions of these three estimators, which were computed in 
roughly the same way as in the Gaussian model. The shape 
of these functions is quite similar to Figure 1, except for 
IF(x;  Q, F ) ,  which is more balanced than in the Gaussian 
case. The gross-error sensitivity y*( Q, F )  = 2.22 14 is attained 
for x going to infinity, but ZF(x; Q, F )  approaches this limit 
very slowly. 

For the asymptotic variances we obtain V(MAD, F )  
= 2.4674, V(S, F )  = 2.1060, and V(Q, F )  = 2.0438. These 
should be compared to the theoretical lower bound (i.e., the 
inverse of the Fisher information) which equals 2 in this 
case. Therefore, the absolute asymptotic efficiencies become 
e(MAD) = 81%, e(S) = 95%, and e(Q)  = 98%. At this 
heavy-tailed distribution, all three robust estimators are more 
efficient than at the Gaussian distribution. 

Table 3 summarizes a simulation (analogous to Tables 1 
and 2) confirming that MAD, and S, are approximately un- 
biased for finite samples. For not too small n ,  the variability 
of the estimators is described reasonably well by their 
asymptotic variance. Note that S, performs somewhat better 
than Q, at small samples. 

As an example of an asymmetric model distribution, we 
take the negative exponential 

which generates the location-scale family 

F,,,(x) = (1 - exp(-(x - B)/u))I(x 2 B), 
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which we will call the shifted exponential model. Note that 
the location parameter 6 is not at the center of the distri-
bution, but rather at its left boundary. To estimate u by 
MAD,, S,, or Q,, we need to set b = 2.0781, c = 1.6982, 
and d = 3.4760. Figure 4 displays the influence functions of 
these estimators at F .  Note that the influence functions were 
also computed at negative x although F has no mass there, 
because outliers can occur to the left of the unknown 8. 

The influence function of the MAD looks very different 
from those in Figures 1 and 3, because this time F is not 
symmetric. Note that IF(x ;  MAD, F )  = 0 for negative x 
(due to the compensating effect of the outlier at x on the 
location median) and that it has three jumps for positive x 
(at ln(2) - b-' ,at ln(2), and at ln(2) + b-I ). The influence 
functions of Sand Q are roughly U-shaped, as in Figures 1 
and 3. Surprisingly, the gross-error sensitivity of Sis smaller 
than that of the MAD. Indeed, 

This would seem to disprove a theorem stating that the MAD 
has the lowest possible gross-error sensitivity (see Hampel et 
al. 1986, p. 142), but there is no contradiction because that 
theorem was for symmetric F. 

For the asymptotic variances we have obtained V(MAD, 
F )  = 2.1352, V(S,  F )  = 1.8217, and V(Q, F )  = 1.3433. 
As in the Gaussian and the Cauchy models, we again see 
that Q is more efficient than S, which in turn is more efficient 
than the MAD. (This also holds for finite samples, as con-
firmed by Table 4.) Note that the Fisher information for this 
model does not exist, so the absolute efficiency of the esti-
mators is not defined. But we can still compute relative ef-
ficiencies between them, such as ARE(MAD, Q) = 1.34331 
2.1351 = 63%. 

The maximum likelihood estimator (MLE) of u in this 
model is 2, = ave,x, - 0, where 0, = min, x, is the MLE of 
0 (see Johnson and Kotz 1970, p. 2 1 1). It turns out that 0, 
converges at the unusually fast rate of n-I, whereas 2, con-
verges at the standard rate of n-'I2 with asymptotic variance 

Figure 4. Influence Functions of the MAD, S, and Q at the Exponential 
Distribution. 

Table4. Simulation Results for Exponentially Distributed Data, 
Based on 10,000 Samples for Each n 

Average value Standardized variance 

n MAD, sn Qn MAD, sn Q, 

V(2, F )  = 1. But the extreme efficiency of 8, is offset by its 
extreme sensitivity to any outlier xi < 0 .  One possibility for 
constructing a more robust estimator of 0 would be to use 

where 5, is a robust scale estimator such as MAD,, S,, 
or Qn. 

5 .  DISCUSSION 

Let us compare S, and Q, to another explicit scale esti-
mator with a 50% breakdown point, which is based on the 
length of the shortest half sample: 

LMS, = C' min I ~ ( i + h - I )  - ~ ( i )1 ,  
i 

(5.1) 

where again h = [n/2] + 1 and X ( I )I x ( ~ )5 + I x(, are 
the ordered data. (Note that the minimum length is always 
unique, even if the half sample itself is not.) The default 
value of c' is .7413, which achieves consistency at Gaussian 
distributions. The estimator (5.1) first occurred as the scale 
part of the least median of squares (LMS)regression estimator 
(Rousseeuw 1984) in the special case of one-dimensional 
data. As we can see from (5. l) ,  the estimator LMS, is sim-
ple, has the optimal breakdown point, and needs only 
O(n log n) computation time and O(n) storage. Its influence 
function is the same as that of the MAD (Rousseeuw and 
Leroy 1988), and its efficiency equals that of the MAD as 
well (Griibel 1988). Therefore, LMS, is less efficient than 
either S, or Q,. Note that if we use the p-subset algorithm 
of Rousseeuw and Leroy (1987), we obtain the estimator 

C' min med / xi - x, I , 
i j 

(5.2) 

which is asymptotically equivalent to LMS, and also has a 
50% breakdown point. 

The estimators MAD,, LMS,, and S, are all based on half 
samples. MAD, looks for the shortest half that is symmetric 
about the location median, whereas LMS, looks for the 
shortest half without such a constraint (hence LMS, can be 
used at asymmetric distributions as well). Similarly, S, can 
be said to reflect the "typical" length of half samples in the 
data set. The following theorem shows that MAD,, LMS,, 
and S, are strongly interrelated. 



1280 Journal of the American Statistical Association, December 1993 

Theorem 8. At every data set { X I ,  . . . ,x,} ,it holds that 6. EXTENSIONS AND OUTLOOK 

1 2 - MAD, I - MAD,b b 
Our estimators S, and Q, are special cases (v = 2) of the 

following formulas: 

s:) = cornedil (med,,(. . . med,,SD(x,,,x,,, . . . ,xi,) . . .)) 
(6.1) 

and 
If we define the collection of interpoint distances by D 

= { ( x , - x , ( ;  1 ~ i , j ~ n ) , t h e n S , i s t h e r e m e d i a n w i t hQ ~ ) = ~ , { S D ( X , , ,  < i v ) ( ; ) ,. . . , x , , ) ; i l < i 2 < ~ ~ ~  (6.2) 
base n (see Rousseeuw and Bassett 1990) of the set D, as-
suming that the elements of D are read row by row. This 
implies that S, corresponds to an element between the .25 
and .75 quantiles of D. On the other hand, Q, is asymptot- 
ically equivalent to the .25 quantile of D. Roughly speaking, 
and ignoring the constants involved, it follows that S, is larger 
than Q,. (Note that S, = Q, for n I 4.) 

We have seen that S, and Q, have a better efficiency than 
MAD,, both asymptotically and for finite samples, while 
their gross-error sensitivities and bias curves are almost as 
good. Another advantage is that they do not presuppose a 
symmetric model distribution, but can be considered as 
nonparametric measures of spread. (The estimator LMS, 
shares this advantage, but is less efficient.) The only price 
we pay is a small increase of the computation time, which 
is O(n log n) for S, and Q, as compared to O(n)  for MAD,, 
but today's computers can easily afford this. 

One could also compare S, and Q, with the class of M- 
estimators. The latter can be more efficient, and their com- 
putational complexity is similar (or even lower, if we restrict 
their algorithm to a fixed number of iteration steps). But M- 
estimators are defined implicitly, whereas S, and Q, have 
an explicit formula, which guarantees uniqueness of the es- 
timate and is more intuitive. Moreover, there is no need to 
select a function x or to choose tuning constants. 

Another class is that of one-step M-estimators, which have 
an explicit formula and can also attain a high efficiency and 
a high breakdown point. But like fully iterated M-estimators, 
they are not location-free because they need an ancillary 
location estimator. And, also like fully iterated M-estimators, 
their computation requires an initial high-breakdown scale 
estimator such as MAD,, S,, or Q, in the first place. Finally, 
it should be noted that although k-step M-estimators inherit 
the breakdown point of the initial estimator, it turns out that 
their actual contamination bias does increase (Rousseeuw 
and Croux 1993). 

Choosing between S, and Q, comes down to a tradeoff 
between advantages that are hard to compare. Although Q, 
is more efficient, in most applications we would prefer S, 
because it is very robust, as witnessed by its low gross-error 
sensitivity. Another advantage of S, is that its simplicity 
makes it easier to compute. 

We expect the application potential of the new robust scale 
estimators to be mainly in the following three uses: (1) as a 
data analytic tool by itselfi (2) as an ancillary scale estimate 
to make M-estimators affine equivariant and as a starting 
value for the iterative computation of M-estimators; and (3) 
as an objective function for regression analysis, as will be 
described in the next section. 

where SD(xi,, . . . , xi") denotes the standard deviation of 
the v observations {xi,, . . . ,xi"} and h = [n/2] + 1. These 
estimators all have 50% breakdown points. We expect the 
efficiency to increase with the order v .  But the estimators 
(6.1) and (6.2) demand a high computational effort. Also, 
for increasing v their gross-error sensitivity may become ar- 
bitrarily large. Therefore, using (6.1) or (6.2) with a large v 
is not recommended. 

If we also allow scale estimators that measure dispersion 
around a location estimate, possible alternatives would be 

and 

which also have a 50% breakdown point. At symmetric dis- 
tributions, (6.3) and (6.4) are asymptotically equivalent to 
S, and Q,; however, simulations have indicated that at finite 
samples these estimators do not perform better than S, and 
Q,, so we see no reason to switch to either (6.3) or (6.4). A 
possible application of (6.3) would be to divide it by S, to 
obtain a test for symmetry (analogously, (6.4) can be divided 
by Q,). This is similar to a proposal of Boos (1982) using 
Gini's average deviation. 

Recently, Rousseeuw and Croux (1992) proposed several 
other explicit scale estimators with high breakdown point. 
A promising estimator is 

1 
T, = 1.3800 - 2 {med I xi - xjl }(k). h k = ,  j+i 

(6.5) 

It was proved that T, has a 50% breakdown point, a contin- 
uous influence function, an efficiency of 52%, and a gross- 
error sensitivity of 1.4688. 

In cluster analysis one often needs a measure of dissimi- 
larity between two groups A and B, which is based on the 
interobject dissimilarities. (For a discussion of such measures 
see Kaufman and Rousseeuw 1990, sec. 5.5.) Our estimators 
S, and Q, can be extended to this situation, yielding 

and 

where k is approximately (#A)(# B) /  4. (Both measures are 
equivariant for monotone transformations on the d(i,  j);  
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hence they can still be applied when the dissimilarities are 
on an ordinal scale.) Note that dQ is symmetric in the sense 
that dQ(A, B )  = dQ(B, A), whereas ds is not, but this can 
be repaired by working with &(A, B) = min { ds(A, B),  
ds(B, A)}. 

Both d;.and dQ can be seen as robustifying existing meth- 
ods. Indeed, if the medians in (6.6) were replaced by averages, 
or if the order statistic in (6.7) was replaced by an average, 
then we would recover the well-known average linkage cri- 
terion. On the other hand, replacing the medians by minima 
(or equivalently, setting k in (6.7) equal to 1) produces the 
single linkage criterion. Moreover, replacing the medians by 
maxima (or setting k = (#A)(#B)  in (6.7)) yields complete 
linkage. We can thus think of dh and dQ as intermediate 
between single linkage and complete linkage, which are often 
considered to be too extreme. For instance, the latter criteria 
do not have an asymptotic limit (because usually the smallest 
dissimilarity tends to 0 as n +co ,and the largest dissimilarity 
tends to co ), whereas (6.6) and (6.7) do. 

Another application is to regression. The approach put 
forward in (Rousseeuw 1984) was to construct affine equi- 
variant high-breakdown regression estimates by minimizing 
a high-breakdown scale estimate of the residuals r , ,  . . . , r,. 
For instance, minimizing the scale estimator (5.1) yields the 
LMS regression estimator. In the same vein, S-estimators 
(Rousseeuw and Yohai 1984) were obtained by minimization 
of an M-estimator of scale based on a smooth function p.  
The high-breakdown scale estimators introduced in this ar- 
ticle could be used in the same way. It seems that Q, is 
preferable to Snin this regard, because of its smooth influence 
function. Therefore, we may consider the regression esti- 
mator 

On = argminoQn(rl,. . . , r,). (6.8) 
We will refer to 8, as the least quartile difference (LQD) 
estimator. The LQD belongs to the larger class of generalized 
S-estimators (Croux, Rousseeuw, and Hossjer 1993). The 
asymptotic efficiency of the LQD turns out to be 67.1%, 
which is much higher than that of S-estimators. 

A final extension is to scale estimation in a linear model. 
Existing estimators of the error dispersion are based on the 
residuals from some regression fit. But it is possible to gen- 
eralize the location-free estimators S, and Qn to scale esti- 
mators that are regression-free, in the sense that they do not 
depend on any previous estimate of the regression parame- 
ters. In the simple linear model, we may consider triangles 
formed by data points and compute their vertical height 
h( i , J ,  k) .  This leads to several scale estimators (Rousseeuw 
and Hubert 1993), obtained from quantiles or repeated me- 
dians ofthe h(i,  J ,  k). When attention is restricted to adjacent 
triangles, this also yields a test for linearity. 

APPENDIX: PROOFS 

Due to lack of space, some proofs and computations have been 
omitted and referred to a technical report (Rousseeuw and Croux 
1991). 

Proof of Theorem 1. Let X be a sample in general position 
and denote 8: = c:(S,, X )  and c ;  = c; (Sn ,  X ) ,  where S,, 

= c lomed,himed,l x ,  - x,j . We first show that c ;  5 [ n / 2 ] / n .  
Construct a contaminated sample X'  by replacing the observations 
x2 ,  . . . , X[ , ,~ ] + ,  by x , .  Then we have himed,l x:  - xi 1 = 0 
for [ n / 2 ]+ 1 observations x : ,  hence S n ( X 1 )= 0. Moreover, c ;  
r [ n / 2 ] / n .Indeed, take any sample X '  where fewer than [ n / 2 ]  
observations are replaced. Because X was in general position, 
himed, 1 x i  - x;  I r min,,, / x ,  - x, 112 = 6 > 0 for all i; hence 
S , ( X 1 )> c6. 

Further, c: 2 [ ( n+ 1)/ 21 / n .  Construct a sample X' by replac- 
ing X I  by x(,) + L ,  x2 by x(,) + 2 L ,  . . . , and x [ ( ~ + I ) , z Iby x(n)+ [ ( n+ 1 ) / 2 ] L ,with L > 0. Then himed,/ x:  - x; I r L for all i. 
Letting L tend to infinity will then inflate the estimator Sn be-
yond all bounds. On the other hand, c: 2 [ ( n+ 1 ) / 2 ] / n .Take any 
sample X'  where fewer than [ (n + 1 ) / 21 observations are replaced. 
If xi belongs to the original sample, then himed,l xi - x; 1 
II x( ,)  - x ( , ) l .Because this holds for at least half the points, we 
find that S , ( X 1 )5 cl x(,, - ~ ( 1 1 1< m. 

Remark. This proof also implies that if we replace the outer 
median by an order statistic of rank k s h = [ n / 2 ]+ 1, then the 
estimator will keep the same breakdown points. 

The fact that c,* (S,,  X )  I [ n / 2 ] / nfor any affine equivariant 
scale estimator was proved by Croux and Rousseeuw (1992a). 

Proof of Theorem 3. We use the notations 

gl = ( ( ~ F ) ) I ~ - ~ , ~ ~ ) - Iand g2 = ( ( g ~ )[ ~ ~ , ~ ~ [ ) -I I 

Condition 1 ensures that these functions are well defined. With 
G F ( u )= P ( g F ( Y )5 u ) , we have S ( F )  = c G ~ ' ( 1 / 2 )= 1 ,  using 
(2.3).Let us denote F, = ( 1  - c ) F+ &Ax.Differentiating the expres- 
sion GFC(c-'S ( F , ) )= 112 yields 

Using Conditions 1 and 2, we obtain for u in a neighborhood of 
c-I that 

Condition 2 yields g l ( c - I ) = q,  and g2(c- I )= q2;hence 

Condition 3 allows us to assume that x i s  different from the points 
q,  + c-I and q2 + c-I (in which the influence function will not be 
defined). For c sufficiently small, we may write 

for all u in a small neighborhood of c-I . We choose a neighborhood 
such that gFcstays decreasing in a neighborhood of q, and increasing 
near 9,. We may also assume that gl ,c (c - l )and g2,c(c-I)are lying 
in that neighborhood. Differentiation of (A.3)yields 

Evaluating in c-I gives 

c ( c - l ) l  
C=O 

- f ( 4 1 ) - + F ( q I )- I ( x  < 9 , ) .  (A.4) 
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By definition of g,,, we have 

( 1  - c ) { F(c - l  + g 2 , c ( ~ - 1 ) )  - F ( g z , , ( ~ - ' )- c - I ) )  
+ c{A,(c-l + gZ,,(c-l)) - A,(gz,,(~-l)- C - I ) }  = 112. 

Differentiating yields 

{ f (g2 , . (c - ' )+ c-'1 -f(g2.c(c-I) - c - l ) )  af 

- {F(c - l  + g 2 , e ( ~ - l ) ) - F ( g 2 , t ( ~ - I ) - ~ - I ) }  

+ { I ( x5 c-I + g2,#(c-I))- I ( x  5 gz,&(c-l)- c - I ) }  = 0. 
Using the relation F(q2+ c-I)  - F(q2- c-I)  = 112, we obtain 

Analogously, we also find 

Combining ( A . l ) ,  (A.2) ,  (A.4) ,  ( A S ) ,  and (A.6)gives the desired 
equation (2.6). 

Proof of Theorem 4. Let c be any value in 10, $ [. We obtain 
B+(c,  F )  as the limit of S ( G , ) ,  where G, = ( 1  - c ) F  + cAxnand 
xn goes to infinity. Let Y be distributed according to G,. Then 
ge,(x) is the smallest positive value for which 

G n ( x+ gc,(x))  - G n ( x- gc , (x ) )  + P(Y  = x - gc , (x ) )  2 .5. 
Substituting G, yields 

Because c < .5, for each M > 0 we can choose no such that for all 
n > no , 

SUP ( x  + gc , (x ) )  < xn ('4.7) 
x I<M 

and 

inf gen ( x )2 SUP gc,(x) ,  (A.8)
x l r M  x I<M 

making use of the properties of F. Using (A.7) yields g + ( x )  
= gc,(x) for all I xl < M and for all n > no. If we choose M such 
that 

med 1 Y 1 3 - 2c < M .= ~- ' (q-q)  
then, using (A.8) and the symmetry and monotonicity of ge,(x) 
on ] - M ,  M [  (from Eq. (2.12)) ,we obtain 

which does not depend on n (provided that n > no). Therefore, 
Equations (2.11)and (2.12)together determine B+(c, F ) .  

For the implosion bias curve, we have B-(c,  F )  = S ( G o ) ,with 
Go = ( 1  - c ) F + cAo.Now geo(x)is the smallest positive solution 
of 

( 1  - c ) { F ( x+ gco (x ) )- F ( x  - g c 0 ( x ) ) )  
+ { Ao(x + gco ( x ) )- Ao(x - gco (x ) )1 

+ C I ( X- gG0(x)= 0 ) 2 .5. (7.9)  
It follows that x I geo(x)and that 

x = gco(x)  i f fx r F-' ----(2: L-~:))1 2 .  
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When x < gc,(x) ,  Equation (A.9)entails ge,(x) = g - ( x ) .  There-
fore, gGo(x)i; symmetric and increasing on the positive numbers. 
This implies that 

3 - 4c ( A .10) 

where Y is distributed according to Go. Because F - ' { ( 3  - 4c)/  
[4(1 - c ) ] }  is smaller than F-I { ( 2  - 3c) / [2(1  - c ) ] } / 2 ,  
Equations (2.13) and (2.14) provide an implicit determination 
of B-(8, F ) .  

Proofof Theorem 7. Let the model distribution Fbe symmetric 
about 0 and have a density. At G = ( 1  - c ) F + c H ,  the functional 
Q ( G )is the smallest positive solution of 

G(Y + d - lQ (G) )  d G ( y )  2 518, (A.1 1 )  

where d is the constant defined by (3.7).If X is distributed according 
to F and Y I ,  Y2 according to G ,  then we can rewrite (A. 1 1 )  as 

Note that each term in (A. 12) is increasing in Q ( G ) .To maximize 
Q ( G ) ,  we have to minimize P(I X - Y II s d - ' Q ( G ) )  and 
P( (Y l- Y 2 )s d- lQ(G)) .These terms approach their lower bounds 
( 0  and 4) when both location and scale of H tend to infinity. (For 
instance, consider a sequence of Gaussian distributions with location 
n and standard deviation n . )Therefore, (A .  12) yields formula (3.10). 

For the implosion bias curve, we have to maximize P( I X - Y , I 
5 d - ' Q ( G ) )and P ( ( Y I- Y 2 )5 d - ' Q ( G ) ) . When we choose H 
= A,,, we attain the maximal values 2 F ( Q ( G ) )- 1 and 1 .  Com-
bining this with (A.12),we obtain Equation (3.1 l ) ,  which deter- 
mines B-(c,  F ) .  

[Received September 1991. Revised June 1992.1 
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