LECTURE 2:

VECTOR MULTIPLICATION -

SCALAR AND VECTOR

PRODUCTS

Prof. N. Harnew University of Oxford MT 2012

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

1

Outline: 2. VECTOR MULTIPLICATION

2.1 Scalar Product

2.1.1 Properties of scalar product 2.1.2 Angle between two vectors

2.2 Vector Product

- 2.2.1 Properties of vector products
- 2.2.2 Vector product of unit vectors
- 2.2.3 Vector product in components
- 2.2.4 Geometrical interpretation of vector product

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

2.3 Examples

2.1 Scalar Product

Scalar (or dot) product definition: $\underline{\mathbf{a}}.\underline{\mathbf{b}} = |\underline{\mathbf{a}}|.|\underline{\mathbf{b}}|\cos\theta \equiv ab\cos\theta$

(write shorthand $|\underline{\mathbf{a}}| = \mathbf{a}$).

- Scalar product is the magnitude of <u>a</u> multiplied by the projection of <u>b</u> onto <u>a</u>.
- Obviously if <u>a</u> is perpendicular to <u>b</u> then <u>a</u>.<u>b</u> = 0

2.1.1 Properties of scalar product

- (i) $\underline{\mathbf{i}}.\underline{\mathbf{i}} = \underline{\mathbf{j}}.\underline{\mathbf{j}} = \underline{\mathbf{k}}.\underline{\mathbf{k}} = 1$ and $\underline{\mathbf{i}}.\underline{\mathbf{j}} = \underline{\mathbf{j}}.\underline{\mathbf{k}} = \underline{\mathbf{k}}.\underline{\mathbf{i}} = 0$
- (ii) This leads to $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = (a_x \underline{\mathbf{i}} + a_y \underline{\mathbf{j}} + a_z \underline{\mathbf{k}}) \cdot (b_x \underline{\mathbf{i}} + b_y \underline{\mathbf{j}} + b_z \underline{\mathbf{k}})$ = $a_x b_x + a_y b_y + a_z b_z$ (this is a very useful relation)

iii)
$$\underline{\mathbf{a}}.\underline{\mathbf{b}} = \underline{\mathbf{b}}.\underline{\mathbf{a}}$$
: commutative
 $\underline{\mathbf{a}}.(\underline{\mathbf{b}} + \underline{\mathbf{c}}) = \underline{\mathbf{a}}.\underline{\mathbf{b}} + \underline{\mathbf{a}}.\underline{\mathbf{c}}$: distributive

(iv) If
$$\underline{\mathbf{c}} = \underline{\mathbf{a}} + \underline{\mathbf{b}}$$

Then $c^2 = \underline{\mathbf{c}} \cdot \underline{\mathbf{c}} = (\underline{\mathbf{a}} + \underline{\mathbf{b}}) \cdot (\underline{\mathbf{a}} + \underline{\mathbf{b}})$
 $= a^2 + b^2 + 2\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = a^2 + b^2 + 2ab\cos(\theta_{ab})$

(v) Parentheses are important Note $(\underline{\mathbf{u}}.\underline{\mathbf{v}}) \underline{\mathbf{w}} \neq \underline{\mathbf{u}} (\underline{\mathbf{v}}.\underline{\mathbf{w}})$ because one is a vector along $\underline{\hat{\mathbf{w}}}$, the other is along $\underline{\hat{\mathbf{u}}}$.

2.1.2 Angle between two vectors

By definition
$$\cos(\theta) = \frac{\mathbf{a} \cdot \mathbf{b}}{ab}$$

Example

• The angle between vectors $\underline{\mathbf{a}} = (3,1,5)$ and $\underline{\mathbf{b}} = (2,1,3)$

►
$$\cos \theta = \frac{3 \times 2 + 1 \times 1 + 5 \times 3}{\sqrt{(3^2 + 1^2 + 5^2)} \times \sqrt{(2^2 + 1^2 + 3^2)}} = \frac{22}{\sqrt{(35)} \times \sqrt{(14)}} = 0.994$$

Example of scalar products in physics

- \blacktriangleright Work done on a body by a force through distance $\underline{\mathbf{dx}}$
- $dW = \underline{F} \cdot \underline{dx}$
- Only the component of force parallel to displacement does work.

2.2 Vector Product

Vector (or cross) product of two vectors, definition: $\underline{\mathbf{a}} \times \underline{\mathbf{b}} = |\underline{\mathbf{a}}||\underline{\mathbf{b}}| \sin\theta \ \underline{\hat{\mathbf{n}}}$

where $\underline{\hat{n}}$ is a *unit vector* in a direction *perpendicular* to both \underline{a} and \underline{b} .

To get direction of $\underline{\mathbf{a}}\times\underline{\mathbf{b}}$ use right hand rule:

- ► i) Make a set of directions with your *right* hand→ thumb & first index finger, and with middle finger positioned perpendicular to plane of both
- $\blacktriangleright\,$ ii) Point your thumb along the first vector $\underline{\mathbf{a}}$
- iii) Point your 1st index finger along <u>b</u>, making the smallest possible angle to <u>a</u>
- \blacktriangleright iv) The direction of the middle finger gives the direction of $\underline{\mathbf{a}}\times\underline{\mathbf{b}}$.

2.2.1 Properties of vector product

- $(\underline{\mathbf{a}} + \underline{\mathbf{b}}) \times \underline{\mathbf{c}} = (\underline{\mathbf{a}} \times \underline{\mathbf{c}}) + (\underline{\mathbf{b}} \times \underline{\mathbf{c}})$: distributive
- $\underline{\mathbf{a}} \times \underline{\mathbf{b}} = -\underline{\mathbf{b}} \times \underline{\mathbf{a}}$: NON-commutative
- $(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \times \underline{\mathbf{c}} \neq \underline{\mathbf{a}} \times (\underline{\mathbf{b}} \times \underline{\mathbf{c}})$: NON-associative
- If *m* is a scalar, $m(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) = (m\underline{\mathbf{a}}) \times \underline{\mathbf{b}} = \underline{\mathbf{a}} \times (m\underline{\mathbf{b}}) = (\underline{\mathbf{a}} \times \underline{\mathbf{b}})m.$
- Importantly <u>a</u> × <u>b</u> = 0 if vectors are parallel (0^o)
 i.e <u>a</u> × <u>a</u> = 0

2.2.2 Vector product of unit vectors

The basis vectors are connected by cyclic permutations of vector products (another good way to remember the right hand rule)

$$\mathbf{i} \times \mathbf{j} = \mathbf{k}$$

$$\mathbf{b} \ \underline{\mathbf{j}} \times \underline{\mathbf{k}} = \underline{\mathbf{i}}$$

$$\mathbf{k} \times \mathbf{i} = \mathbf{j}$$

2.2.3 Vector product in components

A very useful property:

•
$$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = (a_x, a_y, a_z) \times (b_x, b_y, b_z)$$

 $= (a_x \underline{\mathbf{i}} + a_y \underline{\mathbf{j}} + a_z \underline{\mathbf{k}}) \times (b_x \underline{\mathbf{i}} + b_y \underline{\mathbf{j}} + b_z \underline{\mathbf{k}})$
• Since $\underline{\mathbf{i}} \times \underline{\mathbf{i}} = \underline{\mathbf{j}} \times \underline{\mathbf{j}} = \underline{\mathbf{k}} \times \underline{\mathbf{k}} = 0$ and $\underline{\mathbf{i}} \times \underline{\mathbf{j}} = \underline{\mathbf{k}}$ etc.
• $\underline{\mathbf{a}} \times \underline{\mathbf{b}} = (a_y b_z - a_z b_y) \underline{\mathbf{i}} - (a_x b_z - a_z b_x) \underline{\mathbf{j}} + (a_x b_y - a_y b_x) \underline{\mathbf{k}}$

This is much easier when we write in *determinant* form:

$$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = \begin{vmatrix} \underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}.$$
(1)

2.2.4 Geometrical interpretation of vector product

Vector product is related to the area of a triangle:

- Height of triangle $h = a \sin \theta$
- ► Area of triangle = $A_{\text{triangle}} = 1/2 \times \text{base} \times \text{height}$ = $\frac{bh}{2} = \frac{ab \sin\theta}{2} = \frac{|\underline{a} \times \underline{b}|}{2}$
- Vector product therefore gives the area of the parallelogram: A_{parallelogram} = |<u>a</u> × <u>b</u>|
- Hence "vector area"

 $\underline{\mathbf{A}}_{\text{parallelogram}} = \underline{\mathbf{a}} \times \underline{\mathbf{b}}$ where the vector points perpendicular to the plane of the parallelogram.

2.3 Examples

Example 1

Find the area of a parallelogram defined by coordinates (0,0,0), (1,3,4) and (2,1,3).

 $\blacktriangleright \ \, \text{Make vectors} \ \underline{\mathbf{a}} = (\underline{\mathbf{i}} + 3\underline{\mathbf{j}} + 4\underline{\mathbf{k}}) \ \text{and} \ \underline{\mathbf{b}} = (2\underline{\mathbf{i}} + \underline{\mathbf{j}} + 3\underline{\mathbf{k}})$

$$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & 4 \\ 2 & 1 & 3 \end{vmatrix}.$$
(2)

- ▶ $\underline{\mathbf{a}} \times \underline{\mathbf{b}} = (3 \times 3 4 \times 1)\underline{\mathbf{i}} (1 \times 3 4 \times 2)\underline{\mathbf{j}} + (1 \times 1 3 \times 2)\underline{\mathbf{k}}$ = $5\underline{\mathbf{i}} + 5\underline{\mathbf{j}} - 5\underline{\mathbf{k}}$
- Thus the area is $\sqrt{(5^2 + 5^2 + 5^2)} = 8.7$

This method certainly beats $1/2 \times base \times height$!

Example 2

Example of scalars and cross product: Show that if $\underline{\mathbf{a}} = \underline{\mathbf{b}} + \lambda \underline{\mathbf{c}}$ for some scalar λ , then $\underline{\mathbf{a}} \times \underline{\mathbf{c}} = \underline{\mathbf{b}} \times \underline{\mathbf{c}}$.

► Solution:
$$\underline{\mathbf{a}} = \underline{\mathbf{b}} + \lambda \underline{\mathbf{c}} \Rightarrow$$

 $\underline{\mathbf{a}} \times \underline{\mathbf{c}} = (\underline{\mathbf{b}} + \lambda \underline{\mathbf{c}}) \times \underline{\mathbf{c}} = \underline{\mathbf{b}} \times \underline{\mathbf{c}} + \lambda \underline{\mathbf{c}} \times \underline{\mathbf{c}}$

• but
$$\underline{\mathbf{c}} \times \underline{\mathbf{c}} = \mathbf{0}$$

• so
$$\underline{\mathbf{a}} \times \underline{\mathbf{c}} = \underline{\mathbf{b}} \times \underline{\mathbf{c}}$$
 QED

Examples of vector products in Physics

a) Torque

A *torque* about O due to a force $\underline{\mathbf{F}}$ acting at B : $\underline{\mathbf{T}} = \underline{\mathbf{r}} \times \underline{\mathbf{F}}$. Torque is a vector with direction perpendicular to both $\underline{\mathbf{r}}$ and $\underline{\mathbf{F}}$, magnitude of $|\underline{\mathbf{r}}||\underline{\mathbf{F}}|\sin\theta$.

b) Angular momentum

A body with momentum $\underline{\mathbf{p}}$ at position $\underline{\mathbf{r}}$ has angular momentum about O of $\underline{\mathbf{L}} = \underline{\mathbf{r}} \times \underline{\mathbf{p}}$. Angular momentum is a vector with direction perpendicular to both $\underline{\mathbf{r}}$ and \mathbf{p} , magnitude of $|\underline{\mathbf{r}}||\mathbf{p}|\sin\theta$.

c) Lorentz force

The force exerted by a magnetic field $\underline{\mathbf{B}}$ on a charge q moving with velocity $\underline{\mathbf{v}}$ is given by $\underline{\mathbf{F}} = q\underline{\mathbf{v}} \times \underline{\mathbf{B}}$