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2.1 Scalar Product

Scalar (or dot) product definition:
a.b = |a|.|b| cos θ ≡ ab cos θ

(write shorthand |a| = a ).

I Scalar product is the magnitude of a
multiplied by the projection of b onto a.

I Obviously if a is perpendicular to b then
a.b = 0

I Also a.a = |a|2 (since θ =0◦)
Hence a =

√
(a.a)
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2.1.1 Properties of scalar product

(i) i.i = j.j = k.k = 1 and i.j = j.k = k.i = 0

(ii) This leads to a.b = (ax i+ ay j+ azk).(bx i+ by j+ bzk)
= axbx + ayby + azbz (this is a very useful relation)

iii) a.b = b.a : commutative
a.(b+ c) = a.b+ a.c : distributive

(iv) If c = a+ b
Then c2 = c.c = (a+ b).(a+ b)
= a2 + b2 + 2a.b = a2 + b2 + 2ab cos(θab)

(v) Parentheses are important
Note (u.v) w 6= u (v.w) because one is a vector along ŵ,
the other is along û.
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2.1.2 Angle between two vectors

By definition cos(θ) = a.b
ab

Example

I The angle between vectors a= (3,1,5) and b= (2,1,3)
I cos θ = 3×2+1×1+5×3√

(32+12+52)×
√
(22+12+32)

= 22√
(35)×

√
(14) = 0.994

I θ = 6.3◦

Example of scalar products in physics

I Work done on a body by a force through distance dx

I dW = F.dx

I Only the component of force parallel to displacement does
work.
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2.2 Vector Product
Vector (or cross) product of two vectors, definition:

a× b = |a||b| sinθ n̂

where n̂ is a unit vector in a direction perpendicular to both a and b.

To get direction of a× b use right hand rule:

I i) Make a set of directions with your right
hand→ thumb & first index finger, and with
middle finger positioned perpendicular to
plane of both

I ii) Point your thumb along the first vector a

I iii) Point your 1st index finger along b,
making the smallest possible angle to a

I iv) The direction of the middle finger gives
the direction of a× b .

a

b

c = a x b
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2.2.1 Properties of vector product

I (a+ b)× c = (a× c) + (b× c) : distributive
I a× b = −b× a : NON-commutative
I (a× b)× c 6= a× (b× c) : NON-associative
I If m is a scalar,

m(a× b) = (ma)× b = a× (mb) = (a× b)m.
I Importantly a× b = 0 if vectors are parallel (0o)

i.e a× a = 0
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2.2.2 Vector product of unit vectors

The basis vectors are connected by
cyclic permutations of vector products
(another good way to remember the
right hand rule)

I i× j = k

I j× k = i

I k× i = j
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2.2.3 Vector product in components

A very useful property:

I a× b = (ax ,ay ,az)× (bx ,by ,bz)
= (ax i+ ay j+ azk)× (bx i+ by j+ bzk)

I Since i× i = j× j = k× k = 0 and i× j = k etc.
I a× b = (aybz − azby )i− (axbz − azbx)j+ (axby − aybx)k

This is much easier when we write in determinant form:

a× b =

∣∣∣∣∣∣
i j k

ax ay az
bx by bz

∣∣∣∣∣∣ . (1)
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2.2.4 Geometrical interpretation of vector product

Vector product is related to the area
of a triangle:

I Height of triangle h = a sinθ

I Area of triangle = Atriangle =
1/2 × base × height
= bh

2 = ab sinθ
2 = |a×b|

2
I Vector product therefore gives

the area of the parallelogram:
Aparallelogram = |a× b|

I Hence “vector area”
Aparallelogram = a× b where the
vector points perpendicular to the
plane of the parallelogram.
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2.3 Examples

Example 1

Find the area of a parallelogram defined by coordinates (0,0,0),
(1,3,4) and (2,1,3).

I Make vectors a = (i+ 3j+ 4k) and b = (2i+ j+ 3k)

a× b =

∣∣∣∣∣∣
i j k

1 3 4
2 1 3

∣∣∣∣∣∣ . (2)

I a×b = (3×3−4×1)i− (1×3−4×2)j+(1×1−3×2)k
= 5i+ 5j− 5k

I Thus the area is
√
(52 + 52 + 52) = 8.7

This method certainly beats 1/2 × base × height !
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Example 2

Example of scalars and cross product:
Show that if a = b+ λc for some scalar λ, then a× c = b× c.

I Solution: a = b+ λc⇒
a× c = (b+ λc)× c = b× c+ λc× c

I but c× c = 0
I so a× c = b× c QED
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Examples of vector products in Physics

I a) Torque
A torque about O due to a force F
acting at B : T = r× F. Torque is a
vector with direction perpendicular to
both r and F, magnitude of |r||F| sin θ.

I b) Angular momentum
A body with momentum p at position r has angular momentum
about O of L = r× p. Angular momentum is a vector with
direction perpendicular to both r and p, magnitude of |r||p| sin θ.

I c) Lorentz force
The force exerted by a magnetic field B on a charge q moving
with velocity v is given by F = qv ×B
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