LECTURE 2:

VECTOR MULTIPLICATION -

SCALAR AND VECTOR

PRODUCTS
Prof. N. Harnew
University of Oxford
MT 2012

Outline: 2. VECTOR MULTIPLICATION

2.1 Scalar Product
2.1.1 Properties of scalar product
2.1.2 Angle between two vectors
2.2 Vector Product
2.2.1 Properties of vector products
2.2.2 Vector product of unit vectors
2.2.3 Vector product in components
2.2.4 Geometrical interpretation of vector product
2.3 Examples

2.1 Scalar Product

Scalar (or dot) product definition: $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=|\underline{\mathbf{a}}| \cdot|\underline{\mathbf{b}}| \cos \theta \equiv a b \cos \theta$

(write shorthand $|\underline{\mathbf{a}}|=\mathrm{a}$).

- Scalar product is the magnitude of \underline{a} multiplied by the projection of \underline{b} onto \underline{a}.
- Obviously if \underline{a} is perpendicular to $\underline{\mathbf{b}}$ then a. $\underline{b}=0$
- Also $\underline{\mathbf{a}} \cdot \underline{\mathbf{a}}=|a|^{2}\left(\right.$ since $\left.\theta=0^{\circ}\right)$ Hence $a=\sqrt{ }(\underline{\mathbf{a}} . \underline{\mathbf{a}})$

2.1.1 Properties of scalar product

(i) $\underline{\mathbf{i}} \cdot \underline{i}=\underline{\mathbf{j}} \cdot \underline{\mathbf{j}}=\underline{\mathbf{k}} \cdot \underline{\mathbf{k}}=1 \quad$ and $\underline{\mathbf{i}} \cdot \underline{\mathbf{j}}=\underline{\mathbf{j}} \cdot \underline{\mathbf{k}}=\underline{\mathbf{k}} \cdot \underline{\mathbf{i}}=0$
(ii) This leads to $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=\left(a_{x} \underline{\mathbf{i}}+a_{y} \underline{\mathbf{j}}+a_{z} \underline{\mathbf{k}}\right) \cdot\left(b_{x} \underline{\mathbf{i}}+b_{y} \underline{\mathbf{j}}+b_{z} \underline{\mathbf{k}}\right)$ $=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$ (this is a very useful relation)
iii) $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=\underline{\mathbf{b}} \cdot \underline{a}$: commutative
$\underline{\mathbf{a}} .(\underline{\mathbf{b}}+\underline{\mathbf{c}})=\underline{\mathbf{a}} \cdot \underline{\mathbf{b}}+\underline{\mathbf{a}} \cdot \underline{\mathbf{c}}:$ distributive
(iv) If $\underline{\mathbf{c}}=\underline{\mathbf{a}}+\underline{\mathbf{b}}$

Then $c^{2}=\underline{\mathbf{c}} \cdot \underline{\mathbf{c}}=(\underline{\mathbf{a}}+\underline{\mathbf{b}}) \cdot(\underline{\mathbf{a}}+\underline{\mathbf{b}})$
$=a^{2}+b^{2}+2 \underline{\mathbf{a}} \cdot \underline{\mathbf{b}}=a^{2}+b^{2}+2 a b \cos \left(\theta_{a b}\right)$
(v) Parentheses are important Note ($\underline{\mathbf{u}} . \underline{\mathbf{v}}$) $\underline{\mathbf{w}} \neq \underline{\mathbf{u}}(\underline{\mathbf{v}} \cdot \underline{\mathbf{w}})$ because one is a vector along $\underline{\hat{\mathbf{w}}}$, the other is along $\underline{\hat{u}}$.

2.1.2 Angle between two vectors

$$
\text { By definition } \cos (\theta)=\frac{a \cdot b}{a b}
$$

Example

- The angle between vectors $\underline{\mathbf{a}}=(3,1,5)$ and $\underline{\mathbf{b}}=(2,1,3)$
- $\cos \theta=\frac{3 \times 2+1 \times 1+5 \times 3}{\sqrt{ }\left(3^{2}+1^{2}+5^{2}\right) \times \sqrt{ }\left(2^{2}+1^{2}+3^{2}\right)}=\frac{22}{\sqrt{ }(35) \times \sqrt{ }(14)}=0.994$
- $\theta=6.3^{\circ}$

Example of scalar products in physics

- Work done on a body by a force through distance $\underline{d x}$
- $\mathrm{dW}=\underline{\mathrm{F}} . \underline{\mathrm{dx}}$
- Only the component of force parallel to displacement does work.

2.2 Vector Product

Vector (or cross) product of two vectors, definition:

$$
\underline{\mathbf{a}} \times \underline{\mathbf{b}}=|\underline{\mathbf{a}}||\underline{\mathbf{b}}| \sin \theta \underline{\hat{\mathbf{n}}}
$$

where $\underline{\hat{\hat{n}}}$ is a unit vector in a direction perpendicular to both $\underline{\mathbf{a}}$ and $\underline{\mathbf{b}}$.

To get direction of $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$ use right hand rule:

- i) Make a set of directions with your right hand \rightarrow thumb \& first index finger, and with middle finger positioned perpendicular to plane of both
- ii) Point your thumb along the first vector a
- iii) Point your 1st index finger along $\underline{\mathbf{b}}$, making the smallest possible angle to a
- iv) The direction of the middle finger gives the direction of $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$.

2.2.1 Properties of vector product

- $(\underline{\mathbf{a}}+\underline{\mathbf{b}}) \times \underline{\mathbf{c}}=(\underline{\mathbf{a}} \times \underline{\mathbf{c}})+(\underline{\mathbf{b}} \times \underline{\mathbf{c}}):$ distributive
- $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=-\underline{\mathbf{b}} \times \underline{\mathbf{a}}:$ NON-commutative
- $(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) \times \underline{\mathbf{c}} \neq \underline{\mathbf{a}} \times(\underline{\mathbf{b}} \times \underline{\mathbf{c}}):$ NON-associative
- If m is a scalar,
$m(\underline{\mathbf{a}} \times \underline{\mathbf{b}})=(m \underline{\mathbf{a}}) \times \underline{\mathbf{b}}=\underline{\mathbf{a}} \times(m \underline{\mathbf{b}})=(\underline{\mathbf{a}} \times \underline{\mathbf{b}}) m$.
- Importantly $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=0$ if vectors are parallel $\left(0^{\circ}\right)$ i.e $\quad \underline{\mathbf{a}} \times \underline{\mathbf{a}}=0$

2.2.2 Vector product of unit vectors

The basis vectors are connected by cyclic permutations of vector products (another good way to remember the right hand rule)

- $\underline{\mathbf{i}} \times \underline{\mathbf{j}}=\underline{\mathbf{k}}$
- $\underline{\mathbf{j}} \times \underline{\mathbf{k}}=\underline{\mathbf{i}}$
- $\underline{\mathbf{k}} \times \underline{\mathbf{i}}=\underline{\mathbf{j}}$

2.2.3 Vector product in components

A very useful property:

- $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=\left(a_{x}, a_{y}, a_{z}\right) \times\left(b_{x}, b_{y}, b_{z}\right)$

$$
=\left(a_{x} \underline{\mathbf{i}}+a_{y} \underline{\mathbf{j}}+a_{z} \underline{\mathbf{k}}\right) \times\left(b_{x} \underline{\mathbf{i}}+b_{y} \underline{\mathbf{j}}+b_{z} \underline{\mathbf{k}}\right)
$$

- Since $\underline{\mathbf{i}} \times \underline{\mathbf{i}}=\underline{\mathbf{j}} \times \underline{\mathbf{j}}=\underline{\mathbf{k}} \times \underline{\mathbf{k}}=0$ and $\underline{\mathbf{i}} \times \underline{\mathbf{j}}=\underline{\mathbf{k}}$ etc.
- $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=\left(a_{y} b_{z}-a_{z} b_{y}\right) \underline{\mathbf{i}}-\left(a_{x} b_{z}-a_{z} b_{x}\right) \underline{\mathbf{j}}+\left(a_{x} b_{y}-a_{y} b_{x}\right) \underline{\mathbf{k}}$

This is much easier when we write in determinant form:

$$
\underline{\mathbf{a}} \times \underline{\mathbf{b}}=\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \underline{\mathbf{j}} & \underline{\mathbf{k}} \tag{1}\\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right| .
$$

2.2.4 Geometrical interpretation of vector product

Vector product is related to the area of a triangle:

- Height of triangle $h=a \sin \theta$
- Area of triangle $=A_{\text {triangle }}=$ $1 / 2 \times$ base \times height
$=\frac{b h}{2}=\frac{a b \sin \theta}{2}=\frac{|\underline{a} \times \underline{\mathbf{b}}|}{2}$
- Vector product therefore gives the area of the parallelogram:
$A_{\text {parallelogram }}=|\underline{\mathbf{a}} \times \underline{\mathbf{b}}|$
- Hence "vector area"
$\underline{\mathbf{A}}_{\text {parallelogram }}=\underline{\mathbf{a}} \times \underline{\mathbf{b}}$ where the vector points perpendicular to the plane of the parallelogram.

|b|

2.3 Examples

Example 1

Find the area of a parallelogram defined by coordinates ($0,0,0$), $(1,3,4)$ and ($2,1,3$).

- Make vectors $\underline{\mathbf{a}}=(\underline{\mathbf{i}}+3 \underline{\mathbf{j}}+4 \underline{\mathbf{k}})$ and $\underline{\mathbf{b}}=(2 \underline{\mathbf{i}}+\underline{\mathbf{j}}+3 \underline{\mathbf{k}})$

$$
\underline{\mathbf{a}} \times \underline{\mathbf{b}}=\left|\begin{array}{ccc}
\underline{\mathbf{i}} & \mathbf{j} & \underline{\mathbf{k}} \tag{2}\\
1 & 3 & 4 \\
2 & 1 & 3
\end{array}\right| .
$$

- $\underline{\mathbf{a}} \times \underline{\mathbf{b}}=(3 \times 3-4 \times 1) \underline{\mathbf{i}}-(1 \times 3-4 \times 2) \underline{\mathbf{j}}+(1 \times 1-3 \times 2) \underline{\mathbf{k}}$ $=5 \underline{\mathbf{i}}+5 \underline{\mathbf{j}}-5 \underline{\mathbf{k}}$
- Thus the area is $\sqrt{ }\left(5^{2}+5^{2}+5^{2}\right)=8.7$

This method certainly beats $1 / 2 \times$ base \times height !

Example 2

Example of scalars and cross product: Show that if $\underline{\mathbf{a}}=\underline{\mathbf{b}}+\lambda \underline{\mathbf{c}}$ for some scalar λ, then $\underline{\mathbf{a}} \times \underline{\mathbf{c}}=\underline{\mathbf{b}} \times \underline{\mathbf{c}}$.

- Solution: $\underline{\mathbf{a}}=\underline{\mathbf{b}}+\lambda \underline{\mathbf{c}} \Rightarrow$

$$
\underline{\mathbf{a}} \times \underline{\mathbf{c}}=(\underline{\mathbf{b}}+\lambda \underline{\mathbf{c}}) \times \underline{\mathbf{c}}=\underline{\mathbf{b}} \times \underline{\mathbf{c}}+\lambda \underline{\mathbf{c}} \times \underline{\mathbf{c}}
$$

- but $\underline{\mathbf{c}} \times \underline{\mathbf{c}}=0$
- so $\underline{\mathbf{a}} \times \underline{\mathbf{c}}=\underline{\mathbf{b}} \times \underline{\mathbf{c}}$ QED

Examples of vector products in Physics

- a) Torque

A torque about O due to a force \mathbf{F} acting at $\mathrm{B}: \quad \underline{\mathbf{T}}=\underline{\mathbf{r}} \times \underline{\mathrm{F}}$. Torque is a vector with direction perpendicular to both $\underline{\underline{r}}$ and $\underline{\mathbf{F}}$, magnitude of $|\underline{\mathbf{r}}||\underline{\mathbf{F}}| \sin \theta$.

- b) Angular momentum

A body with momentum \underline{p} at position $\underline{\underline{r}}$ has angular momentum about O of $\underline{\mathbf{L}}=\underline{\mathbf{r}} \times \mathbf{p}$. Angular momentum is a vector with direction perpendicular to both $\underline{\underline{r}}$ and $\underline{\mathbf{p}}$, magnitude of $|\underline{\mathbf{r}} \| \underline{\mathbf{p}}| \sin \theta$.

- c) Lorentz force

The force exerted by a magnetic field \underline{B} on a charge q moving with velocity $\underline{\mathbf{v}}$ is given by $\underline{\mathbf{F}}=q \underline{\mathbf{v}} \times \underline{\mathbf{B}}$

