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A dimensionless number which measures the relative magnitude of the inertia effects in a fluid
compared to viscous effects is the Reynolds number. This quantity is defined as

Re—py—l:
u?

where p is the fluid density, V is the fluid velocity, L represents a characteristic dimension in the fluid

flow field, and p is the fluid viscosity.

Creeping flows are characterized by small Reynolds numbers, whereas most practical flows are
often characterized by Reynolds numbers which are large compared to unity. For example, experiments
have indicated that the theory of slow motions is able to predict the drag force exerted on a sphere
moving at constant speed relative to a flud when the Reynolds number (utilizing the sphere diameter

as the characteristic dimension) is less than about 1-2.
L. Prandtl in 1904 [8] made a significant advance in fluid mechanics (and, therefore, in heat transfer)

when he introduced the boundary-layer approximations which allowed flows at high Reynolds numbers
to be studied mathematically. The use of these approximations in studying various fluid flows results

in the so-called boundary-layer theory which will be discussed in Chap. 3.
For the reasons mentioned above, the full equations cannot be considered for further analysis 1n

all their generality, owing to their complexity, and the impossibility of postulating realistic boundary,
initial and inlet conditions for them. However, two important observations are worth mentioning. First,
the flow field depends upon the variation of viscosity and density with temperature, more generally
with position too. Therefore, the two fields, 1.e., the velocity.and temperature fields, are coupled. Sec-

ondly, it is possible that the temperature field under certain conditions can become similar to the velocity
field. As can be seen from Eqgs. (2.34) and (2.59) that the terms which arise from the pressurc gradien!
Vp, ® and f prevent the similarity between these two equations. Further, the viscosity |4 and the thermal

conductivity k may be different functions of temperature. If the pressure gradient Vp, @ and [ are Zeo
u'ndilf the Prandtl number Pr = v/o. = [, the solutions for the velocity and temperature fields will be
similar if their corresponding boundary conditions arc also similar.

2.6 SIMILARITIES IN FLUID FLOW AND HEAT TRANSFER

feo" liquids within which the temperature differences are not too large, and 0T gases
mper'aturff differences and the differences in flow speed'are not too great: 2° e
4pproximation of constant density is applicable, In the discussions to fo!l°*"" v



y forces and viscous dissipation.

the conditions for similarity in (luid {low and heat transfer.

ow of a viscous fluid the continuity
lar coordinates can be written as

that the other properties arc also constant
Under these conditions we shall determine
With these assumptions, for a steady and two-dimensional fl

equation, the equations of motion, and the encrgy equation 1n rectangu
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Boundary conditions for the above equations can be written as

at y = 0 (on the surface of the body):
as y — oo (far from the body):
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For the given boundary conditions the solutions of the above equations (for dimensionless velocity,
pressure and temperature distributions) will depend on the dimensionless independent variables x and
y and the dimensionless parameters Re,. and Rey Pr. From Egs. (2.68), (2.69) and (2.70) we conclude

that

u = ‘I’](i‘, 3(-, RCL) - (273)
V= ‘1’2(-x-; -)7! RcL) ) (2'74)
5 = ‘Ir3(-iv it ReL) . (275)

We see that geometrically similar bodies at the same corresponding points will have the same dimen-

sionless pressure, velocity and, therefore, the same shear stress distribution when the Reynolds number
of the flows are the same,

We may also note that in the case of a constant density, constant property flow, the velocity field

is independent of the temperature distribution and can be determined once for all, regardless of the heal
transfer conditions imposed on the flow.

The results for the velocity distribution may now be substituted into the energy equat
temperature distribution may be determined. In view of Egs. (2.73) and (2.74), from the encts:
(2.71) we conclude that the solution for the dimensionless temperature distribution depends Uupo"
independent variables X and ¥, the Reynolds number, und the procduct of the Reynolds !
Pmnd.l | number, i.c., Péclet number (Pe = Re Pr = U_L/ax), which is the mcf'ﬁlilﬁu?l
magmmde of heat t:q'msfer by convection td?!\eat transfer by conduction S_incn;] t{‘t‘; :;gol d:.
required independently for dynamical simﬂ?w , it i§ customary to WOrk i

on and the

ds number IS
and Prandtl

numbers separately rather than the Péclét number, and hence.
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sysw\l;lﬁ (t:::v?z‘ljlf:r:(l;; defined the heat transfer coefficient by Eq. (
¢
K A 7
T\ 9y ) y=0 (2.77)
S T T

(‘ﬁ) (2.79)
Nu = | —=
ay y=0
/
Hence, we conclude that
Nu = W(x, Regy, Pr) . (2.80)

Alternately, the heat transfer coefficient can also be put into a nondimensional form as follows:
St = ——— = ——— = W¢(x, Re’, Pr) (2.81)

which 1s known as the Stanton number.

If the energy equation (2.53) or (2.59) for a fluid with constant thermal conductivity is expressed
in dimensionless form, we get -

Nu = ‘IG(Z Re;, Pr, Ec) ,

(2.82)

where the dimensionless parameter Ec is defined as é(', . A
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e e Pt ax
on. In the boundary-layer analysis, the free-stream velocity U_(x) 1s assumed tq

potential flow outside the boundary layer, and thus the pressurn,

rom Eq. (3.13). '
the lollowing Prandil’s boundary-laye,

. the outer flow regi '
be available from the solution of the

pradi i X 1S CONsi o bc known |
radient term dp/dx 1S considered to ..
: Hence, Eqs. (3.1), (3.2) and (3.3) may nNOW be replaced by

equatians:
%”-‘- + -g—‘-’- — (0} (3.14)
X y
' | d ou
Ax Ay p dx ay

with the following boundary conditions:

aty=0: u=v=0, (3.16a,b)

asy = o: u=Ulx). (3.16¢)

In addition, the velocity distribution at x = 0 must also be specified.
It may be noted that, although one of the viscous terms in Eq. (3.8) has been dropped, the order

of this equation has not been reduced. Also, one of the equations of motion has been dropped completely.

As a result, the number of unknowns has been reduced by one. |
A similar analysis has been carried out for the boundary layer flow along a curved wall and it has
been concluded that the above equations may be applied to a curved wall as long as no large variations

in curvature occur [3].
It should be noted that the boundary-layer approximations are valid for large values of the Reynolds

number and the no-slip condition is assumed on the solid surface i.e., the fluid layer at y = 0 sticks to
the solid surface.

3.3 BOUNDARY-LAYER ENERGY EQUATION
If the plate temperature is different from the fluid temperature a thermal boundary layer will also develop

i e e

over the plate as illustrated in Fig. 3.1, indicating a significant temperature variation over a narrow zone
it the immediate vicinity of the plate. The thermal boundary-layer thickness & may be defined as that
distance from the surface where (T — T,,) = 0.99(T.. — T,,) as shown in Fig. 3.5.

For a steady, two-dimensienal and incompressible viscous flow with constant thermophysical prop-

erties, the energy equation (2.61) reduces to
a1 aT 62T 62T 1 [ du vV 757 [
pcp(u L U "—) = k(——- L s + —l—4+ —}] . 17
ox Ny o (3.17)
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Re = " Pr—'--% Ecz__'._UP_____
k Colliy ™ 1)

Followin; the discussions of the previous section, we now again conclude that in the energy
equation (3.1

T ou _ ou _

u= 0(), = - 0(1), i 0(1/6)

V=00), —==00®), —==o0()
0x y

and Re = O(’ o , where, as before, x = 0O(1), y = O(0) and = 8/L.
Comparic ¢ order of magnitudes of the dissipation terms, the energy equation (3.18) can be
rewritten as

ST 8T ] ET T Ec(azz 4
U == e Y — —— e ] o — — ]

0x d RePr\ ox* 0y? Re\ dy (3.19)
[l 5175, L 1/5 1/8°

Furthermore, ¢ note that in the thermal boundary layer T = (O(1) because T varies from zero at the
surface of the late to almost unity at y = 0, and also y = O(d7), where 87 = 07/L. Hence, we observe
that |

oT 32T
-é: = 0(1) and 5}—2' = 0(1),
< _7,( X

54 oT 92T 2
— = O(1/ d — = 0(1/5) .

The order of magnitude of various terms in Eq. (3.19) 1s indicated under each term. Comparing the
orders-of-ma_ :itude of the conduction terms we conclude that




