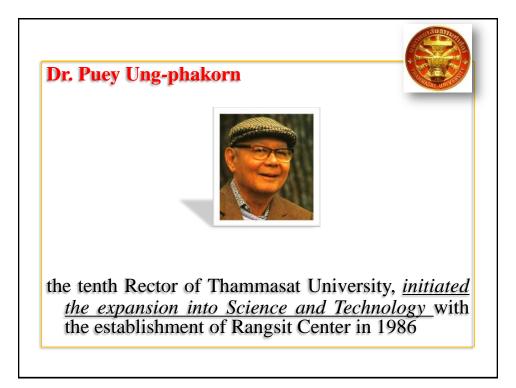
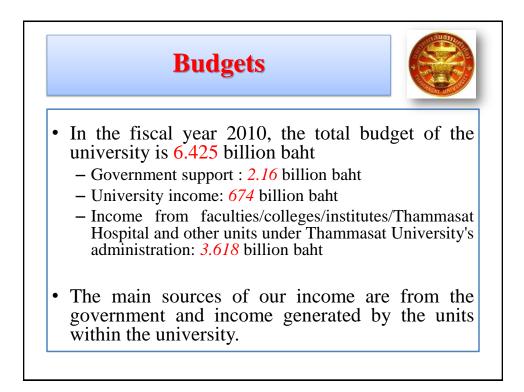
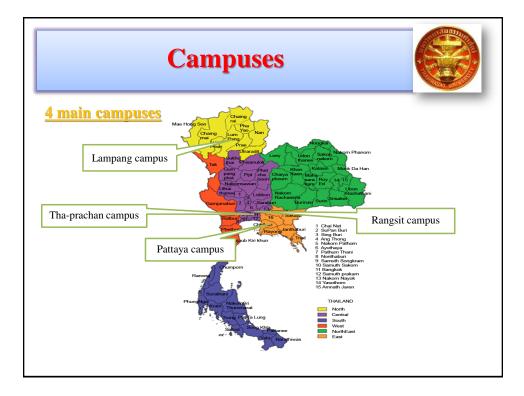
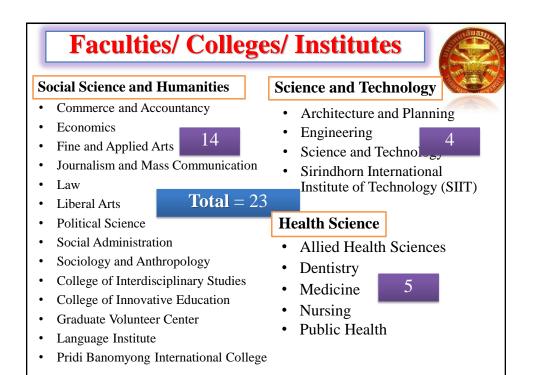


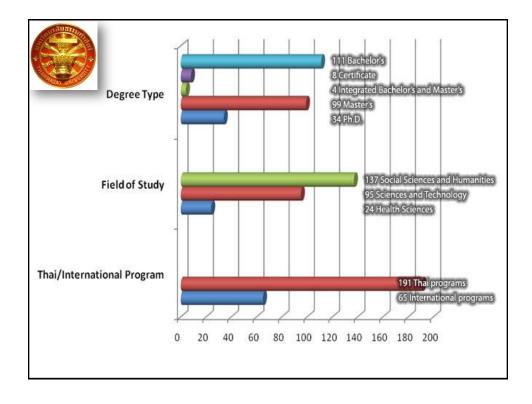
B.Sc.	Food Science and Technology,
2	Thammasat University
M.Sc.	Environmental Sanitation,
	Mahidol University
Ph.D	Food Technology,
	Suranaree University of Technology
	and
	DOC (Ingenieries Microbienne et Enzimatique),
	ENSAT, INPT, France
Postdoctoral	Center for Analytical Chemistry,
	Department of Agrobiotechnology (IFA-Tulln),
	University of Natural Resources and Life Sciences,
	Vienna (BOKU), Austria

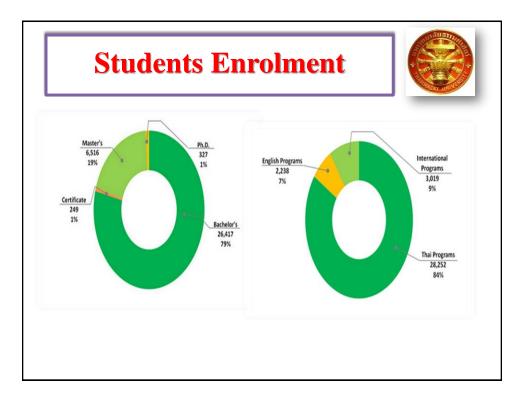

1

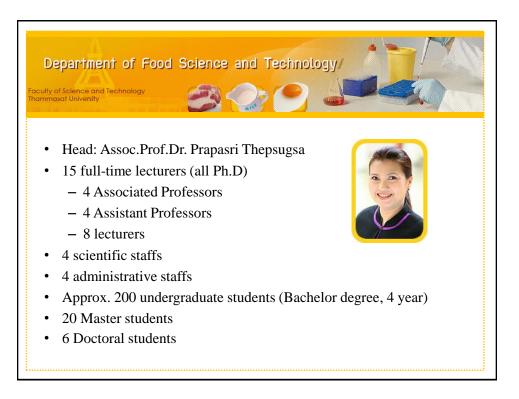


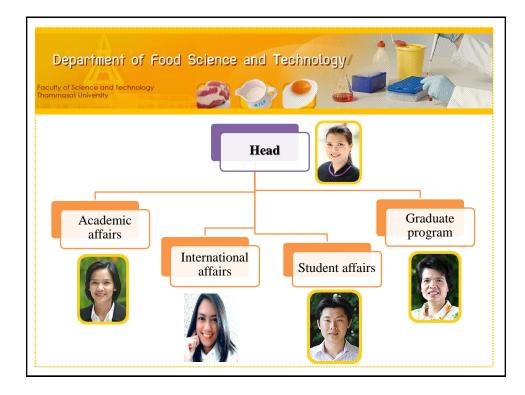


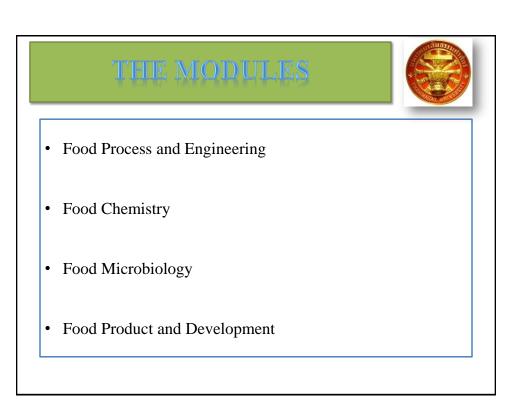


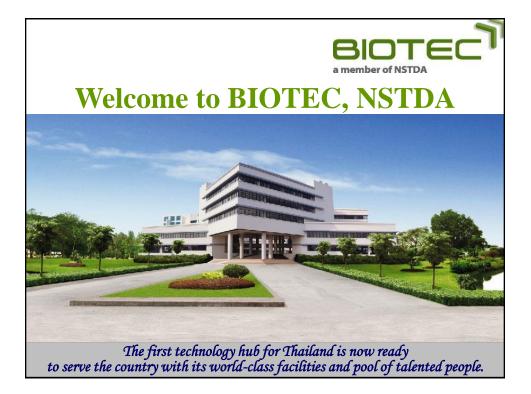


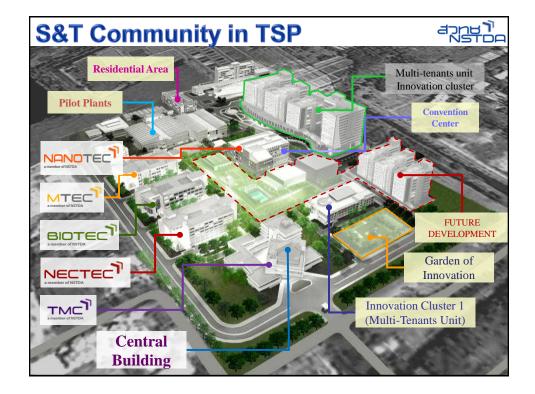


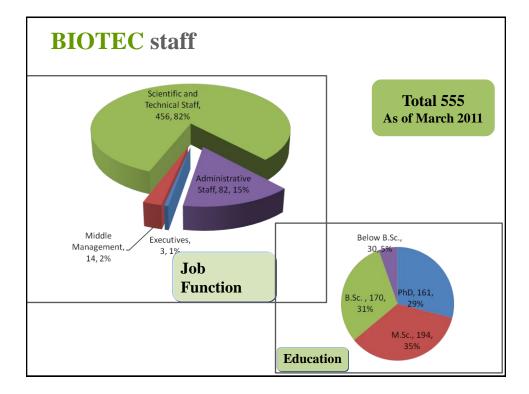




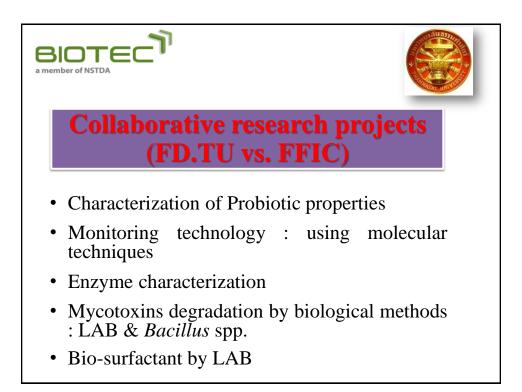


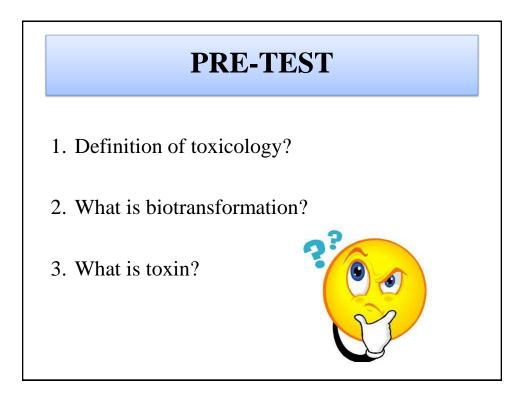

FOOD PRODUCT DEVELOPMENT & SENSORY EVALUATION LABORATORY

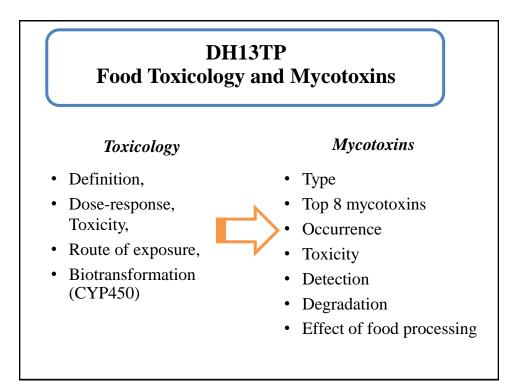


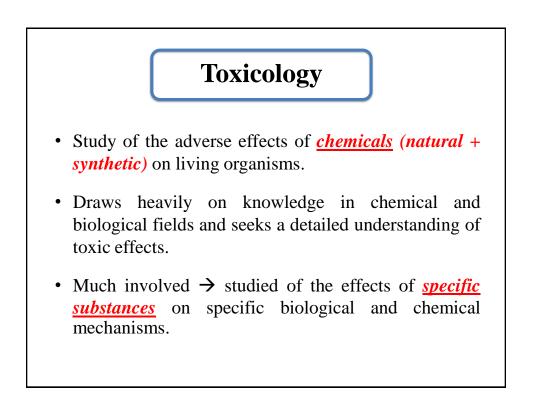


NSTDA at a glance


Established	December 1991; member of Ministry of Science and Technology
Location:	In Thailand Science Park, 30 kilometers north of Bangkok
Vision:	A key partner for a knowledge-based society through science & technology
Employees:	2,700 (1,600 fulltime researchers and approx. 400 Ph.Ds)
Budget:	98 million USD (in 2010) allocated from the Government
4 National F	 Centers: BIOTEC: National Center for Genetic Engineering and Biotechnology MTEC: National Metal and Materials Technology Center NECTEC: National Electronics and Computer Technology Center NANOTEC: National Nanotechnology Center

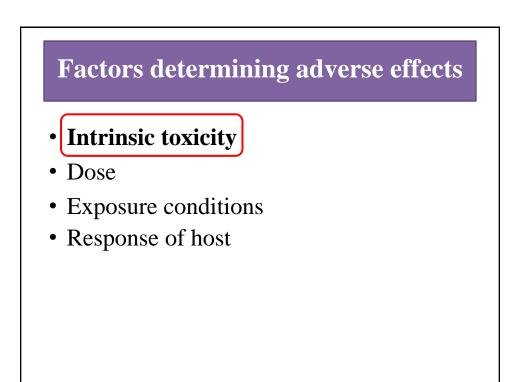



Food and Feed Innovation Center (FFIC)


National Center for Genetic Engineering and Biotechnology (BIOTEC)

Paracelsus (1493-1541)

"All substances are poisons : there is none which is not a poison. The right dose differentiates the poison from a remedy"


-Founder of Toxicology-

Definition

Toxin (from Ancient Greek: toxikon)

- a poisonous substance produced within <u>living</u> <u>cells or organisms</u>
- synthetic toxicants created by artificial processes are thus excluded
- The term was first used by organic chemist Ludwig Brieger (1849–1919)

- Toxins can be small molecules, peptides, or proteins that are capable of causing disease on contact with or absorption by body tissues interacting with biological macromolecules such as enzymes or cellular receptors.
- Toxins vary greatly in their severity, ranging from usually minor (such as a bee sting) to almost immediately deadly (such as botulinum toxin).

Intrinsic toxicity

1. Chemical properties

- molecular structure & functional groups
- solubility insolubility
- volatility
- stability (light, water, acids, enzymes, ...)
- Reactivity

2. Physical properties

- gas (density, ...)
- liquid (vapor pressure, ...)
- solid (crystal structure, size, shape, ...)

Misunderstandings

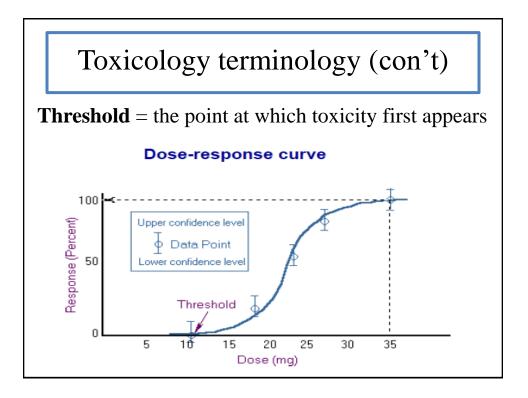
Natural compounds \neq safe compounds

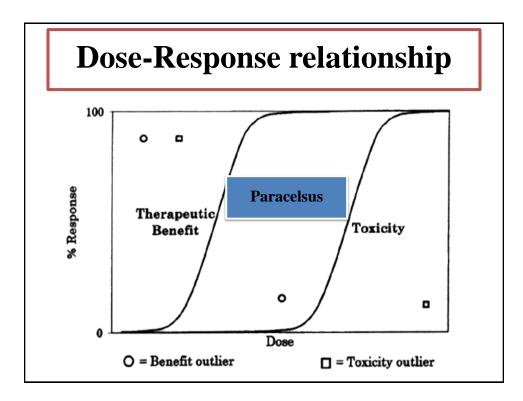
Synthetic agents \neq toxic agents

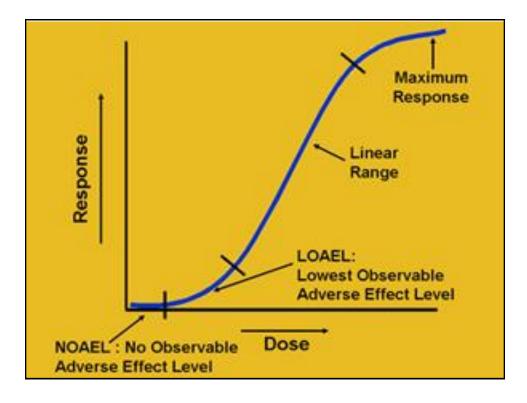
Factors determining adverse effects

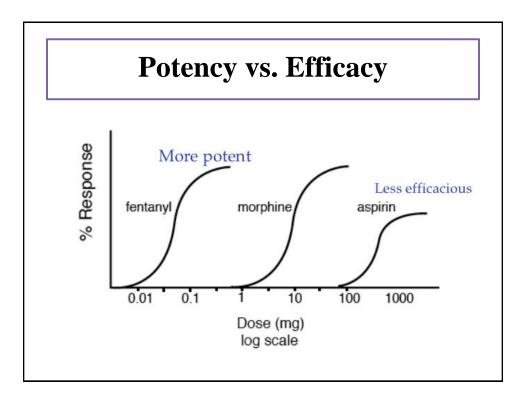
- Intrinsic toxicity
- **Dose** = the amount of a substance administered at one time
- Exposure conditions
- Response of host

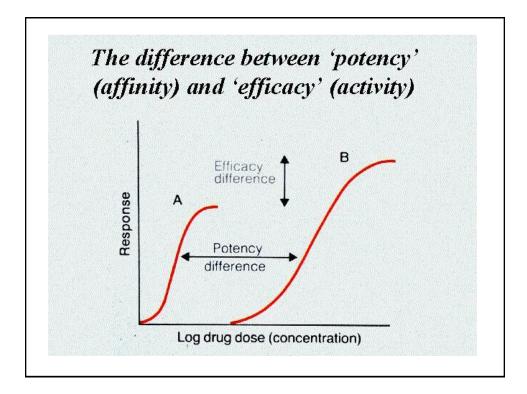
Types of doses

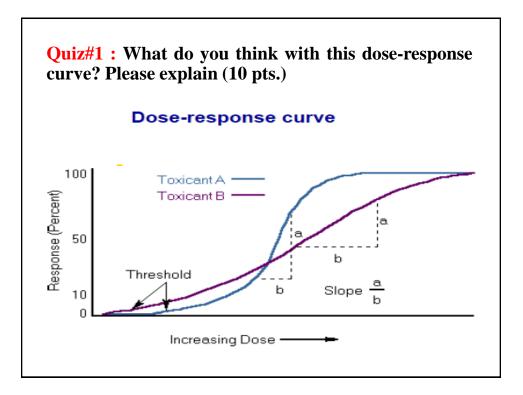

Exposure dose	the amount of a xenobiotic encountered in the environment
Absorbed dose	the actual amount of the exposed dose that enters the body
Administered dose	the quantity administered usually orally or by injection
Total dose	the sum of all individual doses

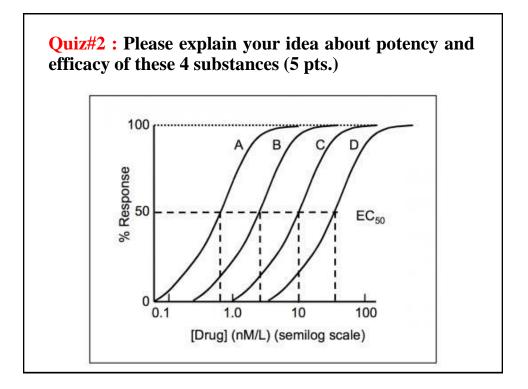

Toxicology terminology

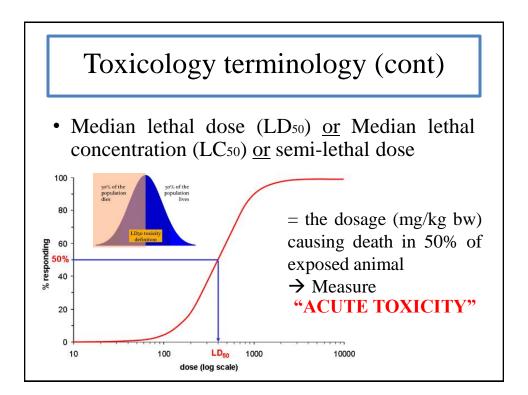

- Toxicology
- **Toxicologist** → scientist who conduct research on the harmful effects of the agent
- Toxicant = xenobiotic = toxic substance = toxic agent = substances that produce the biological adverse effect
- Systemic toxin \rightarrow substance that affects the entire body or many organs rather than a specific site.
- Organ toxin → substances that affects only specific tissues or organs
- Target organ or tissue = specific sites of toxicants

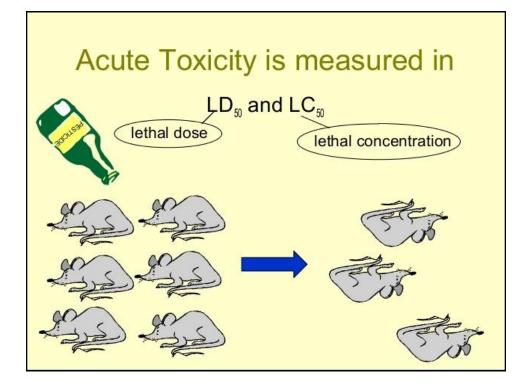

Toxicology terminology (con't)

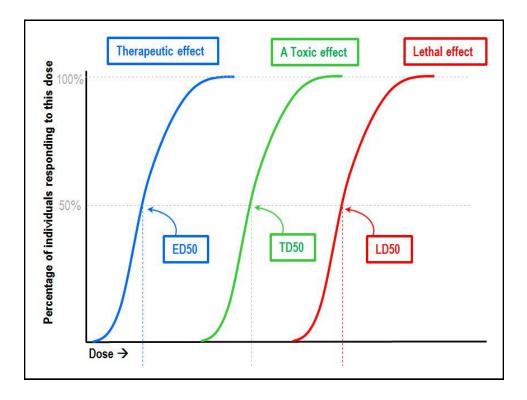

- Germ cells are those cells that are involved in the <u>reproductive process</u> and can give rise to a new organism. Toxicity to germ cells can cause effects on the developing fetus (*such as birth defects, abortions*)
- Somatic cells are all body cells except the reproductive germ cells. They have two sets *(or pairs)* of chromosomes.

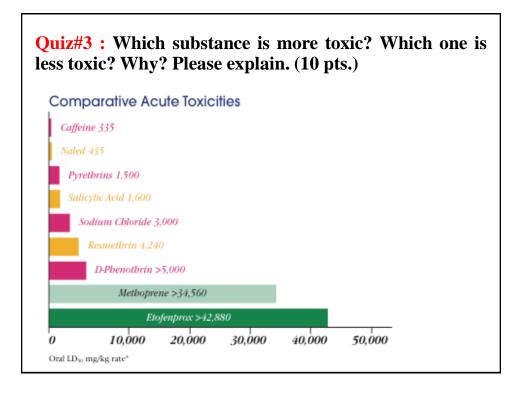


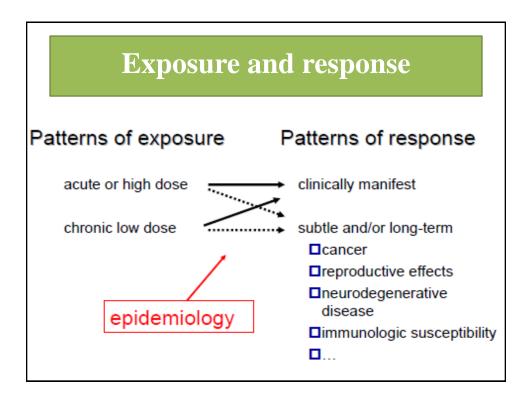




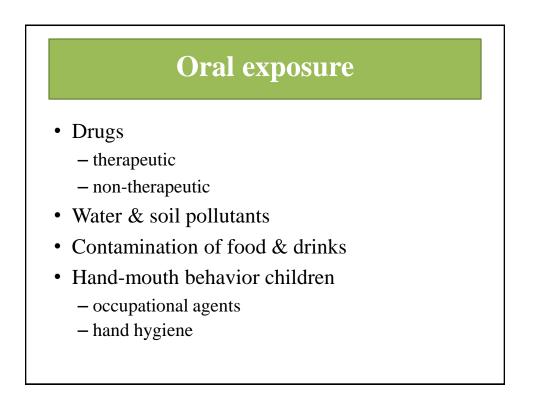








Factors determining adverse effects


- Intrinsic toxicity
- Dose
- Exposure conditions
- Response of host

Exposure conditions

- Routes of exposure
- Frequency & duration of exposure
- Mixed exposures
- Environmental circumstances

Routes of exposure

- Oral
- Inhalation
- Dermal
- Parenteral = application outside the gastrointestinal tract by e.g. intramuscular, intravenous or subcutaneous application of medicines

Inhalation

- Smoking
- Indoor air pollution
 - domestic
 - occupational
- Schools
- Hobby & sports
 outdoor air pollution
- Urban, industry & vehicle traffic
- Natural sources

Dermal exposure

- Occupational agents
 - solvents
 - pesticides
- Cosmetics
- Some water pollutants

Factors determining adverse effects

- Intrinsic toxicity
- Dose
- Exposure conditions
- Response of host

Toxic effects

- Cellular, biochemical, or macromolecular changes
 - $\ensuremath{\mathfrak{S}}$ cell replacement, such as fibrosis
 - $\ensuremath{\mathfrak{S}}$ damage to an enzyme system
 - ⊖ disruption of protein synthesis
 - \otimes production of reactive chemicals in cells
 - ⊖ DNA damage

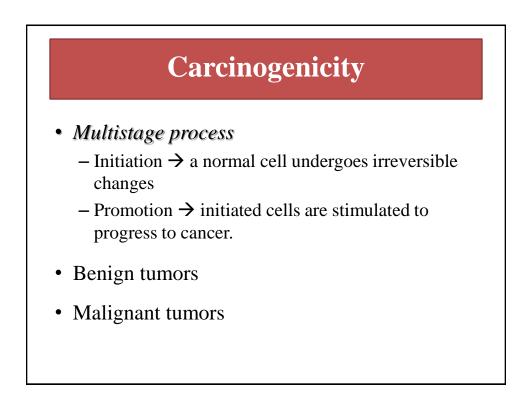
Factors Influencing Toxic Effects

- Form and innate chemical activity
- Dosage, especially dose-time relationship
- Exposure route
- Species
- Age
- Sex

Factors Influencing Toxic Effects (con't)

- Ability to be absorbed
- Metabolism
- Distribution within the body
- Excretion
- Presence of other chemicals

Systemic Toxic Effects


- 1. Acute Toxicity \rightarrow occurs almost immediately (*hours/days*) after an exposure. An **acute exposure** is usually
 - a single dose or a series of doses received within a 24 hour period. Death is a major concern in cases of
 - acute exposures.
- 2. Sub-chronic Toxicity \rightarrow results from repeated exposure for several weeks or months.
- 3. Chronic Toxicity → represents cumulative damage to specific organ systems and takes many months or years to become a recognizable clinical disease.

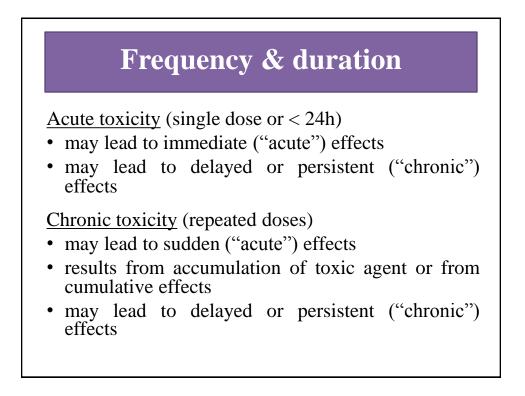
Deve	lopmen	tal T	oxicity
	en e		\bullet

Embryolethality	failure to conceive, spontaneous abortion or stillbirth
Embryotoxicity	growth retardation or delayed growth of specific organ systems
Teratogenicity	irreversible conditions that leave permanent birth defects in live offspring (<i>e.g. cleft palate,</i> <i>missing limbs</i>)

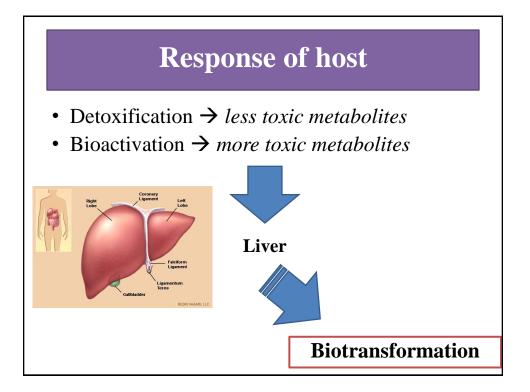
Genetic Toxicity (somatic cells)

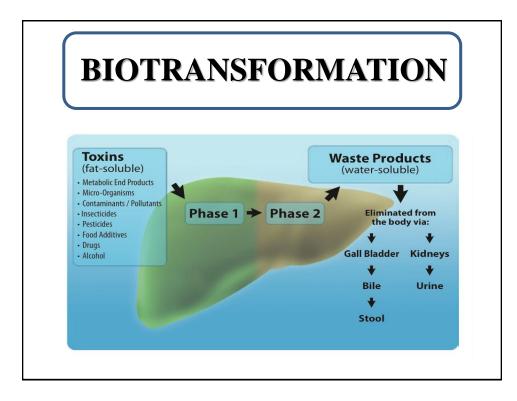
Gene mutation	change in DNA sequence within a gene
Chromosome aberration	changes in the chromosome structure
Aneuploidy / polyploidy	increase or decrease in number of chromosomes

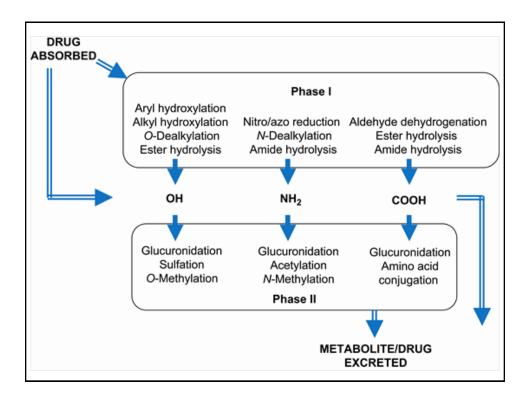
Tumor (neoplasm)

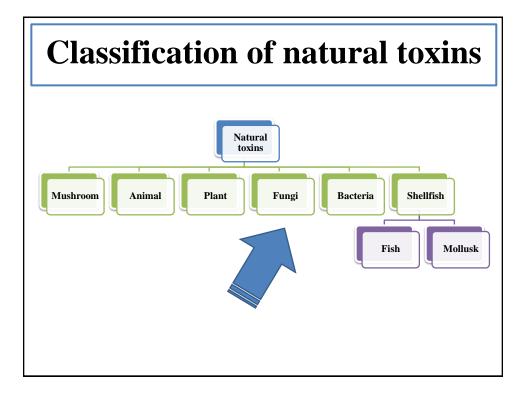

= An uncontrolled growth of cells.

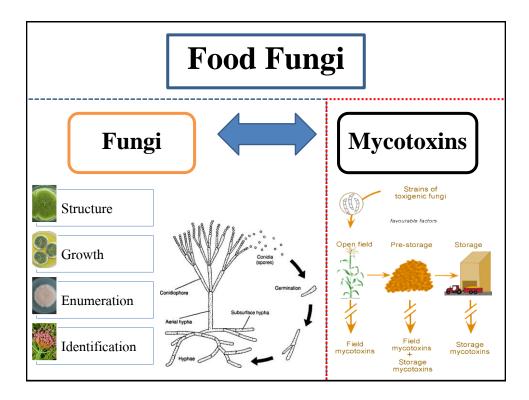
- **Benign tumors** grow at the site of origin; do not invade adjacent tissues or metastasize; and generally are treatable.
- Malignant tumors (*cancer*) invade adjacent tissues or migrate to distant sites (*metastasis*). They are more difficult to treat and often cause death

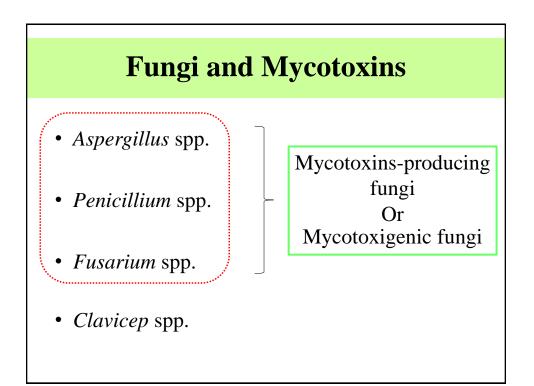

Other toxicity


- **Hepatotoxicity** is toxicity to the liver, bile duct, and gall bladder.
- Immunotoxicity relates the immune • to It take system. can several forms: hypersensitivity (allergy and autoimmunity), immunodeficiency, and uncontrolled proliferation (leukemia and lymphoma).


- **Nephrotoxicity** is toxicity to the kidneys. It can result in systemic toxicity causing:
 - decreased ability to excrete body wastes
 - inability to maintain body fluid and electrolyte balance
 - decreased synthesis of essential hormones
- **Neurotoxicity** represents toxicant damage to cells of the central nervous system (*brain and spinal cord*) and the peripheral nervous system (*nerves outside the CNS*)




Quiz#4 : How many toxic effects do you learn from this class? Please list and explain (10 pts.)



General Characteristics of True Fungi (Mycota or Eumycota)

1. All are eukaryotic

2. Most are filamentous

3. Some are unicellular

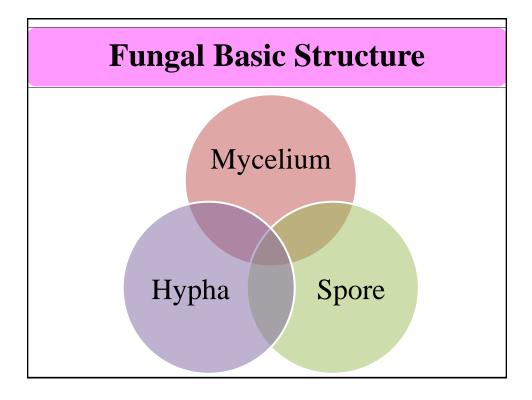
4. Protoplasm of a hypha or cell is surrounded by a rigid wall

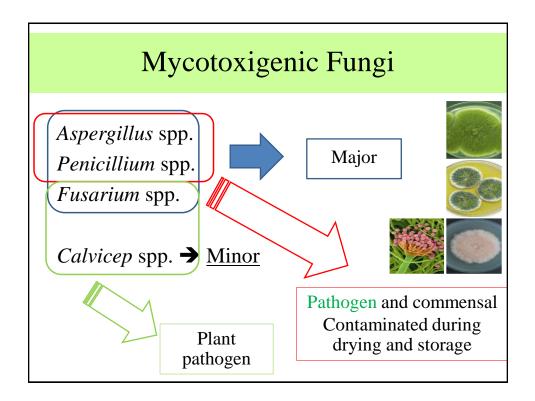
5. Many reproduce both sexually and asexually

6. Their nuclei are typically haploid and hyphal compartments are often multinucleate

7. All are achlorophyllous

8. All are chemoheterotrophic (chemo-organotrophic)


9. Possess characteristic range of storage compounds


10. May be free-living or may form intimate relationships with other organisms

Importance of Fungi

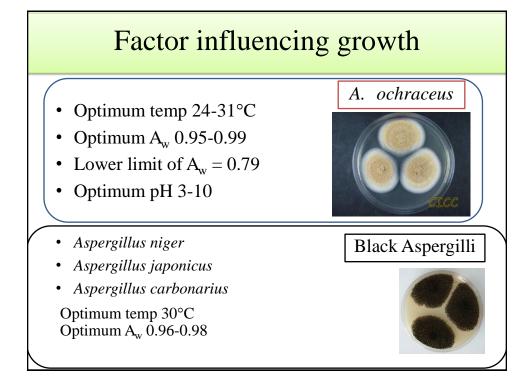
Fungi are important because they are:

- agents of biodegradation and biodeterioration
- responsible for the majority of plant diseases and several diseases of animals (including humans)
- used in industrial fermentation processes
- used in the commercial production of many biochemicals
- cultured commercially to provide us with a direct source of food
- used in bioremediation
- beneficial in agriculture, horticulture and forestry.

Quiz#6 : Explain the relationship between the fungi and the mycotoxins. (5 pts)

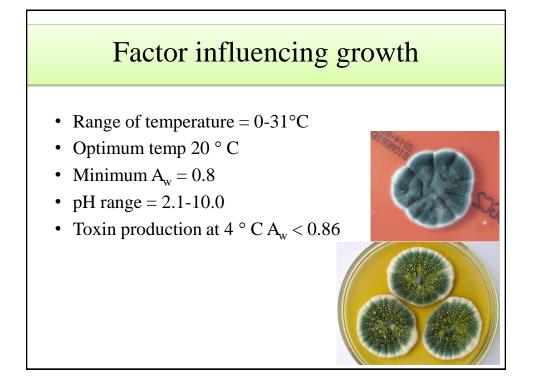
- The most significance mycotoxigenic species are *A. flavus**, *A. parasiticus**, *A. ochraceus* (=*A. westerdijkiae* or *A. steynii*), *A. niger*
- Color : Black, Yellow, Green, Brown and White Enumeration using
- 1.) Dichloran rose bangal chloramphenicol agar (DRBC) or

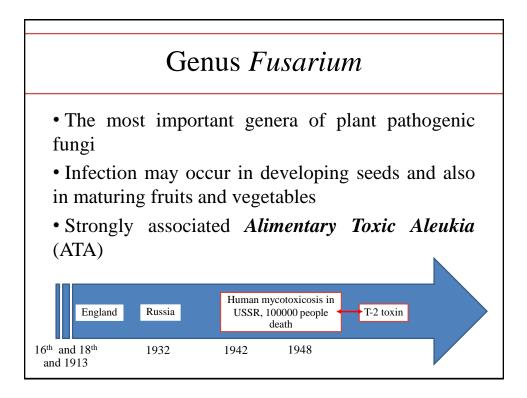
2.) Dichloran 18% glycerol agar (DG18) or

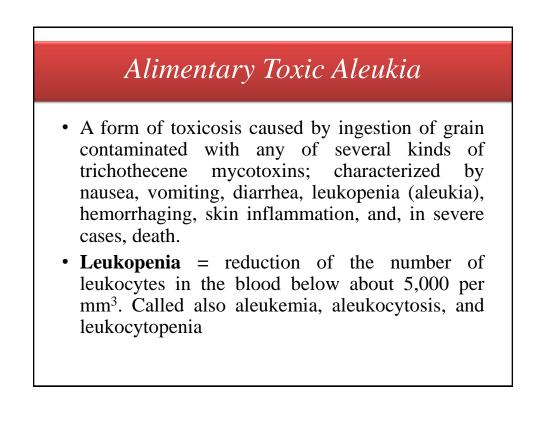

3.) Aspergillus flavus and parasiticus agar (AFPA)

Factor influencing growth

- Minimum temp $10-12 \circ C$
- Maximum temp $43-48 \circ C$
- Optimum temp $33 \circ C$
- Minimum Aw permitting growth
 - 0.82 at 25 ° C
 - 0.81 at 30 ° C
 - 0.80 at 37 ° C
- pH range 2.1-11.2
- Optimum broad pH 3.4-10
- $D_{45} = 160$ hour
- $D_{50} = 16$ hours
- $D_{52} = 40-45 \min$
- $D_{60} = 1 \min$

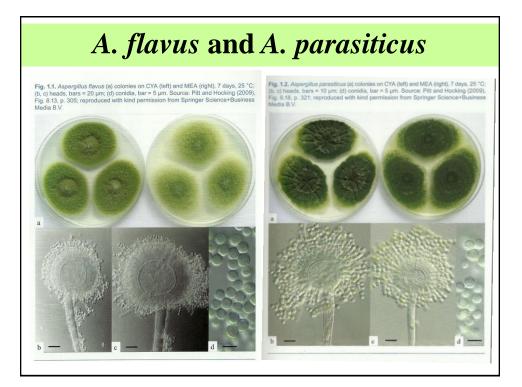

A. flavus & A. parasiticus

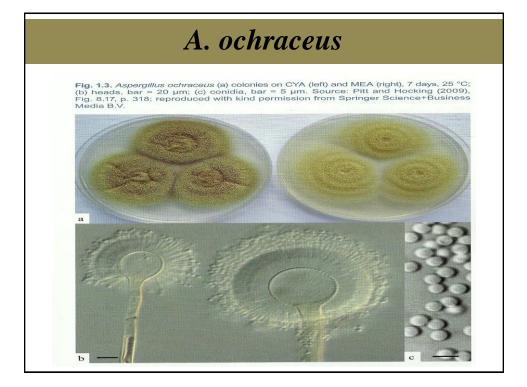




Genus Penicillium

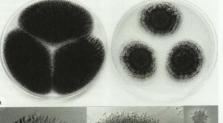
- More than 200 recognized species
- Grow slowly and have green conidia
- Enumeration using : PDA, DCPA, DRBC*, DG18* DRYS (selective media): Violet brown reverse color (for *P. verrucosum*)
 Toxigenic strain → *P. viridicatum* = *P. verrucosum P. nordicum*
- Ochratoxin producing strain

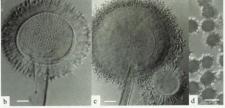

Fusarium spp.


- Uncoloured / white, pink, purple, pale to red reverses
- Multi-septate
- Large curved conidia (25-50 µm or more)
- Some species produced microconidia
- Maximum temperature = 32-37°C
- Minimum temperature 2.5-5°C
- Optimum temperature 25°C
- Minimum $A_w = 0.87$

FUNGAL IDENTIFICATION

How to identify and differentiate the species of *Aspergiilus*, *Penicillium* and *Fusarium*?





Black aspergilli

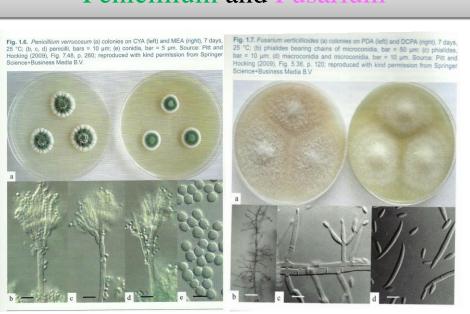
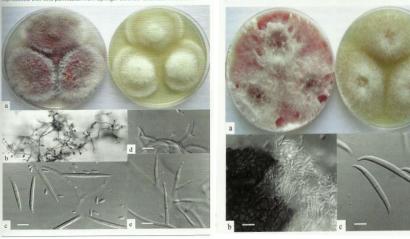
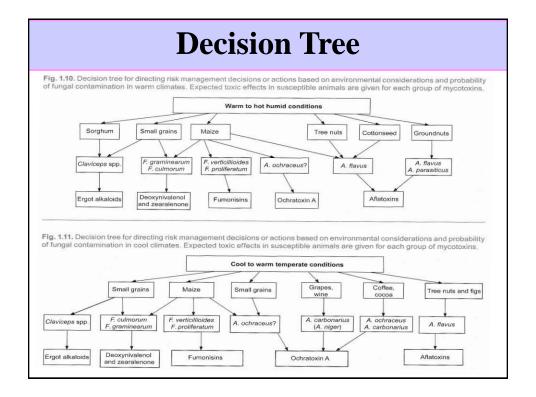
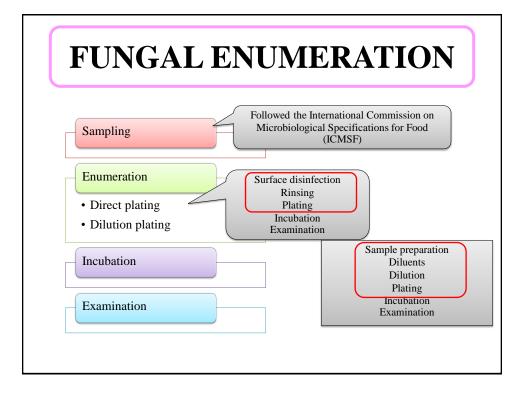

Fig. 1.4. Aspergillus carbonarius (a) colonies on CYA (left) and MEA (right), 7 days, 25 °C; (b, c) heads, bars = 40 µm; (d) conidia, bar = 5 µm. Source: Pitt and Hocking (2009), Fig. 5.10, p. 300; reproduced with kind permission from Springer Science+Business Media B.V.

Fig. 1.5. Aspergillus niger (a) colonies on CYA (left) and MEA (right), 7 days, 25 °C; (b) head, bar = 15 µm; (c) heads, bar = 10 µm; (d) conidia, bar = 5 µm. Source: Pitt and Hocking (2009), Fig. 8 15, p. 314; reproduced with kind permission from Springer Science+Business Media B.V.

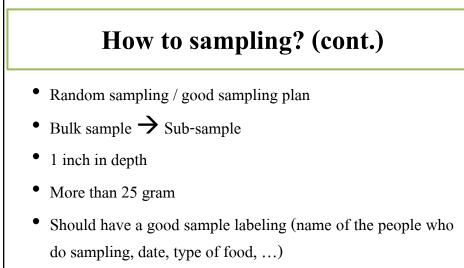


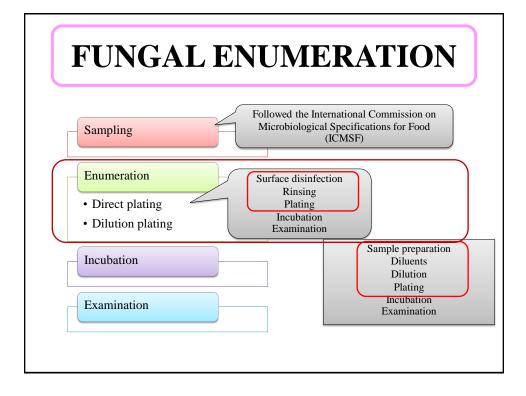

Penicillium and Fusarium

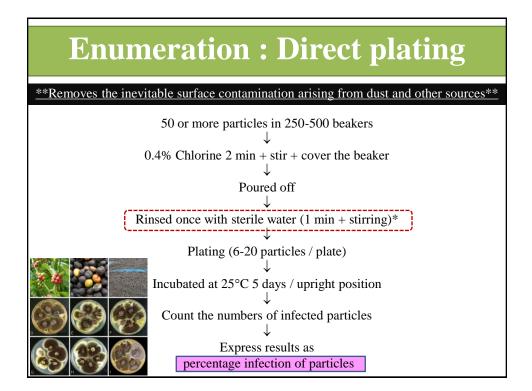


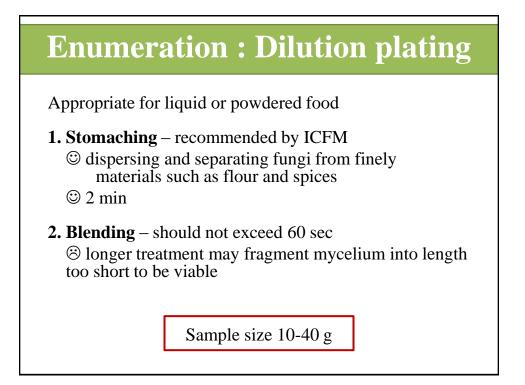

Fusarium spp.

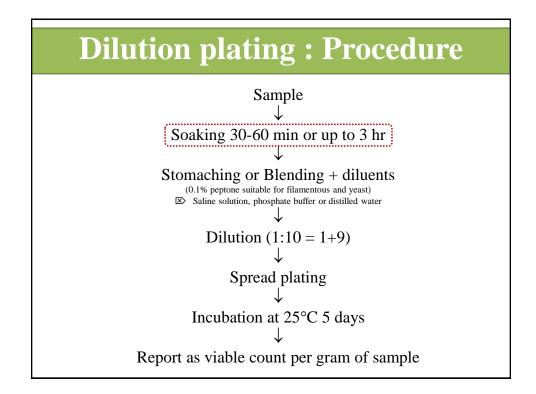
Fig. 1.8. Fusarium proliferatum (a) colonies on PDA (left) and DCPA (right), 7 days, 25 °C; (b) philaides bearing microcondia in chains and false heads in situ, bair = 50 µm; (c) macrocondia and microcondia, bar = 10 µm; (c) polyhtalides, bar = 10 µm; (e) monophilaides, bar = 10 µm. Source: Pitt and Hocking (2009), EjS -31, p. 117, reproduced with kind permission from Springe Science+Busines Media B.V. Fig. 1.9. Fusarium graminearum (a) colonies on PDA (left) and DCPA (right), 7 days. 25 °C; (b) Gibbarralia zanee perithecium and ascospores, har = 25 µm; (c) macroconidia, bar = 10 µm. Source: Pitt and Hocking (2009), Fig. 5 27, p. 103; reproduced with kind permission from Springer Science+Business Media B.V.

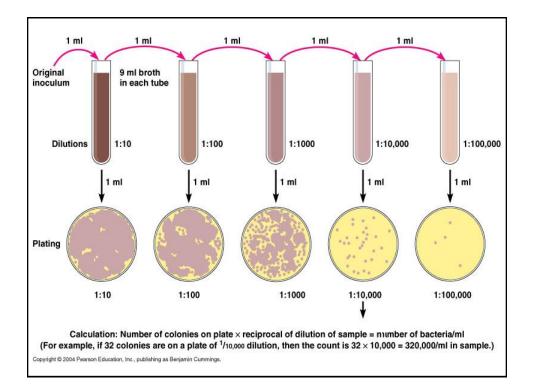


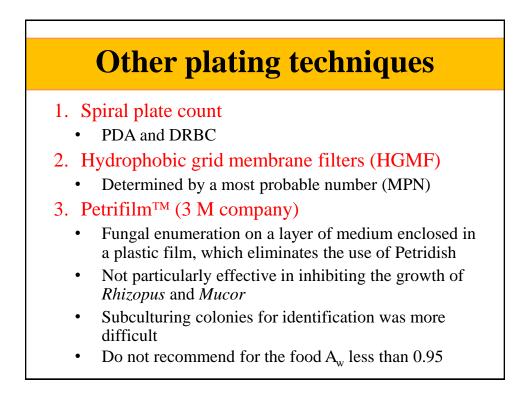

How to sampling?


Using an effective sampling plan


- AOAC, 1985
- APHA, 1984
- Barrow, 1983
- FDA, 1978
- ICMSF, 1974

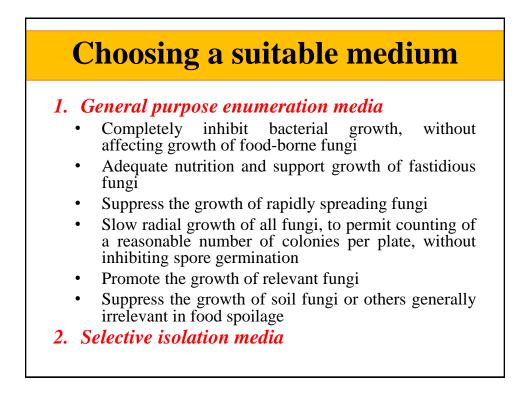



• Keep at 4⁰C



Isolation techniques

- **"Isolation"** = The preparation of a pure culture, free from any contamination and ready for identification
- 1. Streaking techniques
 - \otimes ineffective for filamentous fungi
 - $\ensuremath{\mathfrak{S}}$ not recommended
- 2. <u>Simplest</u> with needle and inoculate a single point on a plate


Short term storage

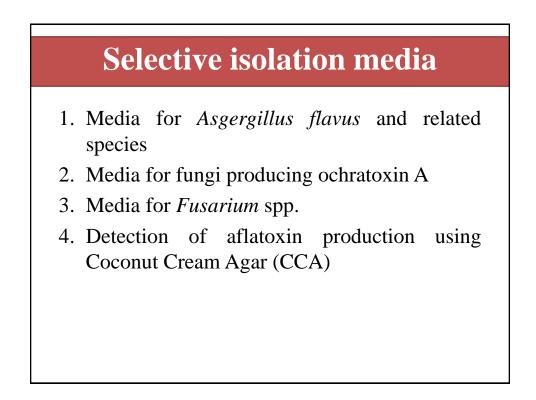
- Stored on slant
- Cap must be kept loose
- Fungi require free access to oxygen for typical growth and sporulation
- Oxygen starvation during growth will at best lead to retarded sporulation or at worst death of the culture

Long term storage

- 1. Lyophilisation
- 2. Spore suspension + 60-80% glycerol (as a cryoprotectant)
- 3. Water storage \rightarrow storage of agar block (7-10 mm2) in water \rightarrow keep at 1-10°C (up to 7 years)

General purpose enumeration media

1. Dichloran rose bengal chloramphenicol (DRBC)

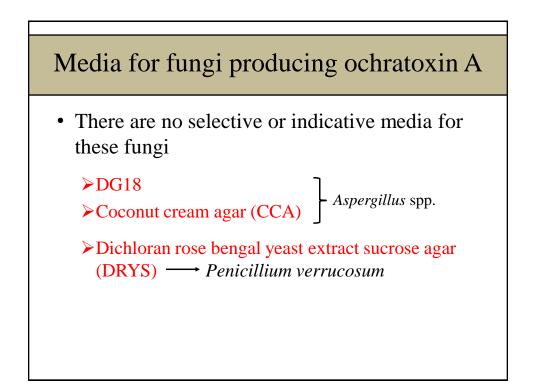

- Suit to fresh and high A_w foods
- Contains Rose Bengal 25 mg/kg + dichloran 2 mg/kg
- Restrict colony spreading (*Rhizopus* and *Trichoderma*) without affecting spore germination unduly

2. Dichloran 18% glycerol agar (DG18)

- Suit for low Aw food (stored grain, nuts, flour and spices)
- Support growth of the common Aspergillus, Penicillium and Fusarium spp. as well as most yeasts, and many other common foodborne fungi
- Bacteria are totally suppressed
- ▶ Useful medium for enumeration of airborne fungi
- 3. Rose bengal chloramphenicol agar (RBC)
- 4. Oxytetracycline glucose yeast extract agar (OGY)

Type of food	a for fungal detection, enumer Selecting for	Medium	Remarks	
Fresh foods: milk and milk	Moulds	DRBC	Blend (where necessary)	
products, fruit, cheese, sea	Yeasts	TGY, MEA, OGY	and dilution plate	
foods	General	DRBC		
Freshly harvested grains, nuts	General	DRBC	Direct plate	
	Dematiaceous Hyphomycetes	DRBC, CZID	Direct plate	
	Fusarium	CZID	Direct plate	
	Yeasts	TGY, MEA, OGY	Dilution plate	
Fruit juices, fresh	Yeasts	TGY, MEA, OGY	Dilution plate	
Fruit juices, preserved	Preservative resistant yeasts	TGYA, malt acetic agar	Dilution plate	
Fruit juices, to be pasteurised, or pasteurised products	Heat resistant moulds	PDA, MEA	Special protocol	
Fruit juice concentrates	Xerophilic yeasts	MY50G	Special diluents	
Dried foods in general	General	DG18	Direct plate	
Stored cereals, nuts	General	DG18	Direct plate	
	Dematiaceous Hyphomycetes	DRBC, CZID	Direct plate	
	Fusarium	CZID	Direct plate	

Type of food	Selecting for	Medium	Remarks Stomach or blend and dilution plate	
Grain for milling into flour	General	DG18		
Dried fruit, confectionery, chocolate, etc.	Xerophilic moulds and yeasts	MY50G	Direct plate	
enocorate, etc.	Fastidious xerophiles	MY50G	Direct plate	
	- in presence of Eurotium spp.	MY70GF	Direct plate	
Salt foods, e.g. salt fish	General	DG18	Direct plate or press plate	
	Halophilic xerophiles	MY5-12, MY10-12	Direct plate or press plate	
General	Fungi producing aflatoxins	AFPA	Direct or dilution plat	
General	Fungi producing ochratoxins	DRYS	Direct or dilution plate	
^a For medium acronyms, see Sect	tion 4.6.			



Media for Asgergillus flavus and related species

Aspergillus flavus and parasiticus agar (AFPA)

 \rightarrow Bright orange yellow reverse color

→Recommended for the detection and enumeration of potentially aflatoxigenic fungi in nuts, maize, spices and other commodities
③Rapidly, 48 hour incubation is usually sufficient
④Specificity, simplicity, little skill is required

Media for Fusarium spp.

© Dichloran chloramphenicol peptone agar (DCPA)

- Found to be less effective in mixed population
- Induces the formation of macroconidia

Fungicide

- © Czapek <u>iprodione</u> dichloran agar (CZID)
 - Suitable for isolation of *Fusarium* spp. either direct plating or dilution plating
 - Too selective and not support growth of all foodborne *Fusarium* spp.

Detection of aflatoxin production using Coconut Cream Agar (CCA)

Canned coconut cream ↓ Dilute 50:50 with water ↓ Added agar 1.5% ↓ Autoclave ↓ Inoculate up to 4 colonies ↓ Incubated at 30C 5-7 days ↓ Examine under long wave length UV light (Fluoresce bluish white or white) *Control = uninoculated coconut cream agar plate

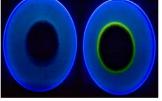
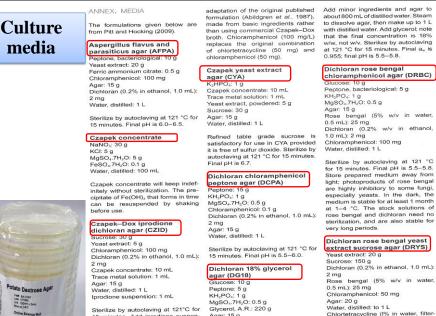



Figure 1. Characteristic beige ring shown by aflatoxigenic Aspergillus flavus (right side) on coconut agar medium

Sterilize by autoclaving at 121°C for 15 minutes. Add iprodione suspan-sion (0.3 g Roval 50WP [Rhône-Poulenc Agrochimie, Lyon, France] in 50 mL sterile water, shaken before addition to medium) after autoclaving. This formulation is an

Agar: 15 g Dichloran (0.2% w/v in ethanol, 1.0 mL): 2 mg Chloramphenicol: 100 mg Water, distilled: 1 L

Peptone, bacteriological: 5 g KH,PO, : 1 g MgSO,7H,O: 0.5 g Agar: 15 g Rose bengal (5% w/v in water, 0.5 mL): 25 mg Dichloran (0.2% w/v in ethanol, 1.0 mL): 2 mg

Store prepared medium away from light; photoproducts of rose bengal light; photoproducts of rose bengal are highly inhibitory to some fungi, especially yeasts. In the dark, the medium is stable for at least 1 month at 1–4 °C. The stock solutions of rose bengal and dichloran need no sterilization, and are also stable for very long periods.

0.5 mL): 25 mg Chloramphenicol: 50 mg Agar: 20 g Water, distilled: to 1 L Chlortetracycline (1% in v sterilized, 5.0 mL): 50 mg in water, filter-

Sterilize all ingredients except chlortetracycline by autoclaving at 121 °C for 15 minutes. Add

chlortetracycline after tempering to 50 °C. Chloramphenicol at twice the concentration specified (i.e. 100 mg/L) adequately controls bacteria in most situations, and this avoids the need for a second antibiotic that must be filtersterilized.

25% Glycerol nitrate agar (G25N)

Dextrose Aga

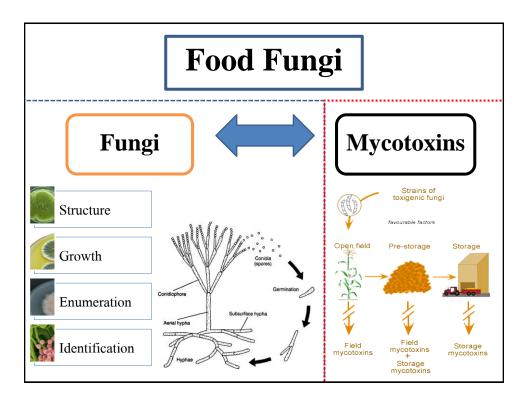
K₂HPO₄: 0.75 g Czapek concentrate: 7.5 mL Yeast extract: 3.7 g Glycerol, analytical grade: 250 g Agar: 12 g Water, distilled: 750 mL

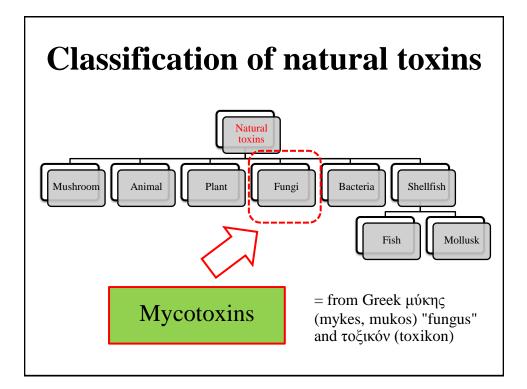
Glycerol for G25N should be of high quality, with a low (1%) water content. If a lower grade is used, allowance

should be made for the additional water. Sterilize by autoclaving at 121 °C for 15 minutes. Final pH is 7.0.

Malt extract agar (MEA)

Malt extract, powdered: 20 g Peptone: 1 g Glucose: 20 g Agar: 20 g Water, distilled: 1 L

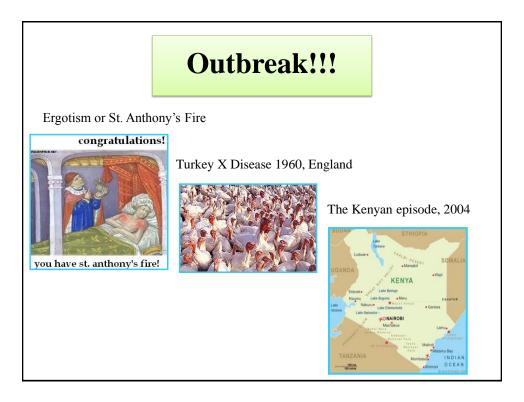

Commercial malt extract used for home brewing is satisfactory for use in MEA, as is bacteriological peptone. Sterilize by autoclaving at 121 °C for 15 minutes. Do not sterilize for longer as this medium will become soft on prolonged or repeated heating. Final pH is 5.6.


Potato dextrose agar (PDA)


Potatoes: 250 g Glucose: 20 g Agar: 15 g Water, distilled: to 1 L

PDA prepared from raw ingredients is more satisfactory than commercially prepared media. Wash the potatoes, which should not be of a red skinned variety, and dice or slice, unpeeled, into 500 mL of water. Steam or boil for 30-45 minutes. At the same time, melt the agar in 500 mL of water. Strain the potato through several layers of cheesecloth into the flask containing the melted agar. Squeeze some potato pulp through also. Add the glucose, mix thoroughly, and make up to 1 L with water if necessary. Sterilize by autoclaving at 121 °C for 15 minutes.

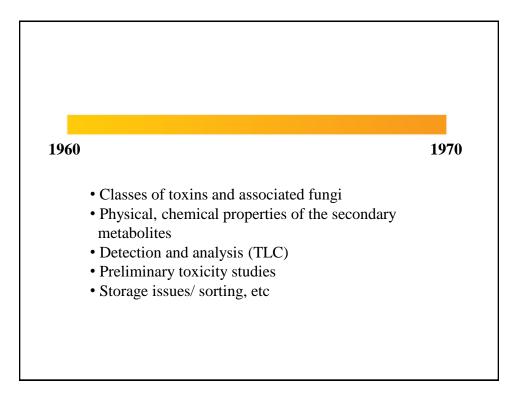
Quiz#7 : The Vietnamese company which manufacture the dried lotus seed would like to investigate the contamination of mycotoxigenic fungi in their product. Unfortunately, they don't know how to do? You are the food technologist who are specialize in this area. What will you tell/ explain and design the experiment for them. Please explain. (20 pts.)

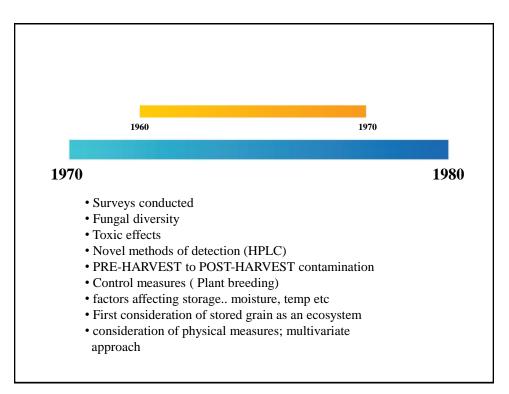


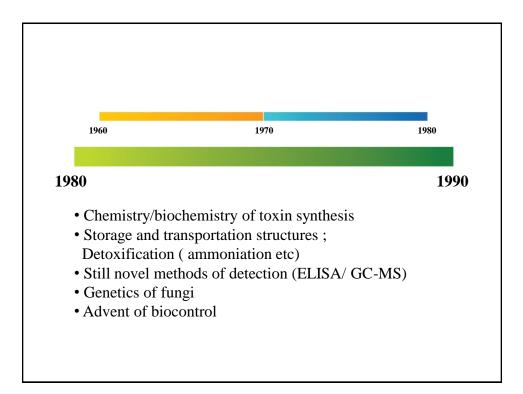
- Toxins can be small molecules, peptides, or proteins that are capable of causing disease on contact with or absorption by body tissues interacting with biological macromolecules such as enzymes or cellular receptors.
- Toxins vary greatly in their severity, ranging from usually minor (such as a bee sting) to almost immediately deadly (such as botulinum toxin).

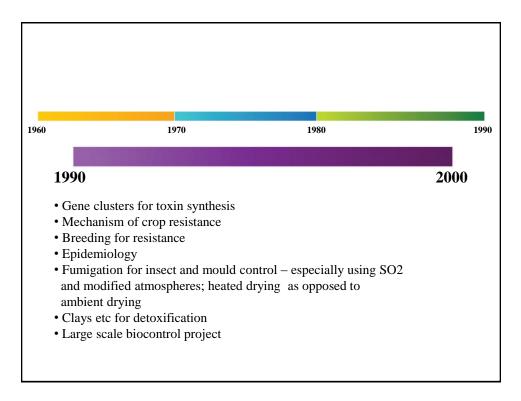
MYCOTOXINS

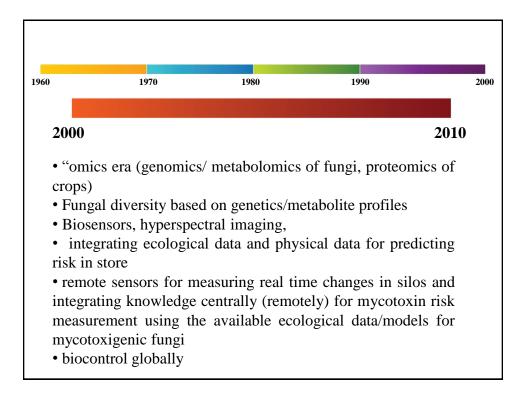
"Fungal metabolites which when ingested, inhaled or absorbed through the skin cause lowered performance, sickness or death in man or animals including birds"

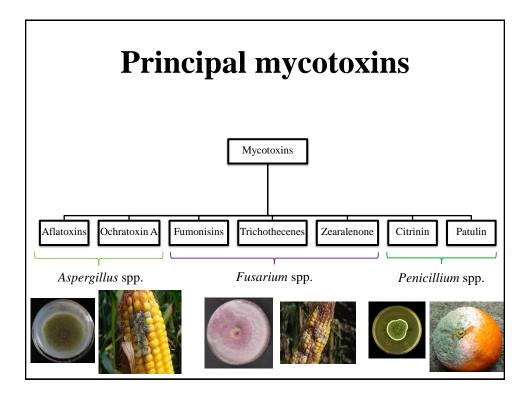

Pitt, 1996

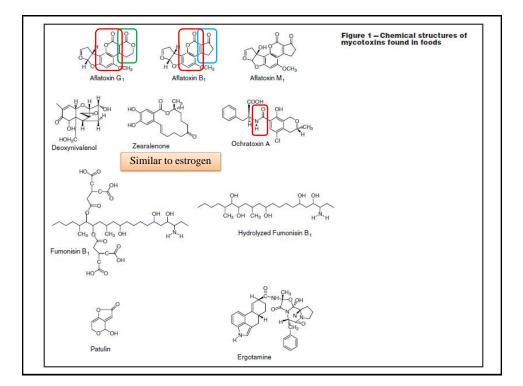



Mycotoxins


- Over 300 fungi produced toxic compounds that contaminate a wide variety of agricultural commodities
- Secondary metabolites produced by mould (mainly *Aspergillus, Penicillium, Fusarium*) that are known to cause toxic effects in human or animals
- Low molecular weight
- Resistance to common thermal treatments
- Contamination occurs in the field and can increase during harvesting and storage


Mycotoxins Ingestion cause a range of toxic response, from acute to ٠ chronic health disorders Affect trade ٠ • Cereal and cereal products, dried fruit, spices, coffee, wine, beer, milk, cheese, meat and egg may be contaminated by mycotoxins More than 25% of foods are considered significantly ٠ contaminated by mycotoxins • Contamination and severity of the problem vary from year to year also from one geographic region to another • More than 400 different mycotoxins are known about 10% of which occur in feed/foods, being the main source for animal/human exposure





Hazard category	Alert	Border rejection	Information for attention	Information for follow-up
Allergens	64	3	17	1
Biocontaminants	6	9	26	2
Food additives and flavourings	10	59	23	47
Foreign bodies	24	61	26	47
GMO/novel food	2	52	14	22
Heavy metals	57	108	79	24
Industrial contaminants	16	9	18	14
Mycotoxins	38	425	53	9
Parasitic infestation	4	13	13	25
Pathogenic microorganisms	162	159	168	103
Pesticides residues	19	320	90	18
Residues of veterinary medicinal products	12	18	16	14

Mycotoxin	Acronym	Species producing		
Aflatoxins B1, B2, G1, G2	AFB1	Aspergillus section Flavi		
	AFB2			
	AFG1			
	AFG2			
Alternariol	AOH	Alternaria alternata		
Alternariol monomethyl ether	AME	Alternaria alternata, A. solani		
Tenuazonic acid	TeA	Alternaria alternata,		
Altertoxins	ALTs	A. tenuissima		
Altenuene	ALT	Alternaria alternata		
		Alternaria alternata		
Beauvericin	BEA	F. sporotrichioides, F. poae,		
		F. langsethiae, Fusarium section		
		Liseola, Fusarium avenaceum		
Enniatins	ENNs	Fusarium avenaceum, F. tricinctum		
Fusaproliferin	FUS	F. poae, F. langsethiae, F. sporotrichioides		
		F. proliferatum, F. subglutinans		
Moniliformin	MON	Fusarium avenaceum, F. tricinctum, Fusarium section Liseola		
Ergot alkaloids	EAs	Claviceps purpurea, C. fusiformis, C. africana, Neotyphodium spp.		
Fumonisins B1, B2	FB1,	Fusarium section Liseola		
	FB2			
Ochratoxin A	OTA	Aspergillus section Circumdati		
		Aspergillus section Nigri		
		Penicillium verrucosum		
		Penicillim nordicum		
Patulin	PAT	Penicillim expansum, Bysochlamis nívea, Aspergillus clavatus		
HT-2 and T-2 toxin (type A trichothecenes)	HT-2	Fusarium acuminatum, F. poae,		
	T-2	F. sporotrichioides, F. langsethiae		
Deoxynivalenol (type B trichothecenes)	DON	Fusarium graminearum, F. culmorum, F. cerealis		
Zearalenone	ZEN	Fusarium graminearum (F. roseum), F. culmorum, F. equiseti, F. cerealis, F. verticillioides, F. incarnatum		

Mycotoxins of major concern occuring in food/feed and relevant fungal producer

Mycotoxins	Matrix	Fungus
Aflatoxins (B ₁ , B ₂ , G ₁ , G ₂)	Maize, peanuts, nuts, spices, dried fruit	Aspergillus flavus, A. parasiticus
Aflatoxin M ₁	Milk, cheese	
Ochratoxin A	Wheat, barley, maize, coffee, wine, beer	Aspergillus ochraceus, A. carbonarius, A, niger, Penicillium verrucosum
Deoxynivalenol	Wheat, maize, barley	Fusarium graminearum, F. culmorum
T-2/HT-2 toxins	Wheat, maize, barley, rye, oats	F. sporotrichioides, F. langsethiae, F. poae
Zearalenone	Maize, wheat	F. graminearum, F. culmorum, F. crookwellense
Fumonisins (B ₁ , B ₂ , B ₃)	Maize	F. verticillioides (F. moniliforme), F. proleferatum
Patulin	Apple products, fruit juice	P. expansum

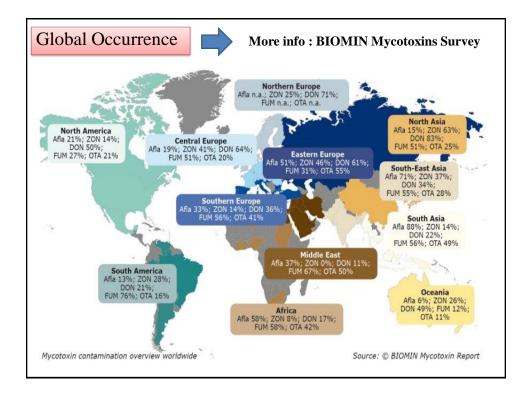
Major genera of mycotoxigenic fungi

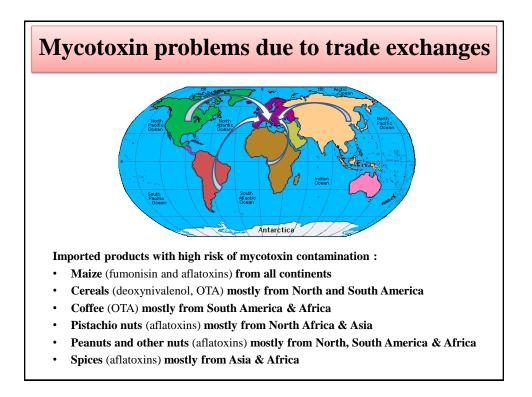
Aspergillus

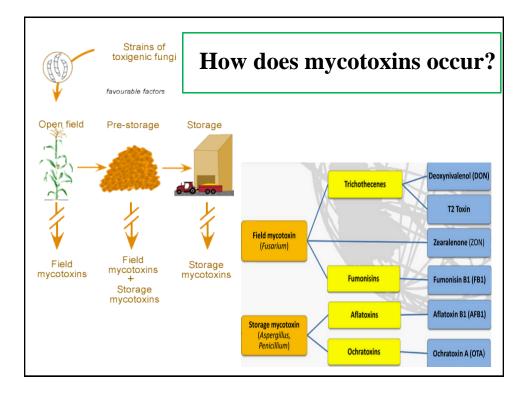
- Large family of fungi generally regarded as **saprophytes**
- Worldwide in distribution but primarily occupy subtropical and warm temperate climates
- Growth at high temperatures and low water activity

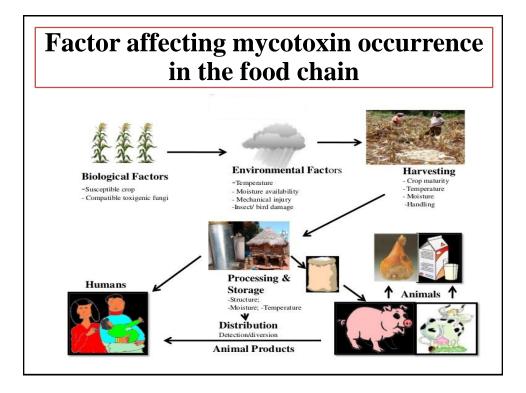
Penicillium

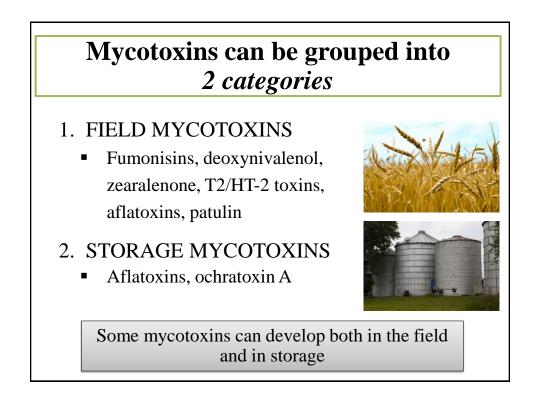
- Grow and produce mycotoxins over a wide range of temperatures
- More abundant in temperate climates
- Commonly associated with storage

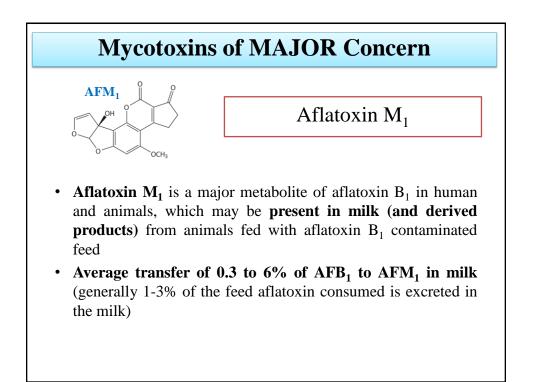

Fusarium

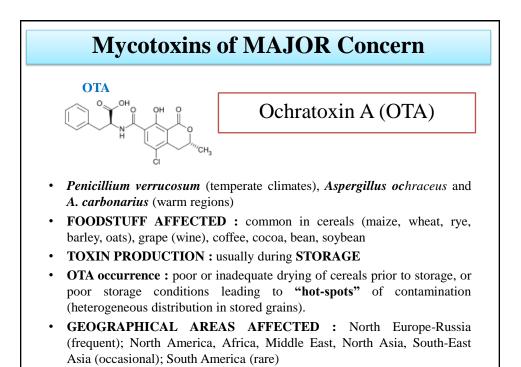

- Adapted to a wide range of habitats and **worldwide in** distribution
- Important plant pathogens
- Few species are significant mycotoxin producers

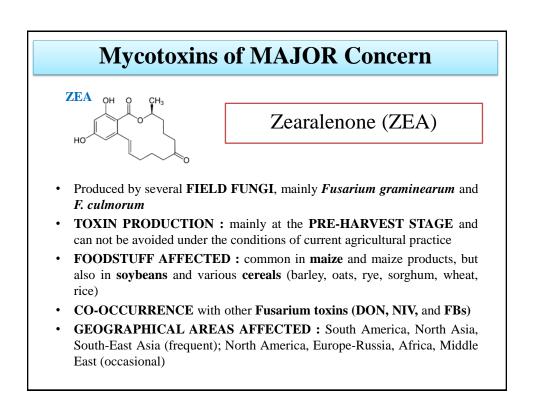




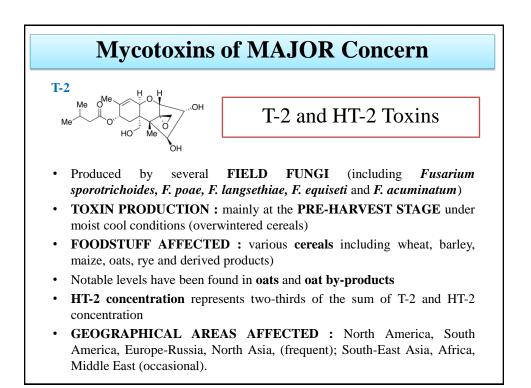


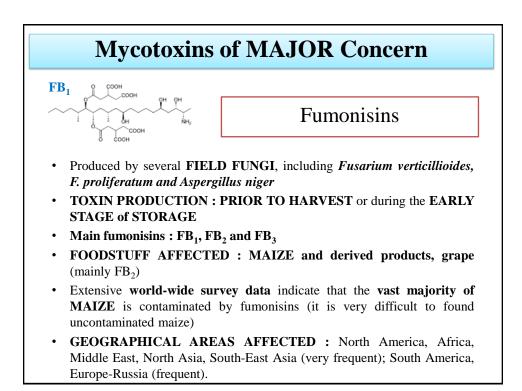


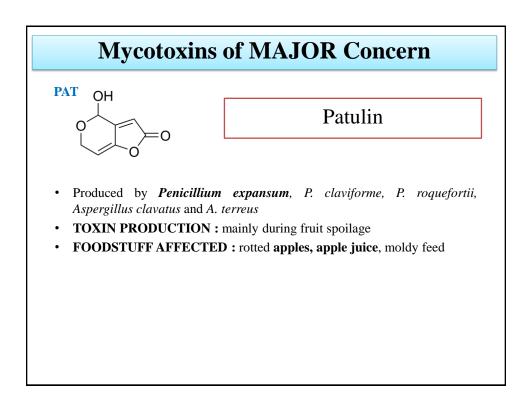




America (occasional); Europe-Russia, North Asia (rare)

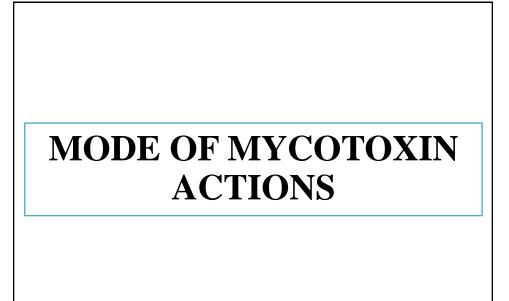


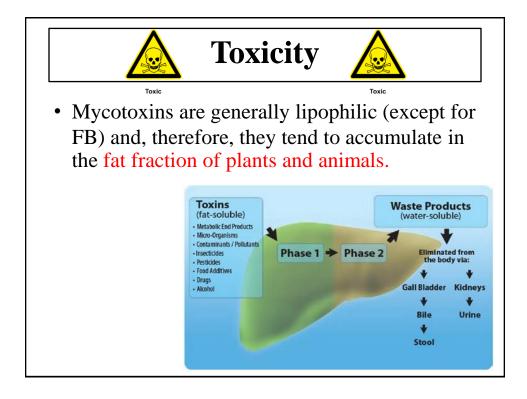


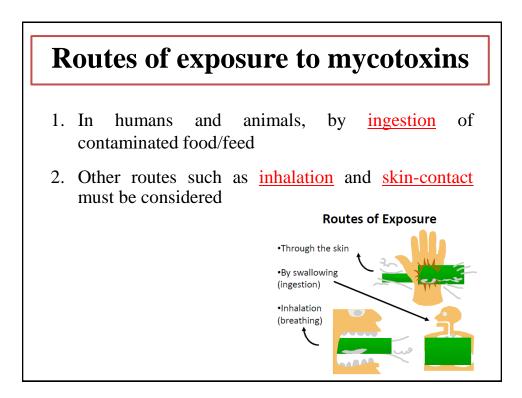


Mycotoxins of MAJOR Concern DON Deoxynivalenol (DON) ОН НŌ • Produced by several FIELD FUNGI, including Fusarium graminearum and *F. culmorum*, which commonly contaminate cereal crops in Europe. It is one of the World's best-known and most common mycotoxins. TOXIN PRODUCTION : mainly at the PRE-HARVEST STAGE and can not be avoided under the conditions of current agricultural practice **FOODSTUFF AFFECTED** : various cereals including wheat, barley, • maize, rye, oats and derived products, beer) CO-OCCURRENCE with other trichothecenes (NIV, 3- and 15acetylDON) • GEOGRAPHICAL AREAS AFFECTED : South America, North Asia, South-East Asia, North America, Europe-Russia, Africa, Middle East

(frequent)



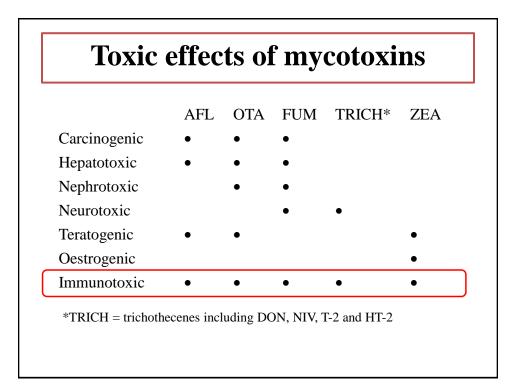


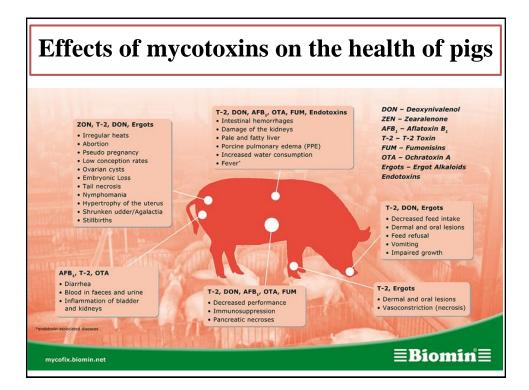

Mycotoxins of MINOR concern

Mycotoxins that pose a minor risk to human and animal health as food and feed contaminants are these following;

Mycotoxins	Fungal species
Tenuazonic acid alternariol	Alternaria spp.
Cyclopiazonic acid	Aspergillus flavus, A. tamarii, A. versicolor, Penicillium camembertii, P. cyclopium
Citrinin	P. citrinum, P. verrucosum, P. expansum
Sterigmatocystin	A. versicolor, A. flavus, A. parasiticus
Moniliformin	Fusarium proliferatum, F. oxysporum
Beauvericin	Beaveria bassiana, Fusarium spp.
Enniatins	Fusarium spp.

Mycotoxicoses

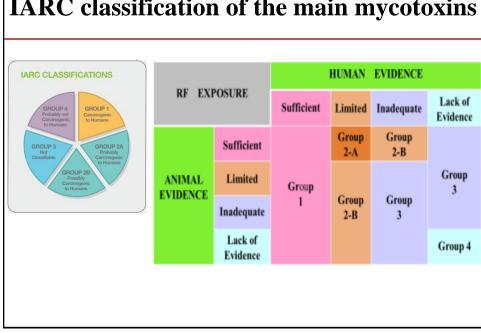

= Disease resulting from exposure to mycotoxins


- 1. ACUTE mycotoxicoses
 - ✤ Due to the ingestion of **high amounts** of mycotoxins
 - Usually restricted to livestock or to human population of developing countries
- 2. CHRONIC mycotoxicoses
 - Produced by mycotoxins occurring in foods and feeds at lower levels
 - ✤ Affect **animal** and **human health** in the long-term

Biological effects

- For their diversity of chemical structures and physical properties, mycotoxins exhibit a wide range of biological effects
 - ✤ GENOTOXIC
 - ✤ MUTAGENIC
 - ✤ CARCINOGENIC
 - EMBRYOTOXIC
 - ✤ TERATOGENIC
 - ✤ OESTROGENIC

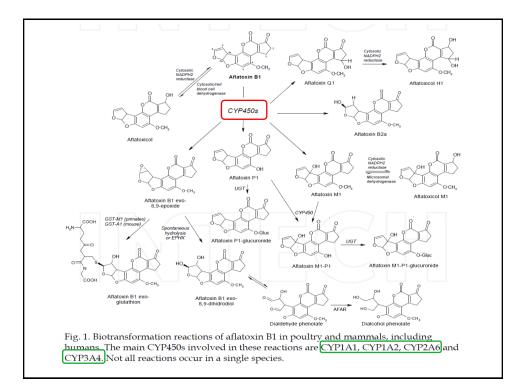
Some human diseases in which analytical and/or epidemiologic data suggest or implicate mycotoxin involvment

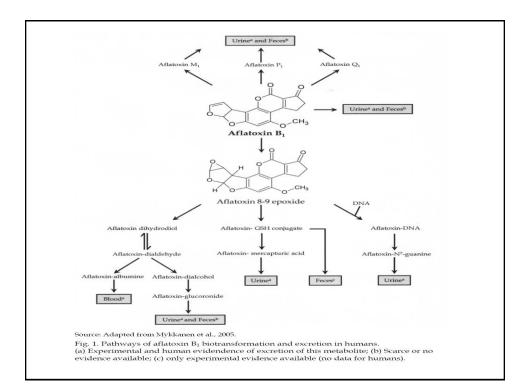

Disease	Substrate	Etiologic agent		
Alimentary Toxic Aleukia (ATA)	Cereal grains	Fusarium spp.		
Balkan nephropathy	Cereal grains	Penicillium spp., Aspergillus ochraceus		
Ergotism	Rye	Claviceps purpurea		
Kashin-Beck disease	Cereal grains	Fusarium spp.		
Esophageal tumors	Maize	Fusarium verticillioides		
Hepatocarcinoma (acute aflatoxicosis)	Cereal grains, peanuts	Aspergillus flavus, A. parasiticus		
Kwashiorkor	Cereal grains	Aspergillus flavus, A. parasiticus		
Reye's syndrome	Cereal grains	Aspergillus flavus, A. parasiticus		
Onyalai	Millet	Phoma sorghina		

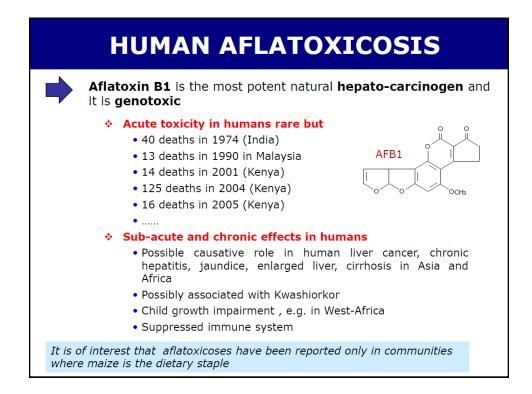
IARC EVALUATION OF CARCINOGENIC HAZARD OF MYCOTOXINS TO HUMNS

International Agency for Research on Cancer (IARC)

OVERALL	EVALUATION	ΜΙCΟΤΟΧΙΝ		
Group 1	Carcinogenic to humans	Aflatoxins (naturally occurring mixture of $B_1, B_2, G_1 \in G_2$)		
Group 2B	Possibly carcinogenic to humans	Aflatoxin M1 Ochratoxin A Fumonisin B ₁		
Group 3	Not classifiable as its carcinogenicity to humans	Toxins derived from <i>Fusarium</i> graminearum, F. culmorum, F. crookwellense and F. sporotrichioides (zearalenone, deoxynivalenol, T-2 toxin, nivalenol)		
. 199		Carcinogenic risk to humans. VOL. 56, gency for Research on Cancer (IARC),		


IARC classification of the main mycotoxins


Toxicity of Major Mycotoxins


Mycotoxin	Commodities	Toxicity
Ochratoxins	Cereals, coffee beans, grapes	Nephrotoxin, immunosuppressant, teratogen, suspected carcinogen
Trichothecenes	Maize (corn) , cereals, wheat, barley, oats, rye, rice, others	Cytotoxicity, protein synthesis inhibition, emetic toxicity
Fumonisins	Maize (corn), wheat and other cereals	Hepatotoxin
Aflatoxins	Maize (corn), nuts, copra, cottonseed, milk	Hepatotoxin, synergistic toxicant, potent carcinogen, growth inhibitor

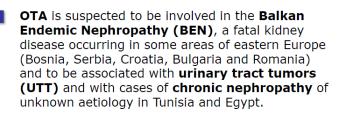
Aflatoxins

- It is well established that AFB₁ is both carcinogenic and cytotoxic
- AFB₁ can inhibit cyclic nucleotide phosphodiesterase activity in the brain, liver, heart, and kidney tissues.

Hepato-carcinogenicity AFLATOXIN B₁

- Liver cancer: positive correlation between estimated aflatoxin intake and epatocellular carcinoma (HCC) rates
- Hepatitis B virus (HBV): Strong evidence of an additive interaction between aflatoxin intake and HBV, in relation to increased HCC risk.
- The overall incidence from epidemiological studies shows a particular high risk of HCC from aflatoxin exposure in individuals chronically infected with HBV and reasonable evidence that an increased risk also exists in individuals exposed to aflatoxins without chronic HBV infection

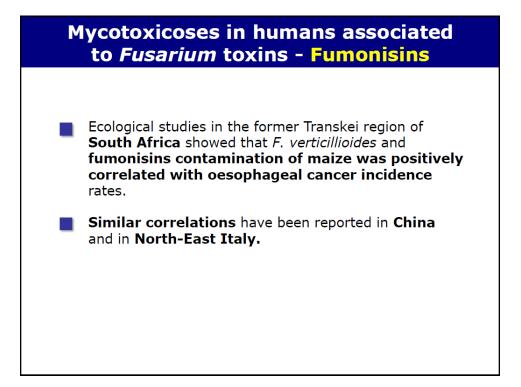
Given that >350 million chronic HBV carriers exists in the world, many living in aflatoxin-endemic area, the need to reduce aflatoxin exposure remain highly relevant for cancer prevention


Hepato-carcinogenicity AFLATOXIN M₁

- Since aflatoxin M₁ is a metabolite of aflatoxin B₁ and is presumed to induce liver cancer in rodents by a similar mechanism, estimates of the potency of aflatoxin B₁ can be used for determining the risk due to intake of aflatoxin M₁.
- No adequate epidemiological studies exist on the doseresponse relationships between the intake of aflatoxin M₁, exposure to hepatitis B or C virus, and liver cancer. JECFA (Joint FAO/WHO Expert Committee on Food Additives) therefore assumed that aflatoxin M₁ acts similarly to aflatoxin B₁ with hepatitis B (and possibly) C virus.
- The Committee assumed that the potency of aflatoxin M₁ was one-tenth that of aflatoxin B₁ in rat.

Ochratoxins

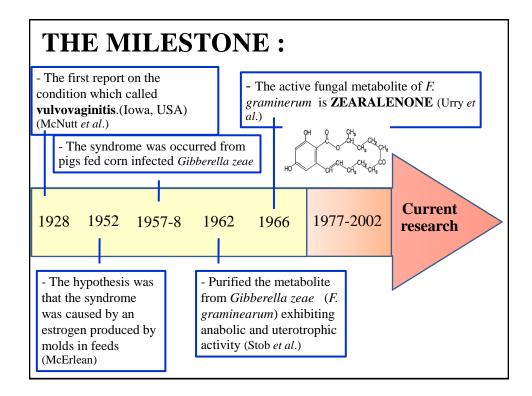
- International Agency for Research on Cancer (IARC) has classified OTA as a possible human carcinogen (group 2B).
- Currently, the mode of carcinogenic action by OTA is unknown.
- OTA is genotoxic following oxidative metabolism.
- This activity is thought to play a central role in OTAmediated carcinogenesis and may be divided into
 - direct (covalent DNA adduction) and
 - indirect (oxidative DNA damage) mechanisms of action

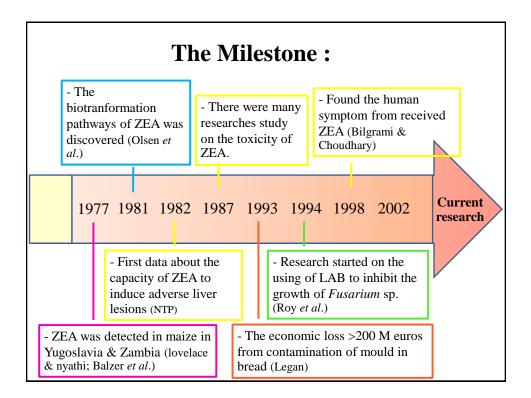


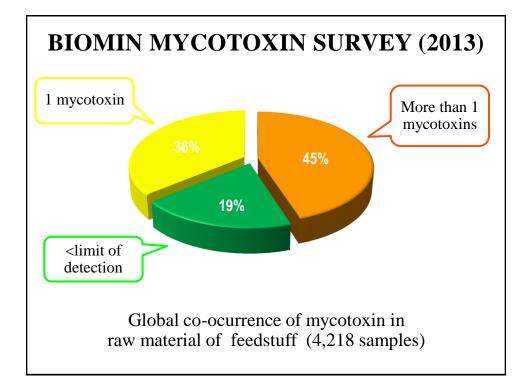
Evidence of relationships between hepatocellular carcinoma (HCC) and ochratoxicosis (by the analysis of the presence of OTA in the serum of HCC patients)

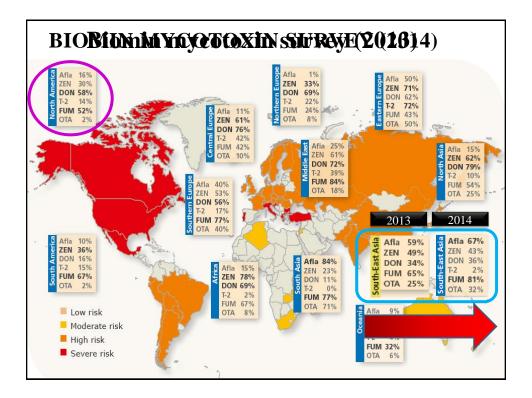
Fumonisins

- Both cytotoxic and carcinogenic to animals.
- The modes of such actions, however, are not completely understood
- FB1 exerts its cytotoxicity by inhibiting sphingolipid metabolism, protein metabolism, and the urea cycle.
- The carcinogenic role of FB1 has been linked to the accumulation of sphingoid bases that cause unscheduled DNA synthesis (Schroeder et al., 1994), alteration of signaling by cAMP (Huang et al., 1995) and protein kinase C (Yeung et al., 1996), and disruption of normal cell cycling


Tricothecenes


- Cytotoxicity of trichothecenes has been attributed to their potent inhibition of protein, RNA, and DNA synthesis (Liao et al., 1976)
- Other toxic effects of trichothecenes include disruption of membrane transport and function, suppression of the immune response, and abnormal blood function


Zearalenone


- Has been known for its estrogenic effects on animals.
- It binds to estrogen receptors influencing estrogen dependent transcription in the nucleus (Kolb, 1984).
- Receptor binding by ZEN has been shown to inhibit the binding estrogenic hormones in rat mammary tissues (Boyd and Wittliff, 1978).
- Recent studies (Ahamed et al.,2001; Withanage et al., 2001) have demonstrated the potential for ZEN to stimulate growth of human breast cancer cells containing estrogen response receptors.

BIOMIN MYCOTOXIN SURVEY (2014)							
		Afla	ZEA	DON	T-2	FUM	OTA
100% 0% 0% 0% 0%	Number of samples tested (n)	1,751	1,767	1,762	436	1,651	1,686
	Average of positive (ppb)	104	167	512	18	1,399	7
	Maximum (ppb)	5,155	6,215	8,901	61	130,24 6	854
Asia		orth nerica	Sout Amer		Middle East	Afı	ica
Afla ZEN DON T-2 FUM OTA							
Prevalence of major mycotoxins by region.							

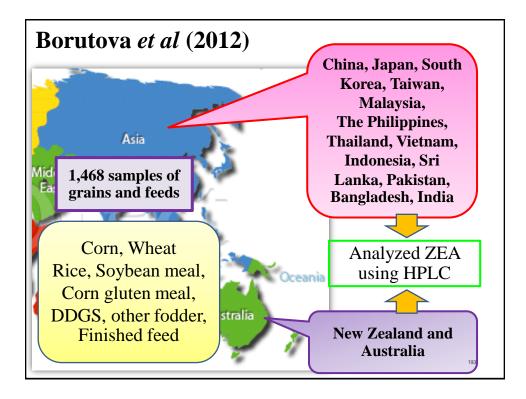
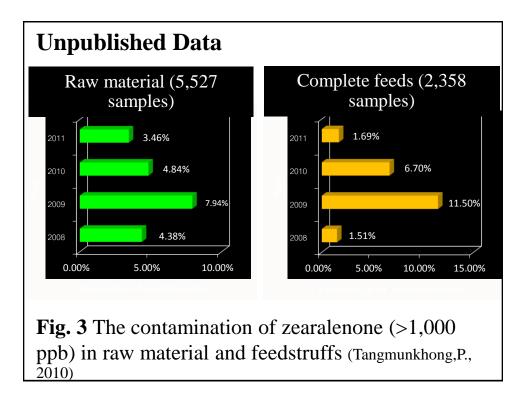


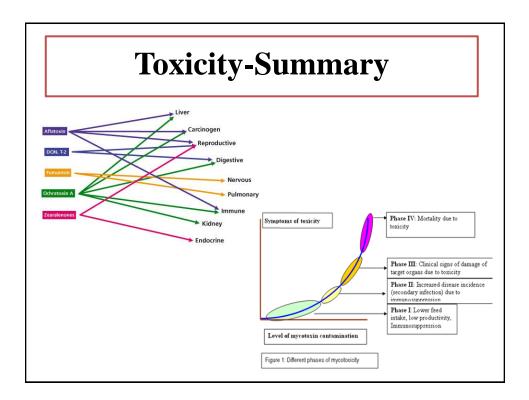
Table 1 Zearalenone contamination levels $(\mu g/kg)$ detected in samples from different regions in Asia and Oceania

Statistical parameter	Zearalenone			
Total samples analyzed	1,464			
Percentage of positive samples (%)	47.5			
Mean of positive ^a (µg/kg)	311.6			
Maximum concentration ^b (µg/kg)	16,712			
^a Percentage of positive samples refers to results above the limit of quantification of the				

HPLC method.

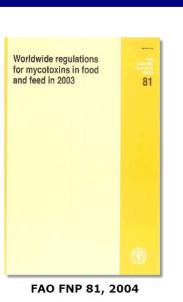
^b Mean of positive excludes results below the limit of quantification.


Li et al (2014)		
	Mycotoxins	Zearalenon e
	Positive samples (n)	21
	Contamination incidence (%)	27.6
	Mean value of positive samples (µg.kg ⁻¹)	76.5
	Range of contamination (µg.kg ⁻¹)	10.0~440.0


Table 2 Frequency of co-occurrence of mycotoxins
in analyzed samples.

Sample types	Co-occurrence of mycotoxins (%)					
	AFs-ZEA	AFs- OTA- ZEA	OTA- ZEA	ZEA- DON	OTA- ZEA- DON	
Rice	-	-	14.3	-	-	
Wheat	-	-	-	7.6	-	
Oil	22.2	-	-	-	-	
Maize	7.1	-	7.1	7.1	7.1	
Peanut, Soybean	27.3	12.5	-	-	-	
Oats	-	-	9.1	-	-	

20 Ingsa Temple Crout Gyeongbokg	1708 m Sokch'o Segrat san National Park Ch'unch on Gangneum 20	Ok <i>et</i> № (2014)			
10 Hwaseon Sumar		Brown rice	White rice		
Ch'ònan		ZEA	ZEA		
	ositive samples (n)	67	7		
	ontamination incidence)	83.8	8.8		
Wolchuisan	ange of contamination g/kg)	4.2-201.3	4.0-11.5		
Mokp'o Changhung	Tongyong stratt	H	PLC		
Import Interest Jeju Strait 34*N National Park Jeju Strait Jeju Jeju-do Late Jeju Jeju-do Japan Cheonjeyeon Waterfall Hallasan National Park Joponto Solutional					
Copyright © 2013 www.mapsofworld.com (Updated on 22nd February, 2013)	12978 0 25 Mile	22			


	Singkong et al (2013)				
เทนือ		Corn 55 samples			
กำแพง					
ตะวันออกเพียงเหนือ		D		ELISA (Veratox)	
กลาง	Corn type	Corn samples		ZEA contamination (µg/kg)	
		Analyzed	Positive (%)	Range	Average
	Pop Corn	14	2 (14.3)	6.5-17.6	12.1
	Sweet Corn	11	3 (27.3)	20.2-236	117.7
	Flour Corn	6	1 (16.7)	7.2	7.2
ใต้	Waxy Corn	10	2 (20.0)	7.6-62.9	35.3
	Field Corn	14	9 (64.3)	7.3-126	26.5
	Total	55	17 (30.9)	6.5-236	50.5

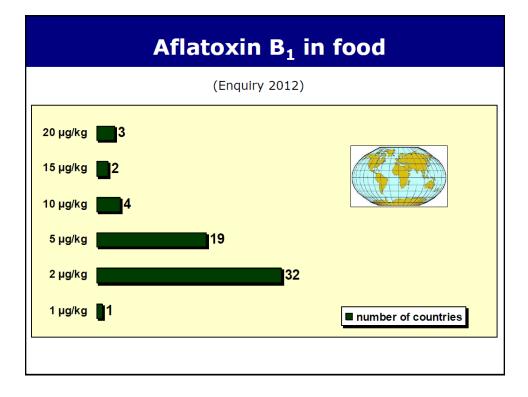
Enquiries on mycotoxin regulations Hans van Egmond - RIKILT

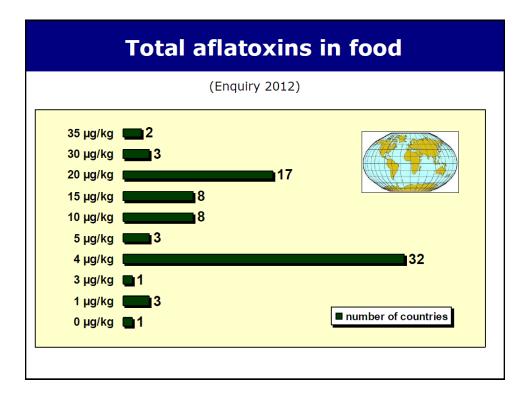
- Worldwide enquiries: 1981, 1987, 1995, 2003, 2012, resulting in various publications
- in 2012: enquiry on economically important regions (not published)
- Enquiry 2003 published as FAO FNP 81 (2004)
- French, Spanish and Chinese translations available
- Mycotoxin regulations exist in at least 100 countries and for 13 different toxins

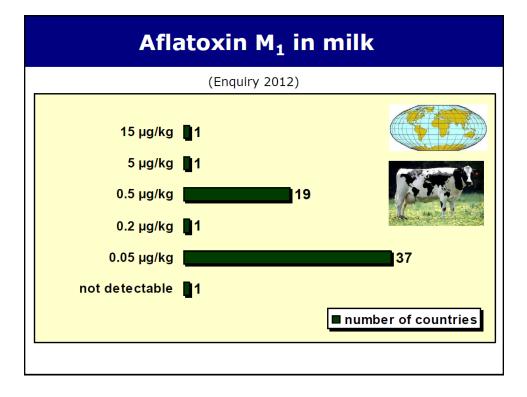
Worldwide mycotoxin regulations exist for: Aflatoxins B₁, B₂, G₁ and G₂; aflatoxin M₁ Trichothecenes (DON, DAS, T-2/HT-2 toxins) Fumonisins B₁, B₂ and B₃ Ergot alkaloids Ochratoxin A Patulin Sterigmatocystin Zearalenone Agaric acid

• Phomopsins

European Union regulations for a Feed	AfB1	Feed	AfB1
Feed (exceptions below)	50	Complete feedstuff for pigs and poultry	20
Groundnuts, copra, palm kernel,	20	Other complete feedstuffs	10
cottonseed, babasu, maize and products derived from processing thereof		Complementary feedstuffs for cattle, sheep, goats (except dairy, calves and lambs)	50
Complete dairy feed	5	Complementary feedstuffs	30
Complete feed for lambs and calves	10	for pigs and poultry (except for young animals)	


Table 2			
European Union regulations for aflatoxi	ins (μg/kg	g)	
Human food	AfB1	AfB1, B2, B3, B4	M1
Groundnuts, dried fruit and processed products thereof	2	4	_
Groundnuts subjected to sorting or phys. treating	8	15	_
As above but for nuts and dried fruits	5	10	_
Cereals (including maize) and processed products thereof	2	4	_
Milk	_	_	0.05


Table 9	
European Union regulations for ochratoxin (µg/kg)	
Product	Concentration
Raw cereal grains	5
All products derived from cereals intended for direct human consumption	3
Dried vine fruit (currants, raisins and sultanas)	10


European Union regulations for zearalenone (µg/kg)		
Product	Concentration	
Unprocessed cereals other than maize	100	
Unprocessed maize	200	
Cereal flour except maize flour	75	
Maize flour, meal, grits and refined maize oil	200	
Bread, pastries, biscuits, other cereal snacks and breakfast cereals	50	
Maize snacks and maize-based breakfast cereals	50	
Processed maize-based foods for infants and young children	20	
Other processed cereal-based foods for infants and young children and baby food	20	

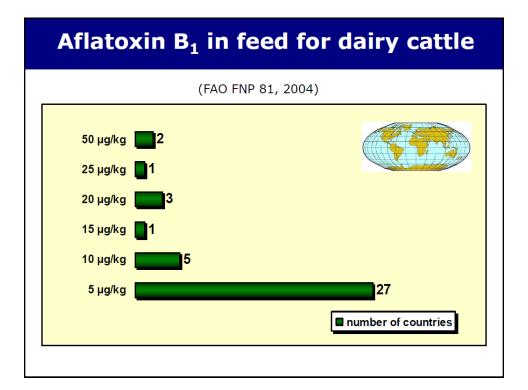
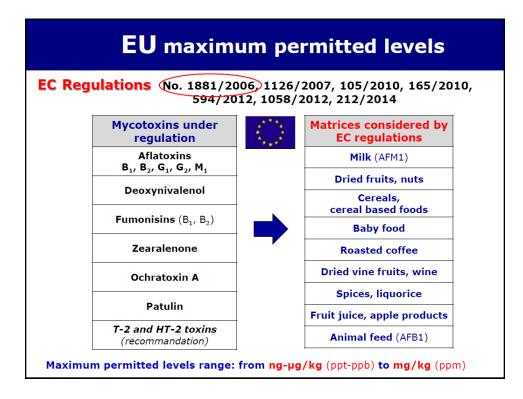

	Concentration total fumonisins
	(FB1, FB2, FB3)
Human foods	
Degermed dry milled corn products	2
Whole/partially degermed dry milled corn product	4
Dry milled corn bran	4
Cleaned corn intended for mass production	4
Cleaned corn intended for popcorn	3
Corn and corn byproducts for animals	
Equids and rabbits	5 <20% diet
Swine and catfish	20 <50% diet
Breeding ruminants, poultry, mink, dairy cattle, laying hens	30 <50% diet
Ruminants >3 mos. before slaughter and mink for pelts	60 <50% diet
Poultry for slaughter	100 <50% diet
All other livestock and pet animals species	10 <50% diet

Table 7 European Union regulations for fumonisins (µg/kg)		
Product	Concentration	
Unprocessed maize	2000	
Maize grits, meal and flour	1000	
Maize-based food for direct consumption except maize grits, meal, flour and processed maize-based foods for infants and young children and baby food	400	
Processed maize-based foods for infants and young children and baby food	200	



Mycotoxin regulating countries in the European Union

28 member countries (accession of Croatia on 1 July 2013)

- EU-harmonized legal limits exist for aflatoxins, ochratoxin A, patulin, DON, zearalenone, fumonisins
- EU indicative levels for T-2/HT-2
- EU feed limits exist for aflatoxin B₁
- EU feed guidance values exist for ochratoxin A and some F. toxins

COMMISSION REGULATION (EC) No. 1881/2006

setting maximum levels for certain contaminants in foodstuffs (including some mycotoxins)

MYCOTOXINS	FOODSTUFFS
AFLATOXINS	Groundnuts, nuts, and processed products; dried fruit and processed products; all cereals and all products derived from cereals; milk; spices; baby foods; dietary foods for special medical purposes
OCHRATOXIN A	Unprocessed cereals and derived products; dried vine fruit; roasted and soluble coffee; wine, fruit wine, aromatised wine, grape juice, grape must; baby foods; dietary foods for special medical purposes
PATULIN	Fruit juices; spirit drinks; solid apple products; baby foods
DEOXYNIVALENOL ZEARALENONE FUMONISINS	Amended by Commission Regulation (EC) No 1126/2007

COMMISSION REGULATION (EC) No 1126/2007

amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products		Maxim. Levels (µg/kg)		
Foodstuffs	DON	ZEA	FUM	
Unprocessed cereals other than maize	1250	100	-	
Unprocessed durum wheat and oats	1750	100	-	
Unprocessed maize	1750	350	4000	
Cereals intended for direct human consumption, cereal flour, bran, germ	750	75	-	
Pasta (dry)	750	-	-	
Bread, pastries, biscuits, cereal snacks and breakfast cereals	500	50	-	
Maize and maize-based foods intended for direct human consumption	-	100	1000	
Maize based snacks and maize-based breakfast cereals	-	100	800	
Processed cereal-based foods and baby foods for infants	200	20	200	
Milling fractions of maize with particle size >500 micron not used for direct human consumption	750	200	1400	
Milling fractions of maize with particle size \leq 500 micron not used for direct human consumption	1250	300	2000	
Refined maize oil	-	400	-	

Prevention strategies

General CODEX (FAO/WHO) codes for the prevention and reduction of mycotoxins available free at *www.codexalimentarius.org*

- CAC/RCP 45-1997: AFB₁ in feeding stuffs for cows
- CAC/RCP 50-2003: PAT in apple juice
- CAC/RCP 51-2003: Mycotoxins in cereals (OTA, ZEA, FB, TRIC)
- CAC/RCP 55-2004: AF in peanuts
- CAC/RCP 59-2005: AF in tree nuts
- CAC/RCP 63-2007: OTA in wine
- CAC/RCP 65-2008: AF in dried figs
- CAC/RCP 69-2009: OTA in coffee

•

Off. J. EU (2006), L 234/35-40 Commission recommendation on prevention and reduction of *Fusarium* toxins in cereals

PRE-HARVEST PREVENTION

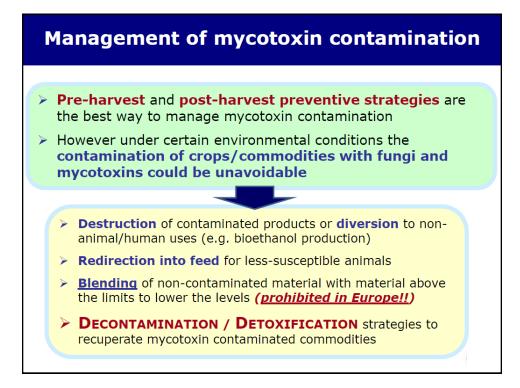
RECOMMENDED **P**RACTICES BASED ON **GOOD AGRICULTURAL PRACTICES** (GAP)

Pre-harvest control of fungal infection and toxin formation is the best way to manage post-harvest contamination

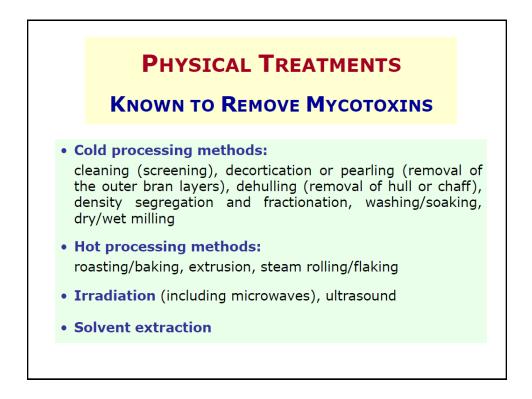
PREVENTION IN THE FIELD

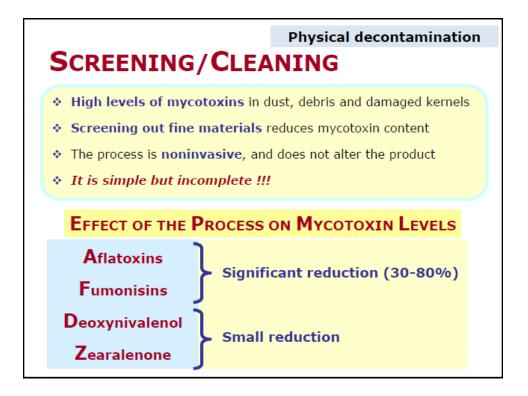
- Reduction of plant stress (drought stress, plant-spacing, irrigation, mineral nutrition, protection from insect or mechanical damage)
- □ **Crop rotation** (wheat and maize have been found to be particularly susceptible to *Fusarium* species and they should not be used in rotation with each other potatoes, vegetables, sugar beet, etc. in rotation with cereals)
- Avoidance of critical environmental conditions (timing of planting)
- Minimization of crop residues and other sources of inoculum by soil preparation (weed control)
- Selection of cultivars resistant to fungal infection
- **Plant protection** (use of fungicides, biocompetitive agents)
- Development of transgenic plants

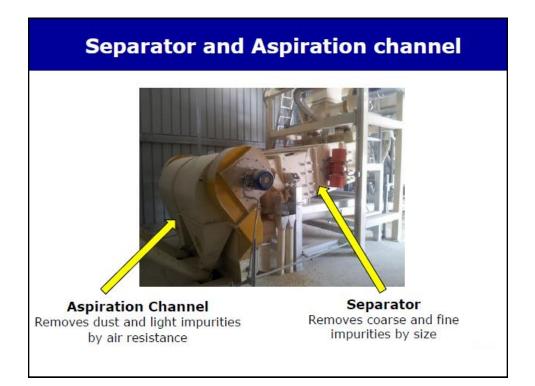
PREVENTION IN STORAGE



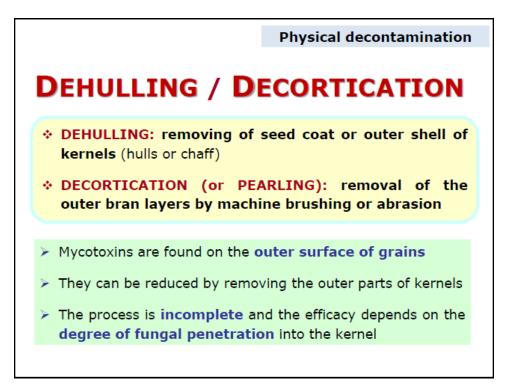
 FUNGAL CONTROL Use approved preservatives, to limit fungal development, modified atmospheres, sulphur dioxide gas,


ozone, irradiation


MOISTURE CONTROL


- Store crops at a suitable moisture content and temperature (at 20°C is 15% for wheat, 14% for maize, 7% for groundnuts)
- Avoid piling or heaping wet, freshly harvested commodities for more than a few hours prior to drying
- Use storage facilities that provide protection from rain, drainage of ground water, and minimum temperature fluctuations
- INSECT CONTROL
 - Use good procedures to minimize the levels of insects, rodents and birds in storage facilities

STRATEGIES FOR THE DECONTAMINATION / DETOXIFICATION OF MYCOTOXINS			
PHYSICAL	Removal of fines or screenings; γ-irradiation; thermal treatments; adsorbent materials		
CHEMICAL	Sodium bisulfite, calcium hydroxide, ozone, chlorine, hydrogen peroxide, ascorbic acid, sulfur dioxide, formaldehyde, ammonia, etc.		
BIOLOGICAL	Microbial degradation; transgenic plants		
FEED/FOOD PROCESSING	Chemical, Biological or Thermal and Mechanical Treatments applied to raw materials to produce the final products		


Reduction of aflatoxins in maize by combining mechanical and optical sorting technologies

Separator – Aspirator – Sortex

Lot	Fraction	Aflatoxin B ₁ (µg/kg) mean ± SD*	Total AFs (µg/kg) mean ± SD*	AFB ₁ reduction (%)	Total AFs reduction (%)
А	Incoming product	24.2 ± 0.3	25.4 ± 0.3	65	65
	End product	8.4 ± 0.3	8.8 ± 0.3	03	05
	Incoming product	62.0 ± 1.5	64.3 ± 1.6	78 78	
B	End product	13.5 ± 0.2	14.3 ± 0.2	78	78
* (n= 3 r	eplicates)	•			

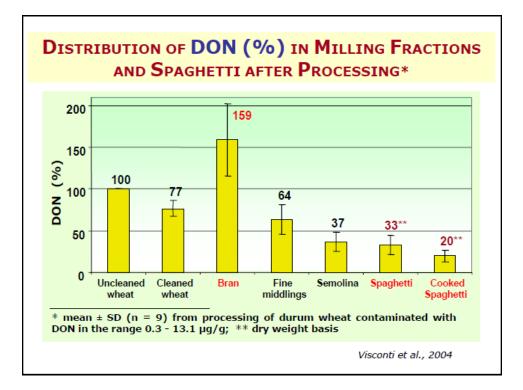
Pascale et al., International Mycotoxin Conference 2014, Beijing, P.R. China

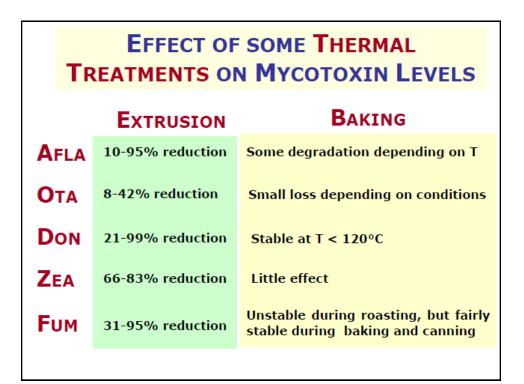
Physical decontamination

DENSITY SEGREGATION AND FRACTIONATION

Mould-damaged, contaminated kernels exhibit different physical properties from non-damaged kernels

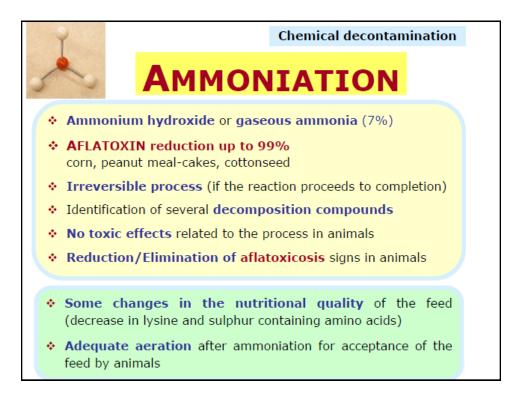
DENSITY SEGREGATION


removal of kernels floating in water and/or saturated NaCl solution Mycotoxin reduction in cereals: AFLA (70%) - DON (69%) - ZEA (61%)


FRACTIONATION

Gravity table separators are used for sorting of materials of the same size of particles in different specific weight.

Reduction of DON (68-85%) in wheat


CHEMICAL TREATMENTS

KNOWN TO DESTROY/INACTIVATE MYCOTOXINS

- Acids (formic and propionic acids)
- Alkali (ammonium, sodium hydroxide)
- Oxidizing reagents (hydrogen peroxide, ozone)
- Reducing agents (bisulphite, sugars)
- Chlorinating agents (chlorine)

Detoxification ability depends on:

- > parameters related to the contaminated products
- > parameters associated with the process (such as T and P)
- incubation time
- > level of the mycotoxin in the product

REDUCTION OF MYCOTOXINS IN FOOD/FEED

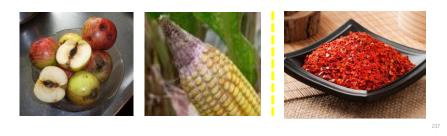
- …Complete elimination of mycotoxin contaminated commodities is not achievable at this time
- Large-scale, practical, costs-effective methods for a complete decontamination are currently not available
- No single decontamination method effective against the variety of occurring mycotoxins has been developed

"Prevention is better than cure ..."

What is the mycotoxin ???

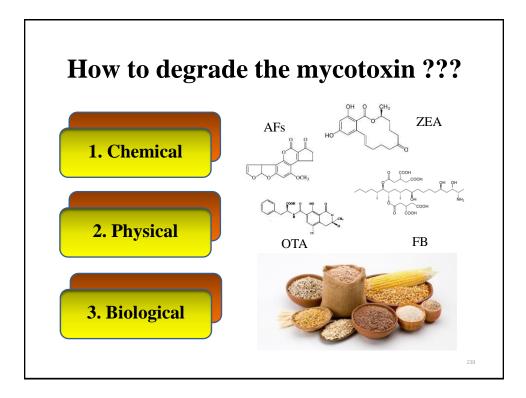
- They are the secondary metabolite(s) which produced from fungi.

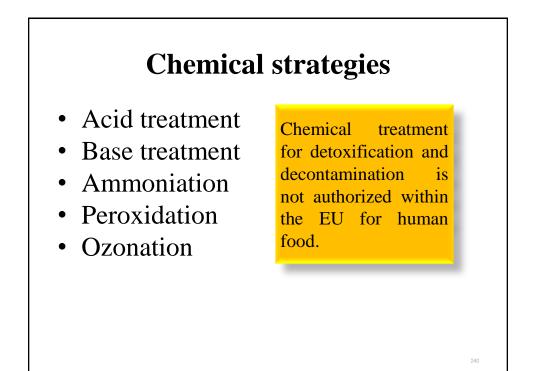
- They can occur under natural conditions in foods and feeds.

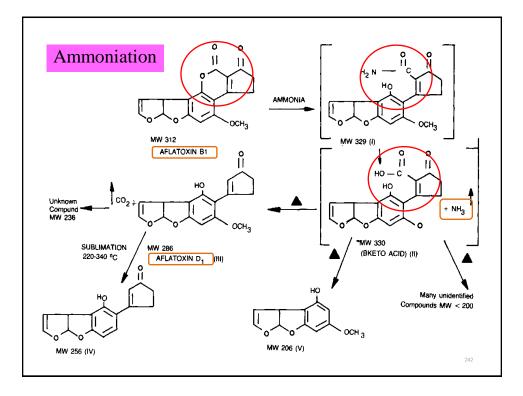

- They are six major classes of mycotoxin that frequently occurs: aflatoxins, trichothecenes, fumonisins, zearalenone, ochratoxin, and T-2 toxin

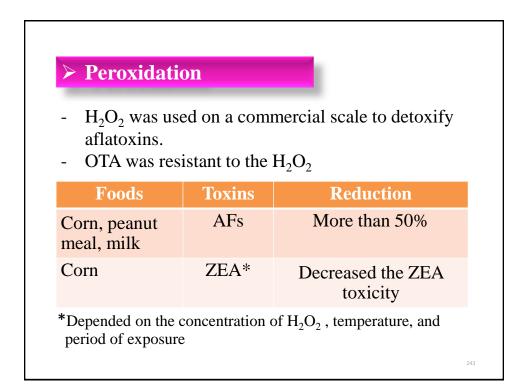
36

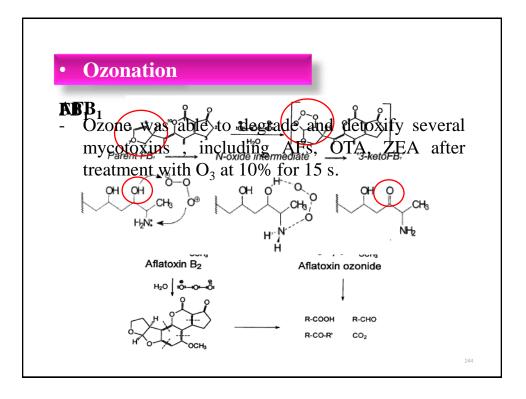
Why we have to reduce the mycotoxin ???


1. They are cause of abnormality in animal and human health.


2. They bring enormous economic loss in food industry, crop products, and animal husbandry annually.

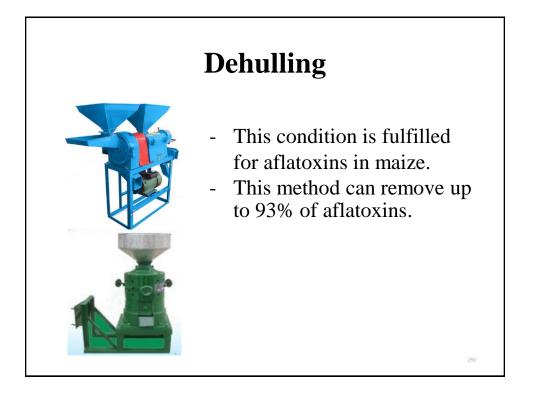

Harmful effects of mycotoxincontaminated food can be avoid by:

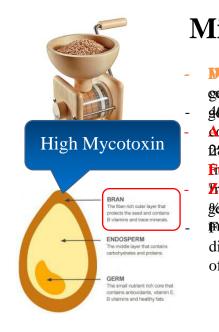

- 1. Preventing contamination
- 2. Removing contaminated material from the food communities
- 3. Mitigating mycotoxin content in food
- 4. Treating exposed individuals



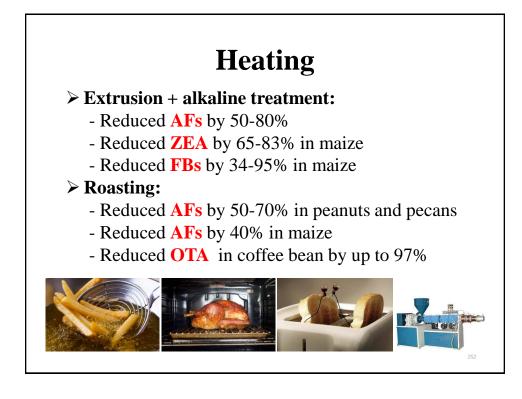
AFB_1	eatment	AFB _{2a}
AFG ₁	Strong acid	AFG _{2a}
AFB ₁	Lactic acid	AFB ₂ (Traces) AFB _{2a} (Main product)
Base tr	eatment	
to reduce	e mycotoxi	ncy of some physical methods n pening the lactone ring

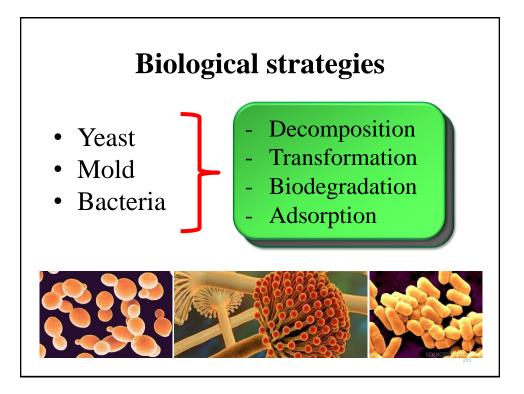
Physical strategies

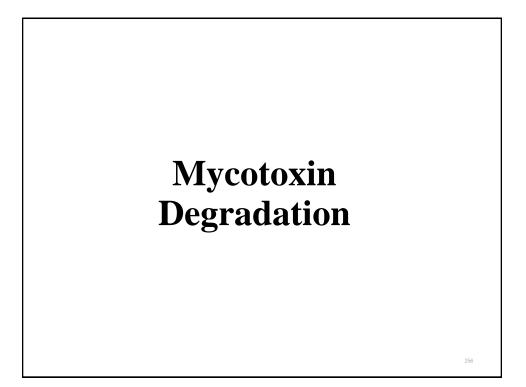

- Sorting
- Sieving cleaning
- Flotation and density segregation
- Washing
- Dehulling (or Decortication)
- Milling
- Heating
- Irradiation
- Mycotoxin binder

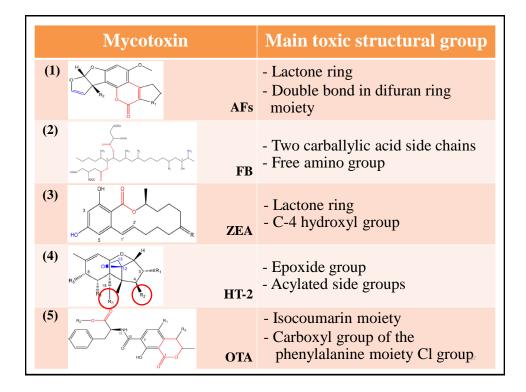


Material	Solution	Mycotoxin	Mycotoxin removal	Mass loss
Corn	Water	AFs	60%	22%
material	30% Sucrose	AFs	87%	50%
Maize	Saturated sodium chloride	AFs	74%	3%
Maize	Water and 30% sucrose	DON	More than 53%	-
Wheat	Water and 30% sucrose	DON	More than 68%	-
Maize	Saturalted brine	FBs	86%	20%

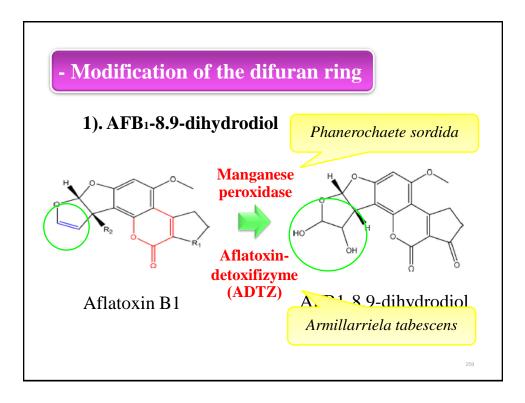

shing	
Name	Solubility in water (mg/L)
OTA	25.6
ZEA	117
T-2 toxin	347
AFB1	233
DON	36,000
Patulin	163,000
FB1	>20,000
	OTA ZEA T-2 toxin AFB1 DON Patulin

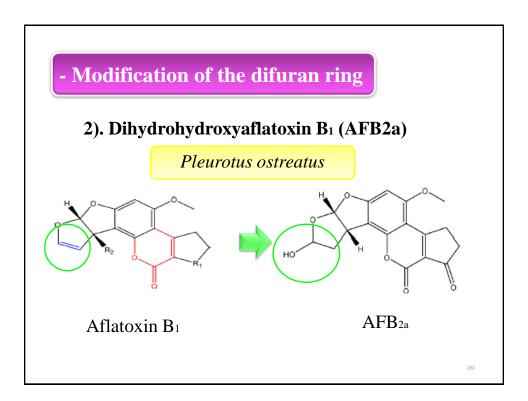

Milling

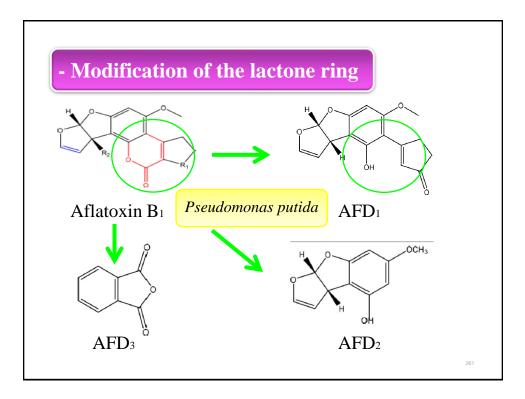

West milling of of haize igeaire seates in genere stratishin and fglut eye otoxins in 40=502/nd of raaf fatorions move from A flation instance coatecriticated in blien, factorising of the state of the state of the state fraction is insl-17% in the gluten Fraction is insl-17% in the gluten Fraction is stard bran fractions after dry Folling monisins, they are partly dissolved in steep water, the amount of FBs remained in gluten and fiber.



	Irradi	ation	B A
 Sunlight 40% of A after 30 h Gamma radi 		duced after 3 h	ı, up to 75%
Foods	Toxin	Reduction	Gamma radiation
	. —	50 990/	10 kGy
	AFs	59-88%	10 K G y
Prenuts, pistachios, rice, & corn Cereals	AFs AFs	43%	20 kGy
rice, & corn			ç

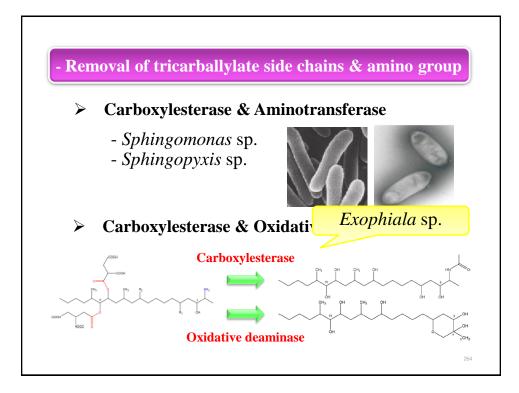



Aflatoxins


There are two main mechanism to detoxify of AFS.

- Modification of the difuran ring
- Modification of the coumarin structure

258

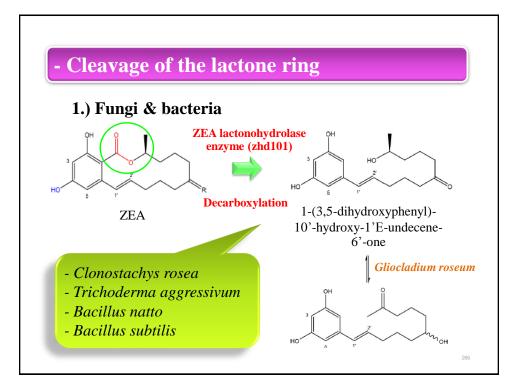


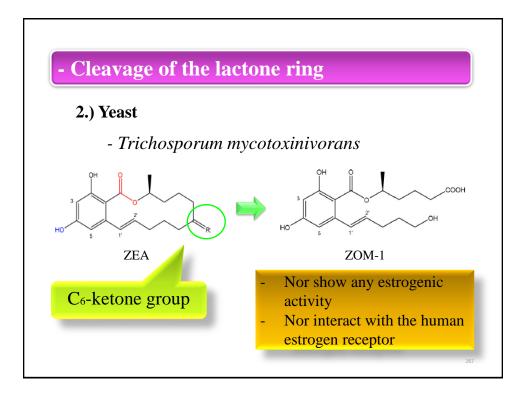
263

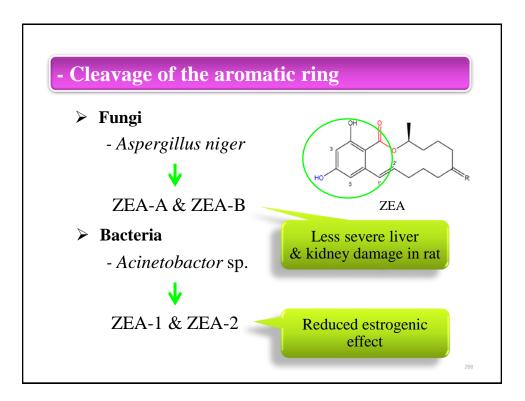
Fumonisins

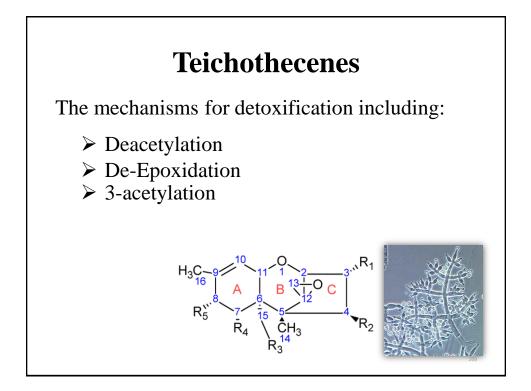
The main mechanism which used for detoxification of fumonisins is:

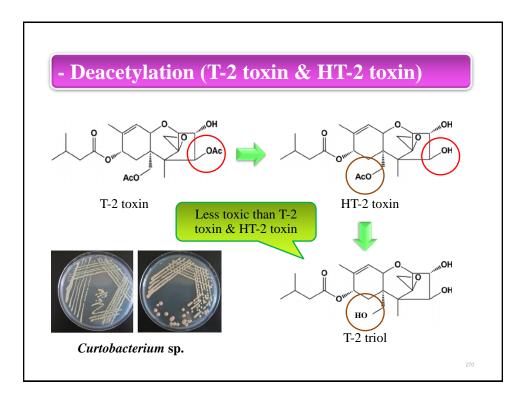
The removal of tricarballylate side chains & amino group from fumonisin structure

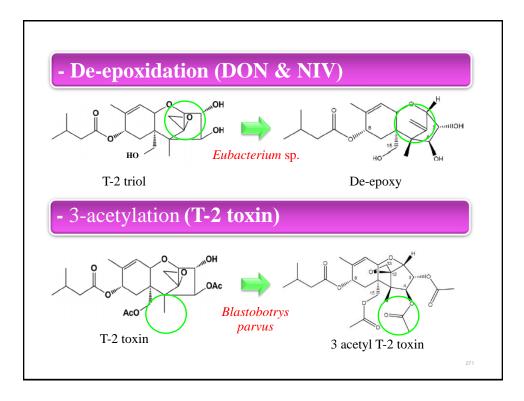


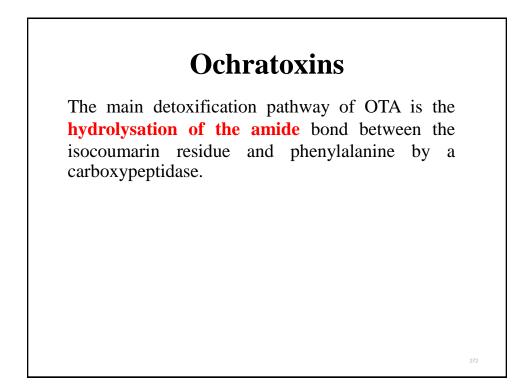

265

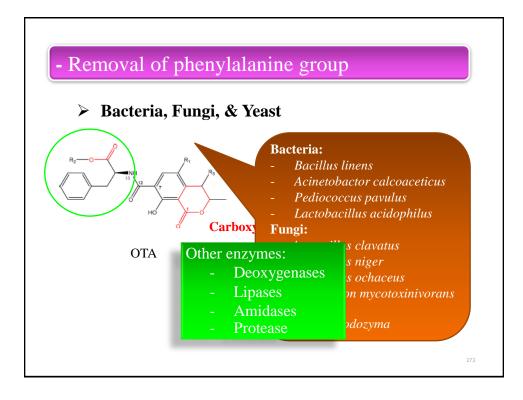

Zearalenone

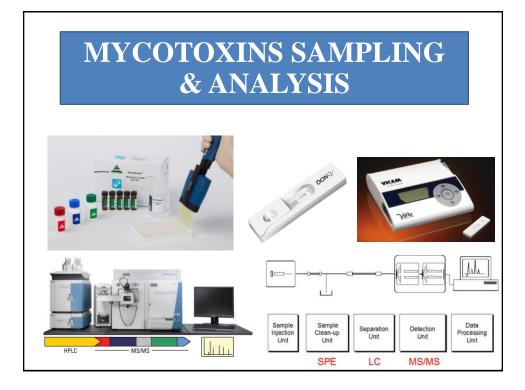

There are **two** main mechanism to detoxify of ZEA.

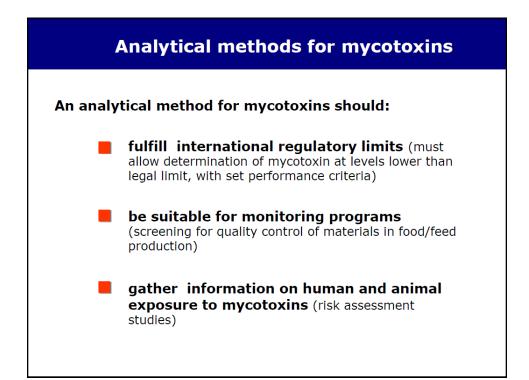

- Cleavage of the lactone ring
- > Cleavage of the **aromatic ring**

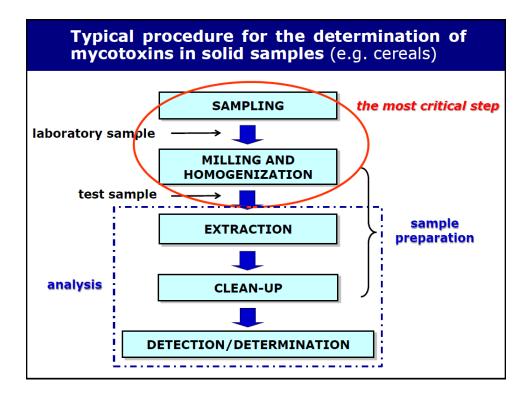


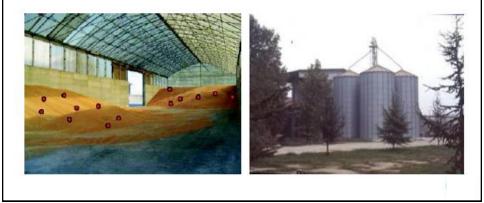


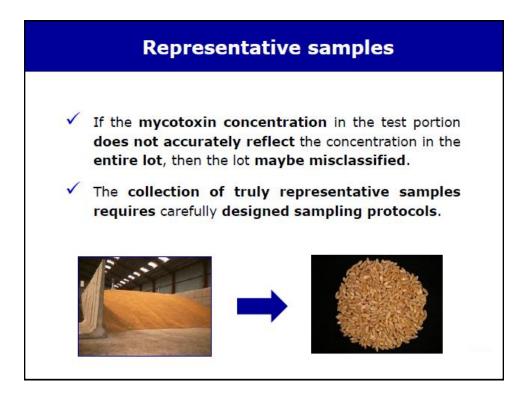






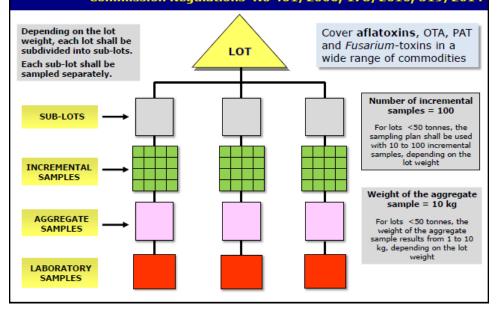


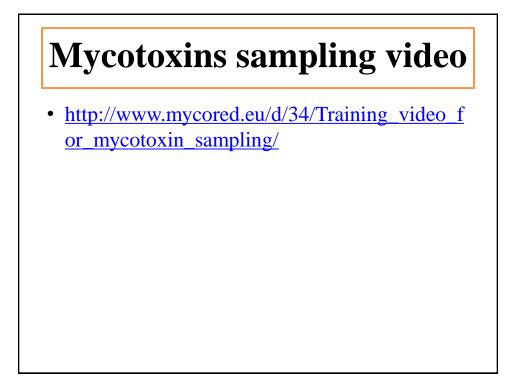


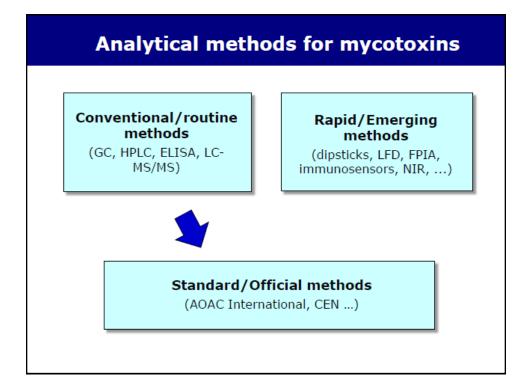


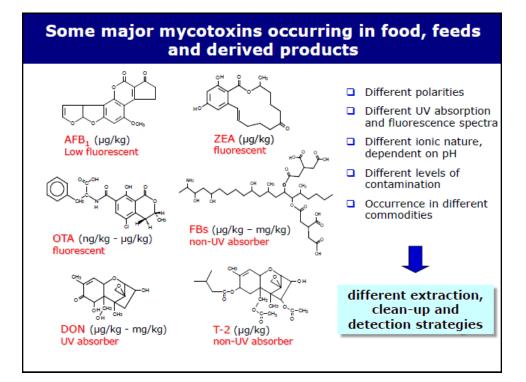
What is the problem? Non-homogeneous distribution of mycotoxins

Most mycotoxins, including **aflatoxins**, **fumonisins and ochratoxin A**, are **unevenly distributed** in grains, so that high concentrations of toxins could be found in "**hot spots**" or "**pockets**" in bulk storage of commodities or sometimes in a single seed of dried fruit or single ear or few kernels of maize.




	anuci	lines on Sampling
F P P P P P		CODEX
Sampling plans for aflatoxin analysis in peanuts and corn	55	C4C/GL 80-2004 Pa GENERAL GUIDELINES ON SAMPLING CAC/GL 50-2004
		TABLE OF CONTENTS TABLE OF CONTENTS PREAMBLE SECTION L. PERPOSE OF CODEX GUIDELINES ON SAMPLING


EU Commission Regulation for Sampling
L 70/12 EN Official Journal of the European Union 9.3.2006
COMMISSION REGULATION (EC) No 401/2006
of 23 February 2006
laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs
-
COMMISSION REGULATIONS (EC) N. 178/2010 and 519/2014
amending Regulation EC No. 401/2006


EU mycotoxin sampling plan COMMISSION REGULATIONS (EC) N. 401/2006, 178/2010, 519/2014		
AFB ₁ , AFBs, OTA, <i>Fusarium</i> toxins	Cereals and cereal products	
AFB ₁ , AFBs	Dried fruits, dried figs, groundnuts, nuts, spices	
AFM ₁	Milk and milk products, infant formulae	
ΟΤΑ	Coffee, coffee products, wine, grape juice, grape must, dried vine fruits, spices, liquorice	
PAT	Fruit juice, apple product for infant	
AFB ₁ , AFBs, OTA, <i>Fusarium</i> toxins, <i>PAT</i>	Baby food, processed infant foods	

Methods of sampling for the official control of the levels of mycotoxins in foodstuffs Commission Regulations No 401/2006, 178/2010, 519/2014

Typical procedure :

- 1. Sampling
- 2. Milling
- 3. Extraction organic solvent (methanol, acetonitrile, chloroform,...)
- 4. Clean-up
 - Solid phase extraction (SPE)
 - Immuno –affinity column (IAC)
- 5. Analysis
 - ELISA
 - HPLC
 - LC/MS-MS

Sampling

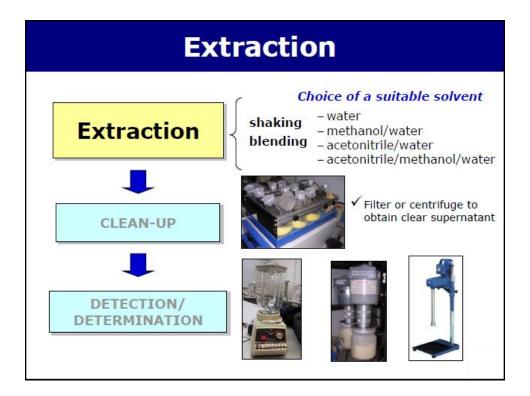
Ideal sample

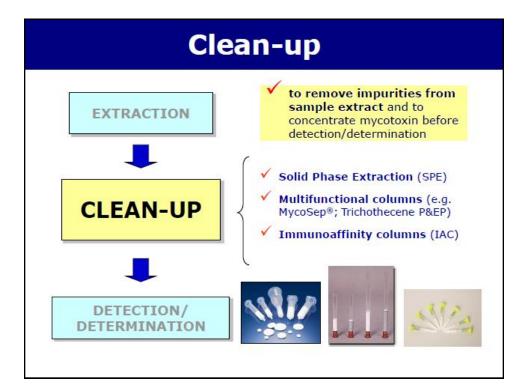
- identical in all of its intrinsic properties
- homogenous

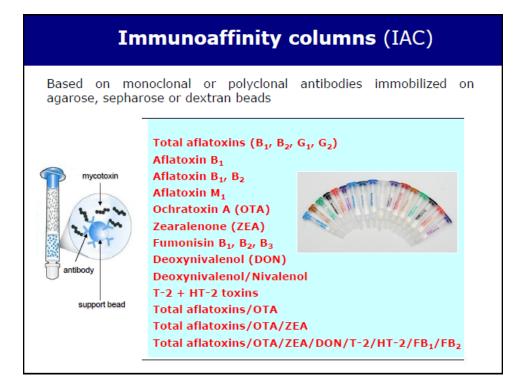
In practice

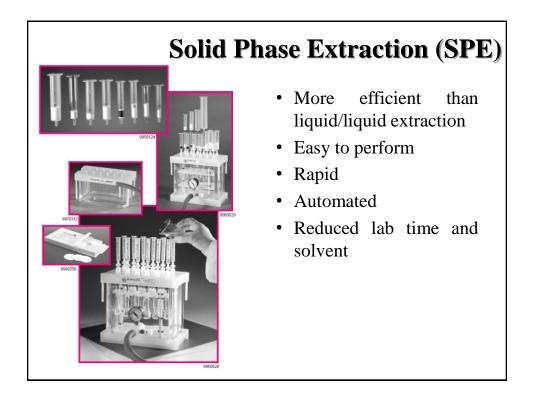
- similar properties or close to original

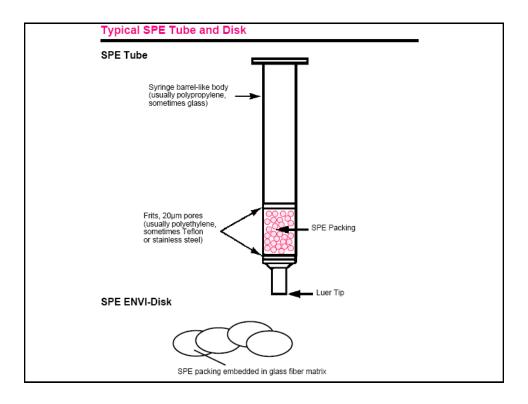
Consideration in sampling

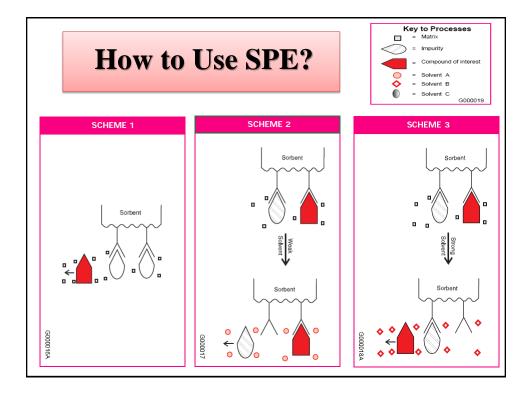

- Identification of the population from which the sample is to be obtained
- Gross sample
- Reduction by 4-quarter technique = lab size sample

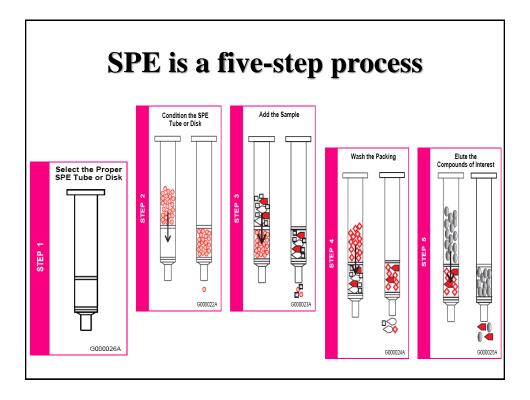

Types of samples


- 1. Random samples bias \uparrow
- 2. Systematic samples
- 3. Representative samples
- 4. Composite samples

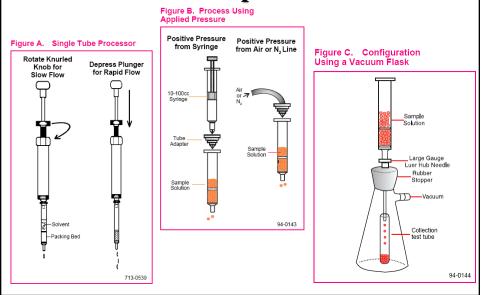


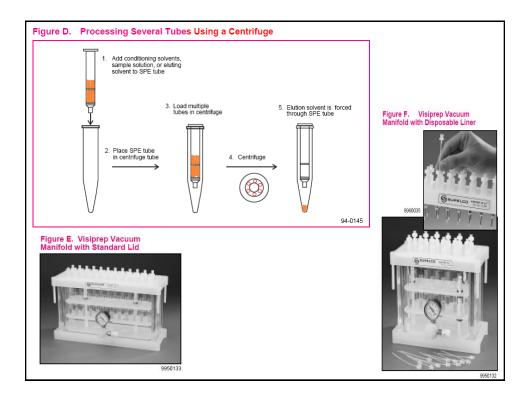


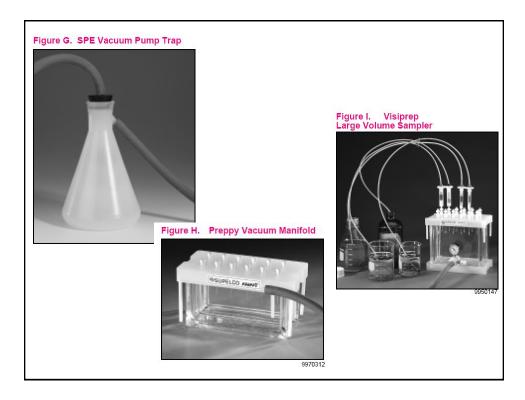


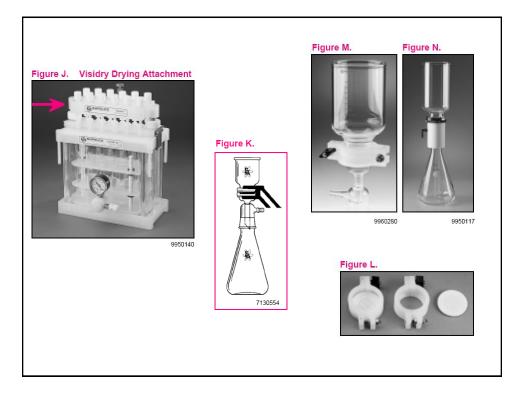


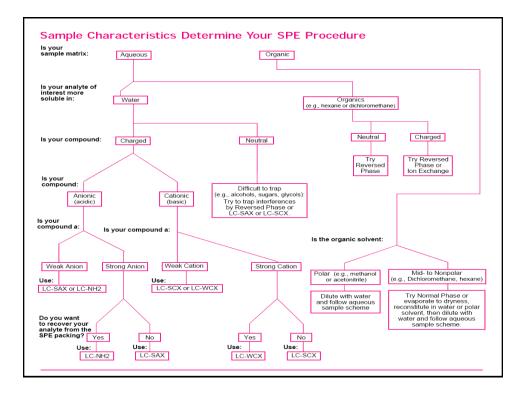
			pores (unless otherwise noted).
	LC-18	octadecyl bonded, endcapped silica	For reversed phase extraction of nonpolar to moderately polar compounds, such as antibiotics, barbiturates, benzodiazepinas, caffeine, drugs, dyse, essential oils, fat soluble vitamins, fungicides, herbicides, pesticides, hydrocarbons, parabens, phenole phthalate esters, steroids, surfactants, theophylline, and water soluble vitamins.
	ENVI™-18	octadecyl bonded, endcapped silica	Higher phase coverage and carbon content than LC-18, greater resistance to extreme phe- transparent phase coverage and carbon content than LC-18, greater resistance to extreme phe- coveractives of an adjust residence and the second s
	LC-8	octyl bonded, endcapped silica	For reversed phase extraction of nonpolar to moderately polar compounds, such as antibiotics, barbiturates, benzodiazepines, caffeine, drugs, dyes, essential oils, fat soluble vitamins, fungicidas, herbicidas, pesticidas, hydrocarbons, parabeins, phenois available in disk format, surfactants, theophylline, and water soluble vitamins. Also
	ENVI-8	octyl bonded, endcapped silica	Higher phase coverage and carbon content than LC-8, greater resistance to extreme placed conditions, and slightly higher capacity for nonpolar compounds. For reverse d phase extraction of barblurates, benzodiazepines, calfeine, drugs, dyes, essential ois, phenols, phtnatate esters, steroids, surfactants, theophylline, water soluble vitamins.
	LC-4	butyldimethyl bonded, end- capped silica (500Å pores)	Less hydrophobic than LC-8 or LC-18. For extraction of peptides and proteins.
	LC-Ph	phenyl bonded silica	Slightly less retention than LC-18 or LC-8 material. For reversed phase extraction of nonpolar to moderately polar compounds, especially aromatic compounds.
	Hisep™	hydrophobic surface enclaved by a hydrophilic network	For exclusion of proteins in biological samples; retains small molecules such as drugs under reversed phase conditions.
	LC-CN	cyanopropyl bonded, endcapped silica	For reversed phase extraction of moderately polar compounds, normal phase extraction of polar compounds, such as aflatoxins, antibiotics, dyes, herbicides, pesticides, phenols, steroids. Weak cation exchange for carbohydrates and cationic compounds.
	LC-Diol	diol bonded silica	For normal phase extraction of polar compounds.
	LC-NH ₂	aminopropyl bonded silica	For normal phase extraction of polar compounds, weak anion exchange for carbohydrates, weak anions, and organic acids.
L	LC-SAX	quaternary amine bonded silica with Cl ⁻ counterion	For strong anion exchange for anions, organic acids, nucleic acids, nucleotides, and surfactants. Capacity: 0.2meq/g.
	LC-SCX	sulfonic acid bonded silica with Na⁺ counterion	For strong cation exchange for cations, antibiotics, drugs, organic bases, amino acids, catecholamines, herbicides, nucleic acid bases, nucleosides, and surfactants. Capacity: 0.2meq/g.
	LC-WCX	carboxylic acid bonded silica with Na∗ counterion	For weak cation exchange of cations, amines, antibiotics, drugs, amino acids, catecholamines, nucleic acid bases, nucleosides, and surfactants.
	LC-Si	silica gel with no bonded phase	For extraction of polar compounds, such as alcohols, aldehydes, amines, drugs, dyes, herbicides, pesticides, ketones, nitro compounds, organic acids, phenols, and steroids.
	Alumina-Based I		matographic grade alumina, irregular particles, 60/325 mesh.
	LC-Alumina-A	acidic pH ~5	For anion exchange and adsorption extraction of polar compounds, such as vitamins.
	LC-Alumina-B LC-Alumina-N	basic pH ~8.5 neutral pH ~6.5	For adsorption extraction of polar compounds, and cation exchange. For adsorption extraction of polar compounds. With pH adjustment, cation or anion exchange. For extraction of vitamins, antibiotics, essential oils, enzymes,
			glycosides, and hormones.
	Florisil®-Based F LC-Florisil	<mark>acking – Magnesium silica</mark>	te, 100/120 mesh particles. For adsorption extraction of polar compounds, such as alcohols, aldehydes, amines, drugs, dyes, herbicides, pesticides, PCBs, ketones, nitro compounds, organic acids, phenols, and steroids.
	ENVI-Florisil*		For adsorption extraction of polar compounds, such as alcohols, aldehydes, amines, drugs, dyes, herbicides, pesticides, PCBs, ketones, nitro compounds, organic acids, phenols, and steroids.
	Graphitized Cark	on-Based Packing – Nonbo	onded carbon phase.
	ENVI-Carb	nonporous, surface area 100m²/g, 120/400 mesh	For adsorption extraction of polar and nonpolar compounds.
	ENVI-Carb C	nonporous, surface area 10m²/g, 80/100 mesh	For adsorption extraction of polar and nonpolar compounds.
		king – 80-160µm spherica	
	ENVI-Chrom PAA		For extraction of polar aromatic compounds such as phenols from aqueous samples. Also for adsorption extraction of nonpolar to midpolar aromatic compounds.

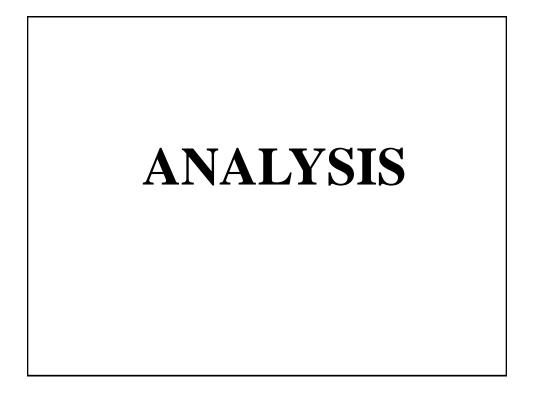


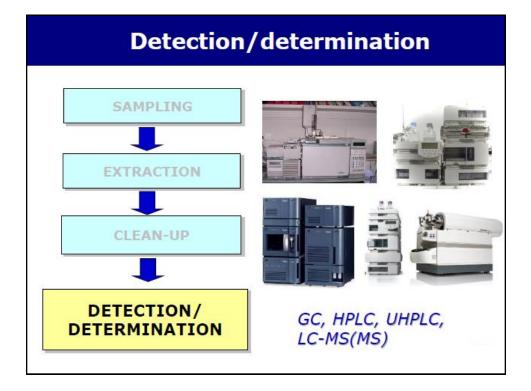



Use Tube Size
1mL
3mL
6mL
12, 20, or 60mL
12, 20, or 60mL
Use Disk Size
47mm


Polarity			Solvent M	iscible in Water
Nonpolar	Strong	Weak	Hexane	No
i i	Reversed	Normal	Isooctane	No
	Phase	Phase	Carbon tetrachloride	No
			Chloroform	No
			Methylene chloride (dichlorometha	ne) No
			Tetrahydrofuran	Yes
			Diethyl ether	No
			Ethyl acetate	Poorly
			Acetone	Yes
		V	Acetonitrile	Yes
	•	v	Isopropanol	Yes
W	Weak	Strong	Methanol	Yes
V	Reversed	Normal	Water	Yes
Polar	Phase	Phase	Acetic acid	Yes


Hardware and accessories for processing samples





Major advantages and drawbacks of clean-up methods for mycotoxins

Method	ADVANTAGES	DRAWBACKS
SPE	 Simultaneous batch processing Automation Analyte enrichment Multi-toxin clean-up 	 Conditioning of the column Limited selectivity Time consuming
MycoSep®	Easy and rapid clean-upMulti-toxin clean-up	 Limited selectivity No automation No analyte enrichment
IAC SE	 High selectivity Applicability to complex matrices Rapid sample preparation and clean-up procedure Simultaneous batch processing Automation Analyte enrichment (sensitive) Multi-toxin clean-up (few) 	 High costs Single use Analysis of individual mycotoxins (most of IAC)

Mycotoxins:	Type A-trichothecenes (T-2, HT-2, DAS, T-2 tetraol) Type B-trichothecenes (DON, 3- and 15- AcDON, NIV, FUS X)
Clean-up:	charcoal-alumina, florisil, silica, MycoSep® columns
Derivatization:	Trimethylchlorosilane (TMCS), N-trimethylsilyl-imidazole (TMSI), N,O-bis-(trimethylsilyl) acetamide (BSA), Heptafluorbutyryl-imidazole (HFBI), Heptafluorobutyric anhydride (HFBA) Tri-Sil® TBT (3:3:2 mixture of TMSI:BSA:TMCS) (trimethylsilyil, trifluoroacetyl, pentafluoropropionyl heptafluorobutyryl derivatives)
Detector:	FID, ECD, MS

GAS CHROMATOGRAPHY (GC)

ADVANTAGES

- . trichothecenes
- good sensitivity •
- can be automated (autosampler) •
- confirmation (MS detector) .

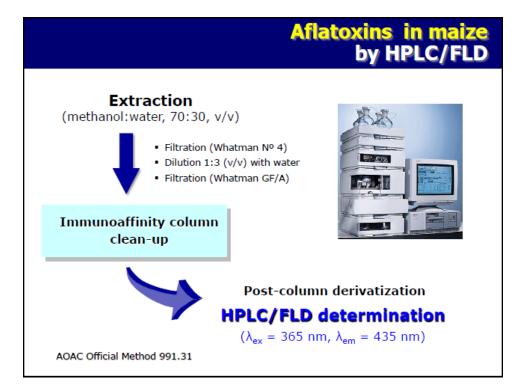
DISADVANTAGES

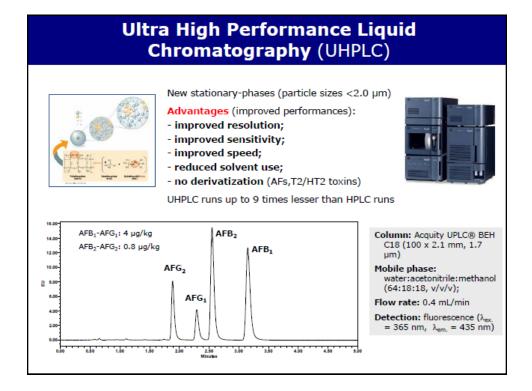
- simultaneous analysis of several relatively expensive (30-40 k€ GC-FID/ECD; 70-80 k€ bench-top GC-MS)
 - specialist expertise requested
 - derivatization (to increase volatility)
 - matrix effect (higher trichothecenes response for calibrants in presence of matrix than pure calibrants)
 - non-linear calibration curve
 - drifting response
 - carry-over or memory effects from previous samples
 - matrix interferences
 - high variation in reproducibility and repeatability

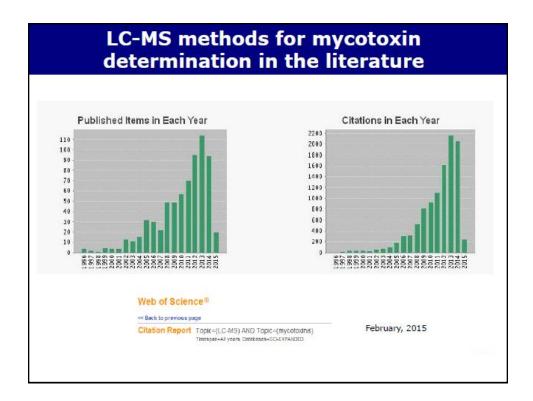
High Performance Liquid Chromatography (HPLC)

Mycotoxins:	Aflatoxins (AFB ₁ , AFB ₂ , AFG ₁ , (AFM1), Ochratoxin A (OTA), FB ₃), Deoxynivalenol (DON), type A-trichothecenes (T-2,	Fumonisins (FB ₁ , FB ₂ , Zearalenone (ZEA),
Clean-up:	Solid phase extraction, Myc immunoaffinity columns	coSep®,
Detector:	UV (or DAD), FLD, MS	
Derivatization:	TFA, iodine, bromine, UV irradiation (AFB ₁ , AFG ₁) OPA reagent (FB ₁ , FB ₂ , FB ₃) 1-anthroyInitrile (T-2, HT-2)	
		Mycotoxins marked in blue need to be derivatized

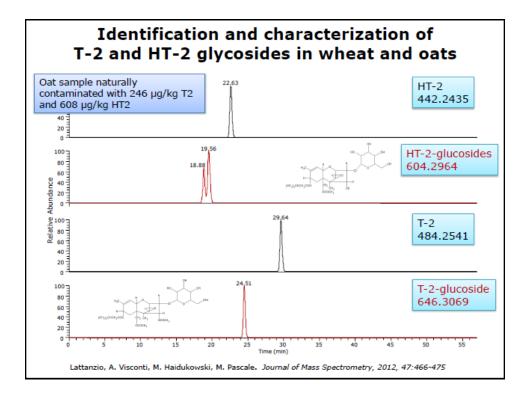
High Performance Liquid Chromatography (HPLC)



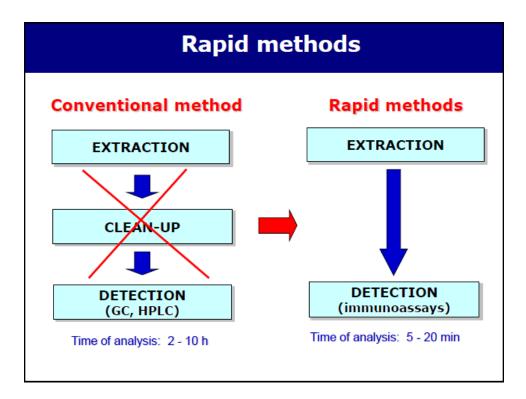

ADVANTAGES


- good sensitivity
- good selectivity
- good repeatability
- short times of analysis
- can be automated (autosampler)

DISADVANTAGES


- expensive (instrumentation 50-70 k€)
- specialist expertise requested
- derivatization (in some cases)





Multi-mycotoxin methods by LC-MS/MS			
Mycotoxins: Applicability:	trichothecenes, f wide range of m and fluids)	atoxin A, zearalenone, fumonisins modified mycotoxins matrices (including biological tissues alysis of diluted crude extract),	
	required (SPE, My AGES analysis of several		
 mycotoxins (decreased cost per analysis) high sensitivity high selectivity (tandem MS) confirmation (MS spectra) no derivatization procedure allows detection of mycotoxin 		 Iow accuracy (for some mycotoxins) matrix effect (ion suppression, ion enhancement) matrix assisted calibration curve (for quantitative analysis) use of isotope labeled internal standard 	
mycotoxins)	modified" or "masked"	 internal standards not available for several mycotoxins 	

	Rapid/emerging methods
♦ II	 mmunoassays/immunosensors: (Fast)Enzyme Linked Immunosorbent Assay (ELISA) Flow Through Immunoassay (FIA) Lateral flow devices (LFD) or dipsticks Fluorescence polarization immunoassays (FPIA) Surface plasmon resonance (SPR) biosensors Electrochemical immunosensors (ES) Biosensor arrays
* M	ndirect screening methods: Infrared spectroscopy (FT-IR), Electronic nose lethods using alternative receptor: aptamers, antibody fragments, olecularly imprinted polymers, peptides
1	

ELISA : Introduction

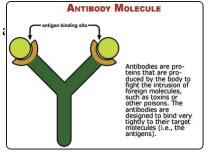
Early 1900	First use of immunoassay for clinical diagnosis of Typhoid
1939-1985	3 methods for food-borne pathogen diagnosis had been validated by AOAC
1986-1993	More than 30 commercial kits available
1993-Presently	> 200 commercial kits available

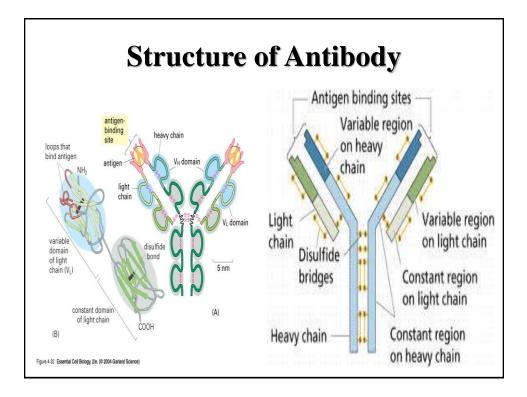
Immunoassay has become very popular because

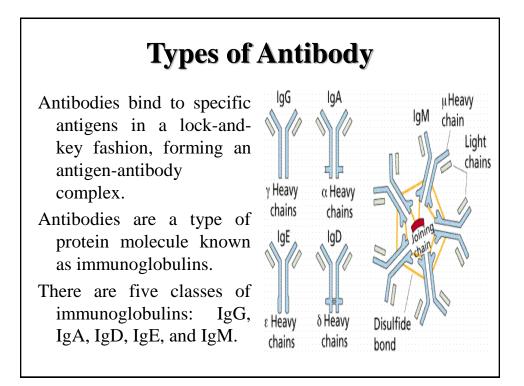
- 1. Easy to use
- 2. Cheap
- 3. Specific and sensitive
- 4. Can be used quantitatively

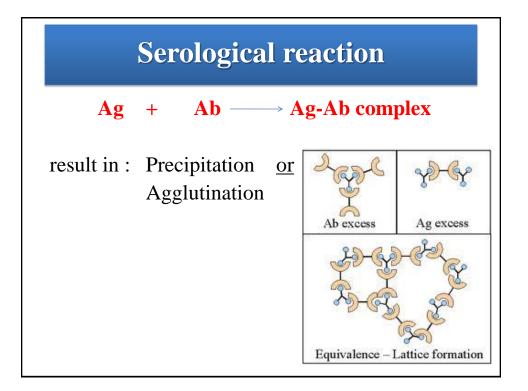
Basic principle in Serology

1. Body Defense Mechanism


- *Innate immunity* Macrophage (WBC) : continually search for foreign (nonself) antigenic molecules, viruses, or microbes. When found, the macrophages engulfs and destroys them.
- Adaptive (Induced) immunity-Antibody (Ab)

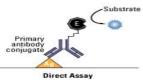

2. Antigen (Immunogen)


- = foreign substance (s) with specific surface topography which can elicit the immune response in an animal resulting in a specific Antibody production
- Ex. Microbes, macromolecules (protein, CBH, nucleic acid, MW>5,000)
- 3. Antibody (Immunoglobulin : Ig)
- 4. Serological reaction


Antibody (Immunoglobulin : Ig)

- Antibodies are Y-shaped molecules composed of two identical long polypeptide (Heavy or H chains) and two identical short polypeptides (Light or L chains). Function of antibodies includes:
 - Recognition and binding to
 - Inactivation of the antigen

Enzyme-Linked Immunosorbent Assay (ELISA) Antigen or antibody is passively adsorbed to solid surface (polystylene surface) Separation of bound and the free (unbound) reactants are made by washing Result of an ELISA is a (soluble) color reaction

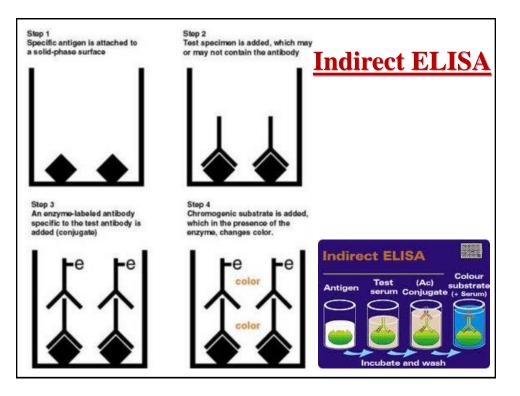

ELISA format

- 1. Direct
- 2. Indirect
- 3. Sandwich direct
- 4. Sandwich indirect
- 5. Competitive

Direct ELISA

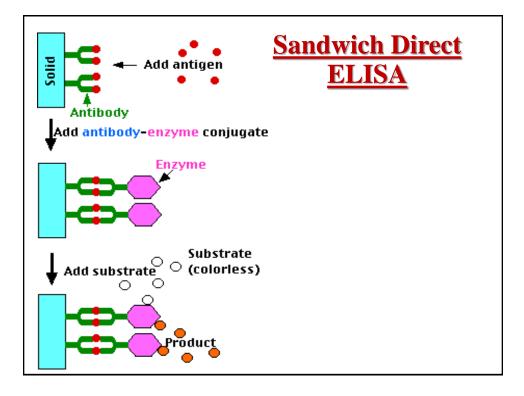
Antigen

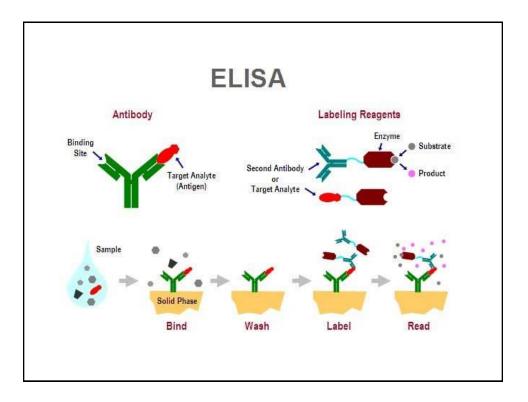
- Should be in the buffer
 - Carbonate coating buffer (pH 9.6) เพื่อให้ประจุของ Ag ตรงกันข้ามกับ ประจุของ Plastic → จะได้เกาะกันดีขึ้น
 - Phosphate buffer saline Tween (pH 7.4) เป็นการปรับสภาพให้ เหมือนน้ำเลือด ใช้เพื่อล้าง
 - Conjugate buffer pH 7.4 ใช้ทำ dilution บอง Antibody
 - Substrate buffer

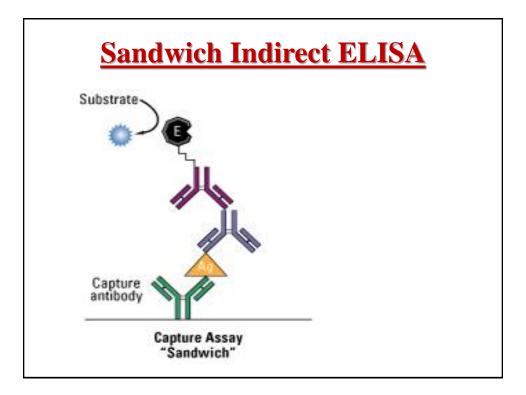


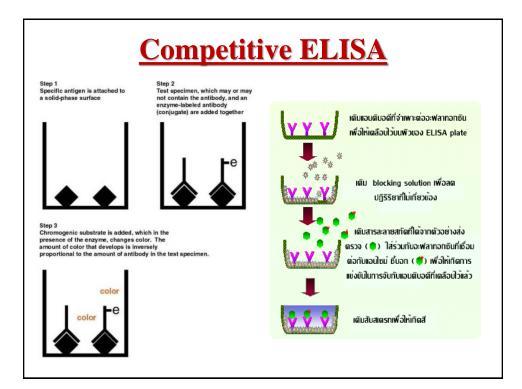
Enzyme

- Alkaline phosphatase (ALP)
- Horse radish peroxidase (HRP)
- Penicillase

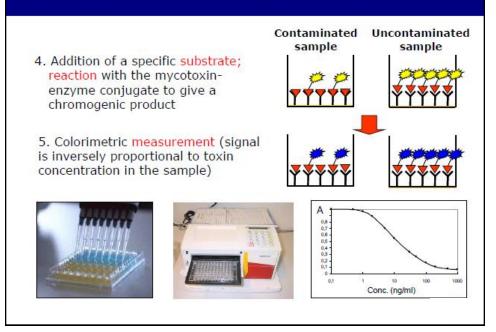

Substrate


- ALP (p-dinitrophosphate = ให้สี เหลือง, Nitro-blue tetrazolium chloride (NBT) ให้สีน้ำเงิน)
- HRP (Tetramethyl benzidine dihydrochloride (TMB))



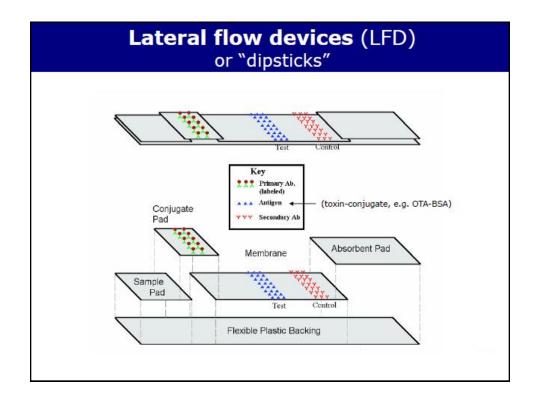

Comparison of Direct and Indirect ELISA Detection Methods

Direct Detection	Advantages	•Quick because only one antibody and fewer steps are used. •Cross-reactivity of secondary antibody is eliminated.
	Disadvantages	 Immunoreactivity of the primary antibody might be adversely affected by labeling with enzymes or tags. Labeling primary antibodies for each specific ELISA system is time-consuming and expensive. No flexibility in choice of primary antibody label from one experiment to another. Minimal signal amplification.
Indirect Detection	Advantages	 A wide variety of labeled secondary antibodies are available commercially. Versatile because many primary antibody can be used for detection. Maximum immunoreactivity of the primary antibody is retained because it is not labeled. Sensitivity is increased because each primary antibody contains several epitopes that can be bound by the labeled secondary antibody, allowing for signal amplification. Different visualization markers can be used with the same primary antibody.
	Disadvantages	•Cross-reactivity might occur with the secondary antibody, resulting in nonspecific signal. •An extra incubation step is required in the procedure.



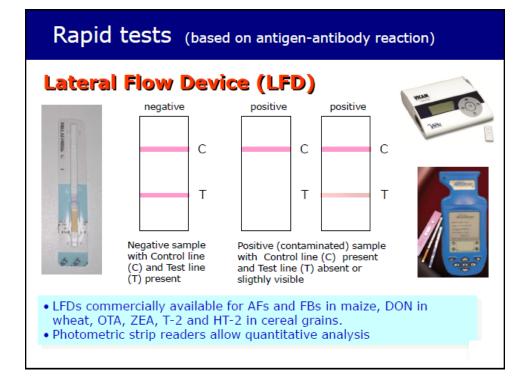
ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) Contaminated Uncontaminated **Competitive ELISA** sample sample 1. Antibodies (mono- o polyclonal) immobilized on microwell-plates ΥY 2. Addition of mycotoxin-enzyme conjugate to the sample extract. Addition of extract to the surface-immobilized antibody (competition with mycotoxin). Incubation time. 3. Washing

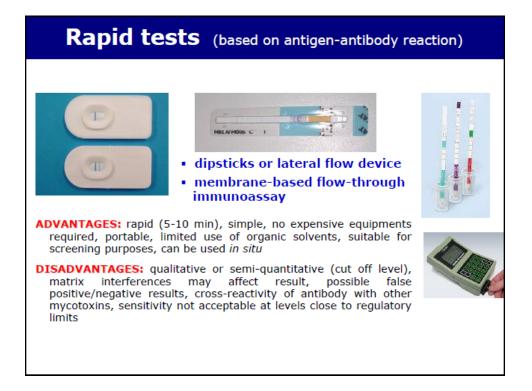
ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA)


ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA)

Advantages:

- antibodies available for all major mycotoxins;
- good sensitivity (µg-ng/kg level);
- simultaneous analysis of a large number of samples;
- simple sample preparation and inexpensive equipments;
- limited use of organic solvents;
- suitable for screening purposes.


Disadvantages:


- total testing times (including sample preparation) from 5 (fast-ELISA) to 100 min (ELISA)
- cross-reactivity of antibody with other mycotoxins;
- matrix interferences may affect result;
- possible false positive/negative results;
- confirmatory analysis LC required.
- ELISA kits are of particular interest for screening of raw materials.
- · ELISA kits should be used only for analysis of matrices that have
 - been extensively tested.

Standard/Official methods

- validated by inter-laboratory studies
- performance characteristics are established (recovery, repeatability, reproducibility, limit of detection, range of application)
- 21 CEN and 45 AOAC methods are official reference methods (aflatoxins, fumonisins, deoxynivalenol, ochratoxin A, zearalenone, patulin in various matrices)
- can be used in case of official control and for resolving any disputes between parties

AOAC = Association of Official Analytical Chemists CEN = European Committee For Standardization

OMA 18th Ed. Revision 4, 2011

