

25-28 263 يرى ا عقدةمن پروردگار، مراسید مول دے، اور مرے آسان کردے اور میری زبان کی گرہ سلجھادے

My Lord! Increase me in knowledge.

FSQM - Dr. Shahid Mahmood Rana

FOOD SAFETY AND QUALITY MANAGEMENT

DHND

YEAR-V Session: 2015-2020

Dr. Shahid Mahmood Rana Associate Professor

INSTITUTE OF FOOD SCIENCE AND NUTRITION (IFSN)

UNIVERSITY OF SARGODHA, SARGODHA-PAKISTAN

FSQM - Dr. Shahid Mahmood Rana

L # 6. CHEMIICAL HAZARDS & FOOD

SAFETY

Dr. Shahid Mahmood Rana

INSTITUE OF FOOD SCIENCE AND NUTRITION (IFSN) UNIVERSITY OF SARGODHA, SARGODHA

FSQM - Dr. Shahid Mahmood Rana

CHEMICAL HAZARDS: MYCOTOXINS

- Mycotoxins are natural toxins which are produced by fungi and can be toxic to humans and animals
- They are formed by moulds which grow on crops and foods under certain conditions
- There are number of **mycotoxins** present in the environment but only a few are found in foods and they are usually associated with particular field crops like **corn**

CHEMICAL HAZARDS: MYCOTOXINS

The most prominent mycotoxins which cause health concerns in humans are

- aflatoxin
- deoxynivalenol
- ochratoxin
- fumonisin
- patulin

CHARACTERISTICS OF MYCOTOXINS

- Resistant to heat
- Produced by fungi as secondary metabolites in response to competitive pressures from other fungi/bacteria
- Can have antibiotic properties
- Can cause toxic damage to cells of humans and animals
- Can cause chronic effects such as various cancers, immunosuppression, growth retardation, birth defects, renal dysfunction
- Can have serious long-term effects even at small concentrations
- Usually associated with particular crops (i.e. corn, cereal crops, apples)

MYCOTOXINS STATISTICS

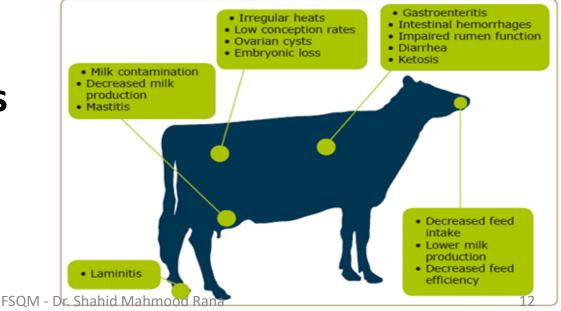
- 300-400 mycotoxins presently identified, with more becoming evident as new isolation techniques are used.
- Most frequent toxins present are aflatoxin, DON, ZEN, fumonisin, and T-2 toxin, to name a few.

MYCOTOXIN HEALTH HAZARDS

- Generally lower risk in well developed countries due to improved standards of living.
- High intake of affected product, usually in conjunction with limited amounts of other food sources.
- Greatest threat comes from long term exposure due to eating spoiled food or meat from animals fed contaminated feed.

SYMPTOMS OF MYCOTOXICOSIS

- Drugs and antibiotics are not effective in treatment
- The symptoms can be traced to foodstuffs or feed
- Testing of said foodstuffs or feed reveals fungal contamination
- The symptoms are not transmissable person to person
- The degree of toxicity is subject to persons age (more often in very young and very old), sex (more often in females than males)and nutritional status
- Outbreaks of symptoms appear seasonally


MYCOTOXIN EFFECTS ON HUMANS

- Economic loss due to impaired health of stock animals
- Illness: symptoms can include cold/flu-like symptoms, sore throats, headaches, nose bleeds, fatigue, diarrhea, dermatitis, and immune suppression, and vary by species
- Death

MYCOTOXIN EFFECTS ON ANIMALS

- Feed refusal
- Impaired animal health, resulting in reduced production of eggs, milk, weight gain, etc.
- Metabolites are passed through the milk in cheese, dry milk, yogurt
- Disease
- Death in animals

http://www.thecattlesite.com/articles/contents/09-02-24Mytotoxin.gif

- In 1965, the Food and Drug Administration (FDA) set the first mycotoxin limit of 20 parts per billion (ppb) for aflatoxin in all foods and feed.
- But, this toxin can appear at varying levels of food production, so multiple testing at different points in the food chain is necessary.
- Using ELISA (enzyme-linked immunosorbent assay) technology, testing can be done cheaper and faster than previously.
- The FDA does not do the testing, various other agencies do, such as the Grain Inspection Packers and Stockyards Administration; but, toxic levels must be reported to the FDA.

L # 7. QUICK TOXIN REVIEW

QUICK TOXIN REVIEW

Organ System Affected	Toxin(s)	
Vascular	Aflatoxin	
Digestive	Aflatoxin, T-2toxin, Vomitotoxin	
Respiratory	Trichothecenes	
Nervous	Trichothecenes	
Cutaneous	Tricothecenes	
Urinary	Ochratoxin A, Citrinin	
Reproductive	Zearalenone, T-2 toxin	
Immune	Many 15	

Mycotoxin	Producing fungi	Commodities affected
Aflatoxin	Aspergillus flavus Aspergillus parasiticus	Corn, cotton seed, peanuts, soy
Ochratoxin A	Aspergillus ochraceus Aspergillus nigri Penicillium verrucosum	Wheat, barley, oats, corn, others
Trichothecenes	Fusarium graminearum Fusarium culmorum	Corn, wheat, barley
Zearalenone	Fusarium graminearum	Corn, wheat, barley
Fumonisin	Fusarium verticillioides Fusarium proliferatum	Corn
Moniliformin	Fusarium moniliforme	Corn

Mycotoxins	Chemical structure	Productivity loss	lmmuno toxicity	Frequently related clinical signs	Main affected organ/system
Aflatoxins		****	*****	Hepatitis, poor response to vaccination, unspecific infections, increased susceptibility to diseases	Liver, kidney, immune system
Zearalenone	HO CH _s	*****	++	Hyperestrogenism, reproductive disorders	Reproductive tract - mainly female.
Deoxynivalenol	HO HO HO	*****	****	Feed refusal, vomiting	Central nervous system, GUT epithelium, liver, immune system
T-2 toxin		*****	*****	Oral and epithelial lesions, loss of apetite	GUT epithelium, liver, immune system
Ochratoxin A		*****	*****	Nefritis (kidney damage - enlarged kidney), hepatitis	Kidney, liver, immune system
Fumonisins		****	***	Porcine Pulmonary Edema (PPE), Equine Leukoencephalomalacia (ELEM)	Lungs and heart (pig), central nervous system (horse), liver, immune system

Major classes of mycotoxin- producing fungi	Fungi species	Mycotoxins
Aspergillus	A. flavus A. parasiticus A. nomius A. pseudotamarii A. ochraceus	Aflatoxin (B ₁ , B ₂ , G ₁ , G ₂) Ochratoxin (Ochratoxin A)
	A. clavatus A. terreus A. flavus A. versicolor	Patulin Cyclopiazonic acid (CPA)
Claviceps	C. purpurea C. fusiformis C. paspali C. africana	Penitrem A <u>Erqot alkaloids:</u> Clavines (Argroclavine) Lysergic acids Lysergic acid amids (Ergin) Ergopeptines (Ergotamine, Ergovaline)
Fusarium	F. verticillioides (syn. F. moniliforme) F. proliferatum F. graminearum F. avenaceum F. culmorum	Fumonisin (B ₁ , B ₂ , B ₃) Fusaric acid <u>Type A Trichothecenes</u> T-2 toxin, HT-2 toxin, diacetoxyscirpenol
	F. poae F. equiseti F. crookwellense F. acuminatum F. sambucinum F. sporotrichioides	<u>Type B Trichothecenes</u> Nivalenol, deoxynivalenol, fusarenon-X
	F. graminearum F. culmorum F. sporotrichioides	Zearalenone
Penicillium	P. verrucosum P. viridicatum P. citrinum P. verrucosum	Ochratoxin (Ochratoxin A) Citrinin
	P. roqueforti	Roquefortine PR toxin Pentirem A
	P. cyclopium P. camemberti P. expansum P. claviforme P. roquefortii	Cyclopiazonic acid (CPA) Pentirem A Patulin
Neotyphodium (formerly Acremonium)	N. coenophialum N. Iolii	Tall fescue toxins: Ergot alkaloids, lolines, peramine Tall fescue toxins:
Pithomyces	P. chartarum	Lolitrems, peramine, ergot alkaloid (ergovaline) Sporidesmin

MYCOTOXINS ABSORPTION

	% absorbed		
	Swine	Poultry	
Aflatoxins	>80%	>80%	
Ochratoxin A	65%	40%	
DON	55%	5-20%	
Fumonisins	3-6%	1%	

Main mycotoxins occurring in corn produced in the northeastern U.S.			
Mycotoxin:	Predominant toxigenic mold:	Lowest level of concern:	Common effects on animals:
Deoxynivalenol (vomitoxin)	Fusarium graminearum	1-3 ppm*	Feed refusal in monogastric ani- mals; severity increases with lev- el. Swine and dogs are the most sensitive species; adult cattle and poultry tolerate > 10 ppm.
Zearalenone	Fusarium graminearum (Gibberella zeae)	1-5 ppm	Hyperestrogenism and infertility. graminearum Swine (gilts) are most sensitive; adult cattle toler- ate 50 ppm.
Fumonisins	Fusarium verticilloides; F. proliferatum	5-10 ppm	Brain deterioration, death (horses); verticilloides; liver damage (horses, swine, cattle, poultry, others).
		>100 ppm	Lung damage in swine
*USDA recommends less than 1 ppm deoxynivalenol in finished food products and less than 2 ppm in unmilled grain destined for human consumption.			

L # 8. MYCOTOXINS AND HEALTH

MYCOTOXINS: HEALTH EFFECTS

Mycotoxin	Effect
Fumonisins	Oesophageal cancer in humans, pulmonary oedema, in pigs, neurotox- ic disease in horses, liver cancer in rats.
Zearalenone	Infertility, abortion and other breeding problems especially in swine.
Trichothecenes	Feed refusal, degeneration of bone marrow cells, diarrhoea, bleeding and death in pigs.
Aflatoxins	Acute toxicity in humans (over 100 deaths recorded in Kenya in 2005).
Diplonine	Ataxia, paresis, and paralysis in cattle and sheep, as well as stillbirths and nervous disorders in livestock.

FOODS HIGHEST IN MYCOTOXINS

SOME MINIMUM a_W VALUES REQUIRED GROWTH OF TOXIGENIC MOULD SPECIES (WHO, 2000)

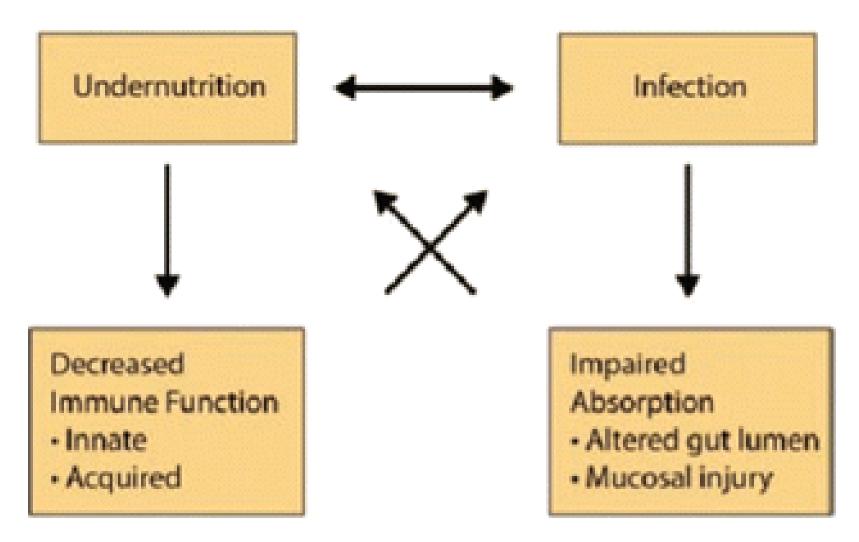
Minimum a _w value
0.78
0.79
0.80
0.87

Contaminants	Foods
PCBs, dioxins, dieldrin, aldrin, DDT	Milk, butter, eggs, animal and vegetable fats and oils, fish, cereals, drinking-water
Lead	Milk, canned/fresh meat, kidney, fish, molluscs, crustaceans, cereals, legumes, fruits, spices, drinking-water
Cadmium	Kidney, molluscs, crustaceans, cereals, vegetables
Mercury	Fish, fish products, mushrooms
Aflatoxins	Milk, milk products, cereals, nuts, spices, cocoa, coffee
Ochratoxin A	Wheat, cereals, wine
DON	Wheat, cereals
Fumonisins	Maize, wheat
Chlorpyrifos, diazinon, melathion, parathion, aldicarb, captan, dithiocarbamate	Cereals, vegetables, fruits, drinking-water
Nitrate/nitrite	Meat, drinking-water
Inorganic arsenic	Wheat, drinking-water

L # 9. WATER AND FOOD SAFETY

THE MOST CRITICAL & DETRIMENTAL COMPONENT RELATED TO FOOD SAFETY

WATER


WHO: FOOD SAFETY-KEY FACTS

- Access to sufficient amounts of **SAFE and NUTRITIOUS** food is key to sustaining life and promoting good health.
- Unsafe food containing harmful bacteria, viruses, parasites or chemical substances, causes more than 200 diseases-ranging from DIARRHEA to CANCERS.
- An estimated 600 million-almost 1 in 10 people in the world-fall ill after eating contaminated food and 420 000 die every year, resulting in the loss of 33 million healthy life years.
- Children **under 5** years of age carry **40** % of the foodborne disease burden, with **125** 000 deaths every year.

WHO: FOOD SAFETY-KEY FACTS

- Diarrhoeal diseases are the most common illnesses resulting from the consumption of contaminated food, causing 550 million people to fall ill and 230 000 deaths every year.
- Food safety, nutrition and food security are inextricably (impossible to separate) linked.
- Unsafe food creates a vicious cycle of disease and malnutrition, particularly affecting infants, young children, elderly and the sick.

VICIOUS CYCLE: MALNUTRITION AND INFECTION

L # 10. WATER AND FOOD SAFETY-II

CRITICAL & DETRIMENTAL ? WATER ACTIVITY a...

WATER ACTIVITY (a_w) IN FOODS

"The ratio of the partial pressure of water in the atmosphere in equilibrium with the substrate (e.g. a food) to that of the atmosphere in equilibrium with pure water at the same temperature, and is expressed on a scale of 0 -1 where 1 is for pure water".

WATER ACTIVITY (a_w)

 $a_w = \frac{p}{\circ p}$

 Partial pressure of water above the solution normalized to the partial pressure above pure water

WATER ACTIVITY (a_w) **IN FOODS**

- The water activity (a_w) of a food is the ratio between the vapor pressure of the food itself, when in a completely undisturbed balance with the surrounding air media, and the vapor pressure of distilled water under identical conditions.
- a_w of 0.80 means the vapor pressure is 80 % of that of pure water. The water activity increases with temperature.
- The moisture condition of a product can be measured as the equilibrium relative humidity (ERH) expressed in % or as the a_w expressed as a decimal.

WATER ACTIVITY (a_w) **IN FOODS**

- Most foods have a a_w above 0.95 and that will provide sufficient moisture to support the growth of bacteria, yeasts, and mold.
- The amount of available moisture can be reduced to a point which will inhibit the growth of the organisms.

WATER ACTIVITY (a_w)

- Water in food which is not **bound** to food molecules can support the growth of bacteria, yeasts and molds (fungi)
- a_w refers to this unbound water
- a_w of a food is not the same thing as its moisture content
- Although moist foods are likely to have greater

 a_w than are dry foods, this is not always so; in
 fact a variety of foods may have exactly the
 same moisture content and yet have quite
 different water activities.

Foods	Water Activity (a _w)
Fresh Meat & Fish	0.99
Bread	0.95
Aged Cheddar	0.85
Jams & Jellies	0.80
Plum Pudding	0.80
Dried Fruit	0.60
Biscuits	0.30
Milk Powder	0.20
Instant coffee	0.20

WATER ACTIVITY OF SOME FOOD PRODUCTS

Food Product	Water activity (a _w)	
Raw meat and milk	0.99- 1.0	
Luncheon meat	0.95	
Boiled ham, sliced bacon	0.90	
Dried grains	0.80	

MINIMUM a_w THAT SUPPORTS GROWTH OF SOME MICROORGANISMS

Microorganism	Water activity (a _w)	
Clostridium botulinum,	0.95	
Bacillus cereus,	0.95	
Pseudmonas aeroginosa,	0.95	
Salmonella spp.	0.95	
Staphylococcus aureus (anaerobic)	0.90	
Candida spp., Saccharomyces		
Staphylococcus aureus (aerobic)	0.86	
Penicillium spp.	0.82	
Most spoilage yeast	0.88	
Most spoilage molds	0.80	
Osmotic yeast	0.70	

L # 11. FACTORS FOR MICROBIAL CONTROL

Minimum water activities at which active growth can occur

Group of micro-organism	Minimum aw
Most Gram-negative bacteria	0.97
Most Gram-positive bacteria	0.90
Most yeasts	0.88
Most filamentous fungi	0.80
Halophilic bacteria	0.75
Xerophilic fungi	0.61
Osmophilic yeasts	0.60

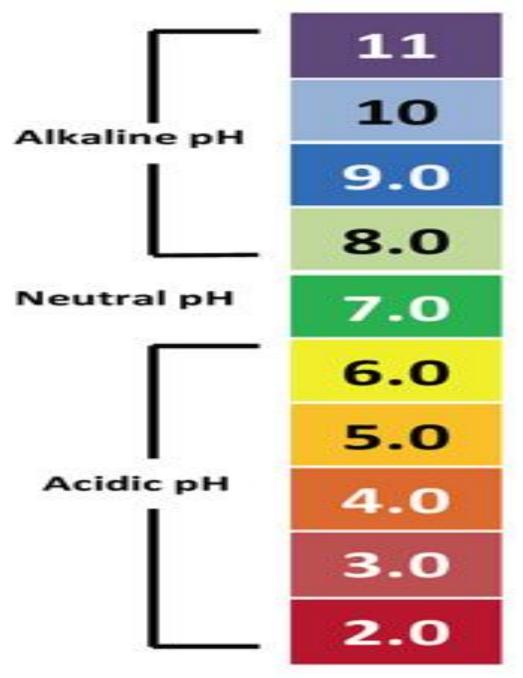
Table 5: Minimum water activity that supports growth of some microorganisms

Microorganism	Water activity
Clostridium botulinum,	0.95
Bacillus cereus,	0.95
Pseudmonas aeroginosa,	0.95
Salmonella spp.	0.95
Staphylococcus aureus (anaerobic),	0.90
Candida spp., Saccharomyces	
Staphylococcus aureus (aerobic)	0.86
Penicillium spp.	0.82
Most spoilage yeast	0.88
Most spoilage molds	0.80
Osmotic yeast	0.70

Intrinsic Factor

Minimum Permitting M/O Growth

Group	Minimum A _w
Bacteria	0.91
Yeasts	0.88
Molds	0.80
Halophilic Bacteria	0.75
Xerophilic Fungi	0.65
Osmophilic Yeasts	0.60
Staphylococcus aureus (Survive but No Growth)	0.86 *Lowest Aw for Pathogen Growt
Pseudomonas	0.97
Vibrio parahaemolyticus	0.94
Escherichai coli	0.96


Intrinsic Factor

Microbial Growth Ability in Different pH

M/O	pH Range		
Molds	0.2-11		
Yeasts	1.5-8.5		
Salmonella	3.6-9.5		
Listeria monocytogenes	4.2-9.6		
Yersinia enterocolitica	4.2-9.0		
Escherichia coli	4.3-9.0		
Clostridium botulinum	4.3-8.5		
Bacillus cereus	5.0-9.5		
Campylobacter	5.0-9.0		
Shigella	5.0-9.2		
Vibrio parahaemolyticus	5.0-11		
V. Cholerae	5.0-9.5		
Cl. perfringens	5.0-8.5		

	рH	Example	Moles per H*	liter of: OH ⁻	
	· 🔺 0 🔳		1	10-14	
Acidophiles Bridophiles	1	Volcanic soils, waters Gastric fluids	10-1	10-13	
	2	Lemon juice Acid mine drainage Vinegar	10-2	10-12	
	Increasing 3 acidity	Rhubarb Peaches	10-3	10-11	
	4	Acid soil Tomatoes	10-4	10-10	
	5	American cheese Cabbage	10-5	10-9	
	6	Peas Corn, salmon, shrimp	10-6	10-8	
	Neutrality 7	Pure water	▶ 10-7	10-7	
ſ	8	Seawater	10-8	10-6	
	9	Very alkaline natural soil	10-9	10-5	
Alkaliphiles	Increasing ¹⁰	Alkaline lakes Soap solutions	10-10	10-4	
iei	alkalinity 11	Household ammonia Extremely alkaline	10-11	10-3	
E I	12	soda lakes Lime (saturated solution	10-12	10-2	
	13		10-13	10-1	
· · · ·	14		10-14	1	
	6-22 Brock Biology of Mici Pearson Prentice Hall, Inc.				12


Ammonia

Soap

Egg whites Olives Water Milk Meat Melons Cheese Vegetables Bread Tomatoes Fruits/Jams Orange juice Pears Plums Vinegar Lemon/Lime

Alkaline pH	10	High Alkaline Ionized Water Spinach Brocolli
	9.0	Olive Oil Green Tea Lettuce Celery
	8.0	Apples Almonds Carrots Tomatoes Cabbage
Neutral pH	7.0	Most Tap Water
Acidic pH	6.0	Fruit Juices Most Grains Eggs Fish Tea
	5.0	Cooked Beans Chicken Beer Sugar Reverse Osmosis,
	4.0	Distilled & Many Bottled Waters Coffee White Bread
	3.0	Beef Shellfish Pastries Pasta Cheese
	ESONA Dr. Shahid Mahma	Soda

pH Chart

