Time Series Model

Box Jenkins Methodology ARIMA Model

Box Jenkins Methodology

• To forecast the price of coconut oil we use time series model .There we use **Box Jenkins Method.** The box Jenkins method is applicable if it fulfill some assumption. The procedure is defined as below:

Stationary Test When the variable is no change in mean and variance for a long time, it said to be stationary. For applying Box Jenkins methodology, variable must be stationary.

General Procedure

- Step 1 Hypothesis
 Ho: Data is not stationary.
 H1: Data is stationary.
- Step 2 Level of significance
- Step3 Test statistic
- 1. Unit root test
 - I. Augmented Dickey Fuller test (ADF Test)
 - II. Phillip Perron test (PP Test)
- 2. Correlogram
- Step 4 Calculation

On E-views& Excel

 $\alpha = 0.05$

• Step 5 Critical region

On the basis of p-value. If the p-value less than level of significance reject Ho otherwise Don't reject Ho.

• Step6 Decision

If reject we conclude series is stationary otherwise we say series is non-stationary.

Autoregressive Integrated Moving Average (ARIMA): –

- A statistical technique that uses time series data to predict future. The parameters used in the ARIMA is (P, d, q) which refers to the autoregressive, integrated and moving average parts of the data set, respectively. ARIMA modeling will take care of trends, seasonality, cycles, errors and non-stationary aspects of a data set when making forecasts.
- Example: measuring the level of unemployment each month of the year would comprise a time series.

DIAGNOSTIC CHECK

- **ARMA** (*p*, *q*)-model has been fitted to a stationary time series. A diagnostic check for this model is suggested, using the estimated cross correlation function (CCF) between the observed series and the residuals.
- For **AR** (*p*)-processes the asymptotic covariance matrix of the estimated cross correlations is obtained.
- **Portmanteau statistic** for testing the adequacy of the model for various choices of m where m is the number of autocorrelations. Some of the commonly applied diagnostic checks are discussed subsequently
- For diagnostic use different tests ,ex, unit root test,Box Jenkins test. Make use of Box. Test() function to find p.
- If p-value is non zero then no serial correlation is there & model is fit & can be used for **forecasting purpose**

Data Analysis

- Check Stationary
- Model Identification and Parameter Estimation
- Make Possible Model
- Select best fitted Model
- Forecasting Accuracy
- For checking the accuracy of forecasting we apply forecasting checks.
- Analysis of forecasting value results
- Residual Analysis
- Conclusion

At Leve

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1	0.940	0.940	87.468	0.000
		2	0.857	-0.226	160.94	0.000
		3	0.761	-0.120	219.59	0.000
		4	0.639	-0.271	261.36	0.000
·	1 1	5	0.517	-0.001	288.98	0.000
· 💻	1 1	6	0.401	-0.013	305.77	0.000
' 🗖	יםי	7	0.299	0.083	315.21	0.000
' 🗖	יםי	8	0.205	-0.064	319.71	0.000
י 🗗 י		9	0.128	0.023	321.47	0.000
יםי	'E '	10	0.054	-0.138	321.79	0.000
1 🛛 1		11	-0.027	-0.165	321.87	0.000
יםי	'E '	12	-0.110	-0.133	323.23	0.000
 	וןי	13	-0.192	-0.043	327.41	0.000
	111	14	-0.270	-0.021	335.80	0.000
	יםי	15	-0.347	-0.061	349.77	0.000
· ·	י םי	16	-0.420	-0.111	370.49	0.000
		17	-0.477	-0.014	397.53	0.000
	1 1	18	-0.516	-0.015	429.71	0.000
	וןי	19	-0.542	-0.036	465.64	0.000
		20	-0.551	-0.023	503.27	0.000
	'[] '	21	-0.555	-0.118	541.87	0.000
	יםי I	22	-0.558	-0.139	581.47	0.000
		23	-0.547	0.015	620.10	0.000
	יםי	24	-0.521	0.078	655.52	0.000
	וםי	25	-0.494	-0.063	687.86	0.000
		26	-0.460	-0.019	716.26	0.000
	' ='	27	-0.399	0.128	737.95	0.000
· ·	' '	28	-0.317	0.128	751.89	0.000
	יםי	29	-0.237	-0.110	759.79	0.000
יםי	' '	30	-0.139	0.109	762.54	0.000
יני		31	-0.036	0.007	762.73	0.000
· [] ·	' G '	32	0.048	-0.089	763.06	0.000
' "		33	0.127	-0.009	765.47	0.000
' P		34	0.187	-0.099	770.77	0.000
' 📃		35	0.214	-0.183	777.85	0.000
' 🏳	I I I I	36	0.231	0.067	786.23	0.000

1st Difference

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
· þ		1	0.260	0.260	6.6137	0.010
· þ.	ի դիր	2	0.120	0.056	8.0415	0.018
· 🗖		3	0.285	0.259	16.190	0.001
1 þ 1	'[''	4	0.068	-0.074	16.662	0.002
	141	5	-0.037	-0.077	16.804	0.005
יםי	'티'	6	-0.063	-0.125	17.218	0.009
· (·		7	-0.041	0.007	17.394	0.015
· 🗐 י	'티'	8	-0.169	-0.139	20.416	0.009
· (·	'þ'	9	-0.039	0.102	20.581	0.015
יםי	' ='	10	0.078	0.106	21.241	0.019
יםי	' '	11	0.042	0.096	21.432	0.029
· (·	'=' '	12	-0.043	-0.124	21.640	0.042
יםי	'=' '	13	-0.077	-0.152	22.305	0.051
	' '	14	0.010	-0.019	22.317	0.072
	1 1 1 1	15	-0.033	0.023	22.444	0.097
· 🗐 '	'= '	16	-0.160	-0.109	25.431	0.063
'뎍'	ן יםי	17	-0.139	-0.064	27.700	0.049
· 🖣 '	'9'	18	-0.144	-0.075	30.176	0.036
· 🗐 '	'(''	19	-0.165	-0.041	33.462	0.021
· [] ·	' '	20	-0.082	-0.010	34.287	0.024
	' '	21	-0.041	-0.011	34.501	0.032
'뎍'	'= '	22	-0.136	-0.106	36.820	0.025
·	'9'	23	-0.172	-0.139	40.597	0.013
	' '	24	-0.011	0.003	40.613	0.018
191	· · · ·	25	-0.065	-0.072	41.167	0.022
		26	-0.243	-0.216	49.081	0.004
<u> </u>		27	-0.204	-0.179	54.719	0.001
1 1		28	-0.022	0.097	54.786	0.002
'9'	ופין	29	-0.129	-0.067	57.096	0.001
יקי	' '	30	-0.073	-0.021	57.845	0.002
' P'		31	0.175	0.103	62.278	0.001
1 [1	'ឮ'	32	0.003	-0.090	62.280	0.001
<u>' E'</u>	· E ·	33	0.089	0.060	63.465	0.001
	' '	34	0.283	0.097	75.544	0.000
'	' ['	35	0.185	-0.010	80.794	0.000
· 🗗 ·	I I I I	36	0.108	0.019	82.619	0.000

1st

Make Possible Model

Model(P.c	1. q)					
				Adj. R		
Р	d	q	R sagure	sagure	AIC	SBC
0	1	1	0.068504	0.058488	12.25194	12.30571
1	1	0	0.07084	0.060741	12.25753	12.31164
1	1	1	0.087	0.06699	12.261	12.342
1	1	2	0.0664	0.0459	12.283	12.364
1	1	3	0.1847*	0.1667*	12.148*	12.229*
1	1	4	0.071	0.0505	12.278	12.359
2	1	1	0.0714	0.0508	12.287	12.369
2	1	2	0.0328	0.0108	12.328	12.41
2	1	3	0.1433**	0.1242**	12.206**	12.288**
2	1	4	0.024	0.0023	12.337	12.418
3	1	1	0.1366	0.11722	12.215	12.297
3	1	2	0.094	0.0737	12.263	12.345
3	1	3	0.1421	0.1229	12.208	12.29
3	1	4	0.0877	0.0672	12.27	12.352

Forecasting Accuracy

• For forecasting purposes ARIMA (1,1,3) and ARIMA (2,1,3) models are used. $D(CP) = c + \alpha AR(p) + \beta MA(q) + u_i$

• In ARIMA (1,1,3) we use AR (1) and MA(3) model so its estimated equation is

• In ARIMA^P ($\overline{2}$;1,554 we use AR($\frac{45}{2}$?⁷MA⁹(3) model so its estimated equation is For checking the accuracy of forecasting we apply forecasting checks.

- RMSE (Root Mean Square Error)
- MAE (Mean Absolute Error)
- MAPE (Mean Absolute Percentage Error)

We select the model which has minimum RMSE, MAE, MAPE.

	ARIMA(1,1,3)	ARIMA(2,1,3)
RMSE	117.31	161.4107
MAE	142.6127	121.2254
MAPE	11.87828	9.982363

ARIMA(1,1,3)

ARIMA(2,1,3)

ARIMA(1,1,3) & ARIMA(2,1,3)

÷						
		Actual	Forecast			
	Year	value	ARIMA(1,1,3)	Error	ARIMA(2,1,3)	Error
	Apr-15	1079	1047.34668	31.65332	1066.139152	12.86085
	May-15	1133	1077.328907	55.67109	1070.703341	62.29666
	Jun-15	1110	1104.452332	5.547668	1088.055767	21.94423
	Jul-15	1101	1119.331555	-18.3316	1116.701167	-15.7012
	Aug-15	1039	1123.662057	-84.6621	1129.051913	-90.0519
	Sep-15	1063	1028.529812	34.47019	1048.968702	14.0313
	Oct-15	1109	1061.595212	47.40479	1055.212224	53.78778
	Nov-15	1105	1084.3306	20.6694	1068.701076	36.29892
	Dec-15	1150	1119.772265	30.22774	1112.123791	37.87621
	Jan-16	1155	1181.212339	-26.2123	1174.454134	-19.4541
	Feb-16	1215	1165.919699	49.0803	1172.192866	42.80713
	Mar-16	1448	1242.265678	205.7343	1232.37034	215.6297

Actual Vs Forecast graph

Residual Analysis

 In Box-Jenkins methodology residual of best fitted model must be IID(Independent Identically Normally Distributed). For justifying the assumption we make its histogram & correlogram.

Histogram

Correll

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
1 🛛 1	1 1	1	0.048	0.048	0.2195	
ı 🗖 i	ı 🗖 i	2	0.184	0.182	3.5182	
ı 🗖 i	ı 🗖 i	3	0.143	0.132	5.5369	0.019
1 j 1	111	4	0.027	-0.015	5.6084	0.061
1 b 1	1 🛛 1	5	0.091	0.044	6.4480	0.092
1 1	1 1	6	0.021	-0.003	6.4914	0.165
1 1	111	7	0.011	-0.016	6.5031	0.260
· 🗖 ·	· 🗖	8	0.272	0.266	14.199	0.027
1 🛛 1	1 🛛 1	9	-0.038	-0.056	14.347	0.045
י 🛛 י	111	10	0.074	-0.021	14.933	0.060
י 🛾 י	1 1	11	0.047	-0.003	15.172	0.086
יםי	יםי	12	-0.057	-0.068	15.530	0.114
יני	יםי	13	-0.049	-0.097	15.792	0.149
יםי	1 🛛 1	14	-0.061	-0.032	16.203	0.182
יםי	1 [] 1	15	-0.080	-0.046	16.922	0.203
יםי	·	16	-0.105	-0.161	18.178	0.199
יםי		17	-0.109	-0.044	19.553	0.190
' <u></u> '	יםי	18	-0.115	-0.083	21.113	0.174
' '	10	19	-0.101	-0.070	22.336	0.172
	1 [] 1	20	-0.067	0.026	22.885	0.195
		21	-0.052	0.043	23.216	0.228
		22	-0.075	-0.034	23.913	0.246
' u '		23	-0.108	-0.063	25.390	0.231
		24	0.053	0.177	25.754	0.262
		25	-0.117	-0.071	27.547	0.233
<u>'</u>	· · · ·	26	-0.094	-0.064	28.704	0.231
· · ·		27	-0.025	0.052	28.790	0.273
		28	-0.002	0.045	28.790	0.321
· .	·	29	0.072	0.067	29.507	0.337
· · ·		30	-0.047	-0.043	29.822	0.372
. L.		31	0.008	-0.009	29.830	0.423
; F.		32	0.173	0.080	34.108	0.274
		33	-0.005	0.045	34.171	0.318
		34	0.053	-0.005	34.595	0.345
		35	-0.037	-0.153	34.800	0.382
'4'	'4'	30	-0.044	-0.095	35,103	0.416

Conclusion

• In this study, a univariate time series model is selected by using the data of the monthly coconut price from Pakistan Web site. We apply Box-Jenkins methodology for forecasting the monthly coconut price. By using the Line Diagram, correlogram, ADF and PP Test we found that our data is stationary at the 1st difference. After the estimation of models, and by comparing the values of R square adjusted R square AIC and SBC we conclude that ARIMA (1,1,3) and (2,1,3) are very close to each other so we use both models for forecasting purposes. After forecasting the values, we check the accuracy by using MAE, MAPE, and RMSE. From the above study, it is found that ARIMA (2,1,3) is more efficient than ARIMA (1,1,3).