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Preface
MATLAB® is a very popular language for technical computing used by stu-

dents, engineers, and scientists in universities, research institutes, and industries
all over the world. The software is popular because it is powerful and easy to use.
For university freshmen in it can be thought of as the next tool to use after the
graphic calculator in high school.

This book was written following several years of teaching the software to
freshmen in an introductory engineering course. The objective was to write a book
that teaches the software in a friendly, non-intimidating fashion. Therefore, the
book is written in simple and direct language. In many places bullets, rather than
lengthy text, are used to list facts and details that are related to a specific topic.
The book includes numerous sample problems in mathematics, science, and engi-
neering that are similar to problems encountered by new users of MATLAB.

This fourth edition of the book is updated to MATLAB 7.11 (Release
2010b). Other modifications/changes to this edition are: programming (now
Chapter 6) is introduced before user-defined functions (now Chapter 7), applica-
tions in numerical analysis (now Chapter 9) follows polynomials, curve fitting
and interpolation that is covered in Chapter 8. The last two chapters are 3D plot-
ting (now Chapter 10) and symbolic math (Chapter 11). In addition, the end of
chapter problems have been revised. There are many more problems in every
chapter, and close to 80% are new of different than in previous editions. In addi-
tion, the problems cover a wider range of topics. 

I would like to thank several of my colleagues at The Ohio State University.
Professors Richard Freuler, Mark Walter, and Walter Lampert, and Dr. Mike Parke
read sections of the book and suggested modifications. I also appreciate the
involvement and support of Professors Robert Gustafson and John Demel and Dr.
John Merrill from the First-Year Engineering Program at The Ohio State Univer-
sity. Special thanks go to Professor Mike Lichtensteiger (OSU), and my daughter
Tal Gilat (Marquette University), who carefully reviewed the first edition of the
book and provided valuable comments and criticisms. Professor Brian Harper
(OSU) has made a significant contribution to the new end of chapter problems in
the present edition. 

I would like to express my appreciation to all those who have reviewed the
first edition of the text at its various stages of development, including Betty Barr,
University of Houston; Andrei G. Chakhovskoi, University of California, Davis;
Roger King, University of Toledo; Richard Kwor, University of Colorado at Colo-
rado Springs; Larry Lagerstrom, University of California, Davis; Yueh-Jaw Lin,
University of Akron; H. David Sheets, Canisius College; Geb Thomas, University
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of Iowa; Brian Vick, Virginia Polytechnic Institute and State University; Jay
Weitzen, University of Massachusetts, Lowell; and Jane Patterson Fife, The Ohio
State University. In addition, I would like to acknowledge Daniel Sayre, Ken San-
tor, and Katie Singleton, all from John Wiley & Sons, who supported the produc-
tion of the Fourth edition.

I hope that the book will be useful and will help the users of MATLAB to
enjoy the software.

Amos Gilat
Columbus, Ohio
November, 2010
gilat.1@osu.edu

To my parents Schoschana and Haim Gelbwacks
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Introduction
MATLAB is a powerful language for technical computing. The name MATLAB
stands for MATrix LABoratory, because its basic data element is a matrix (array).
MATLAB can be used for math computations, modeling and simulations, data
analysis and processing, visualization and graphics, and algorithm development.

MATLAB is widely used in universities and colleges in introductory and
advanced courses in mathematics, science, and especially engineering. In industry
the software is used in research, development, and design. The standard
MATLAB program has tools (functions) that can be used to solve common
problems. In addition, MATLAB has optional toolboxes that are collections of
specialized programs designed to solve specific types of problems. Examples
include toolboxes for signal processing, symbolic calculations, and control
systems. 

Until recently, most of the users of MATLAB have been people with
previous knowledge of programming languages such as FORTRAN and C who
switched to MATLAB as the software became popular. Consequently, the
majority of the literature that has been written about MATLAB assumes that the
reader has knowledge of computer programming. Books about MATLAB often
address advanced topics or applications that are specialized to a particular field.
Today, however, MATLAB is being introduced to college students as the first (and
often the only) computer program they will learn. For these students there is a
need for a book that teaches MATLAB assuming no prior experience in computer
programming.
The Purpose of This Book
MATLAB: An Introduction with Applications is intended for students who are
using MATLAB for the first time and have little or no experience in computer
programming. It can be used as a textbook in freshmen engineering courses or in
workshops where MATLAB is being taught. The book can also serve as a
reference in more advanced science and engineering courses where MATLAB is
used as a tool for solving problems. It also can be used for self-study of MATLAB
by students and practicing engineers. In addition, the book can be a supplement or
a secondary book in courses where MATLAB is used but the instructor does not
have the time to cover it extensively.
Topics Covered
MATLAB is a huge program, and therefore it is impossible to cover all of it in one
book. This book focuses primarily on the foundations of MATLAB. The
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assumption is that once these foundations are well understood, the student will be
able to learn advanced topics easily by using the information in the Help menu.

The order in which the topics are presented in this book was chosen
carefully, based on several years of experience in teaching MATLAB in an
introductory engineering course. The topics are presented in an order that allows
the student to follow the book chapter after chapter. Every topic is presented
completely in one place and then used in the following chapters.

The first chapter describes the basic structure and features of MATLAB and
how to use the program for simple arithmetic operations with scalars as with a
calculator. Script files are introduced at the end of the chapter. They allow the
student to write, save, and execute simple MATLAB programs. The next two
chapters are devoted to the topic of arrays. MATLAB’s basic data element is an
array that does not require dimensioning. This concept, which makes MATLAB a
very powerful program, can be a little difficult to grasp for students who have only
limited knowledge of and experience with linear algebra and vector analysis. The
concept of arrays is introduced gradually and then explained in extensive detail.
Chapter 2 describes how to create arrays, and Chapter 3 covers mathematical
operations with arrays. 

Following the basics, more advanced topics that are related to script files
and input and output of data are presented in Chapter 4. This is followed by
coverage of two-dimensional plotting in Chapter 5. Programming with MATLAB
is introduced in Chapter 6. This includes flow control with conditional statements
and loops. User-defined functions, anonymous functions, and function functions
are covered next in Chapter 7. The coverage of function files (user-defined
functions) is intentionally separated from the subject of script files. This has
proven to be easier to understand by students who are not familiar with similar
concepts from other computer programs.

The next three chapters cover more advanced topics. Chapter 8 describes
how MATLAB can be used for carrying out calculations with polynomials, and
how to use MATLAB for curve fitting and interpolation. Chapter 9 covers
applications of MATLAB in numerical analysis. It includes solving nonlinear
equations, finding minimum or a maximum of a function, numerical integration,
and solution of first-order ordinary differential equations. Chapter 10 describes
how to produce three-dimensional plots, an extension of the chapter on two-
dimensional plots. Chapter 11 covers in great detail how to use MATLAB in
symbolic operations.
The Framework of a Typical Chapter
In every chapter the topics are introduced gradually in an order that makes the
concepts easy to understand. The use of MATLAB is demonstrated extensively
within the text and by examples. Some of the longer examples in Chapters 1–3 are
titled as tutorials. Every use of MATLAB is printed with a different font and with
a gray background. Additional explanations appear in boxed text with a white
background. The idea is that the reader will execute these demonstrations and
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tutorials in order to gain experience in using MATLAB. In addition, every chapter
includes formal sample problems that are examples of applications of MATLAB
for solving problems in math, science, and engineering. Each example includes a
problem statement and a detailed solution. Some sample problems are presented
in the middle of the chapter. All of the chapters (except Chapter 2) have a section
at the end with several sample problems of applications. It should be pointed out
that problems with MATLAB can be solved in many different ways. The solutions
of the sample problems are written such that they are easy to follow. This means
that in many cases the problem can be solved by writing a shorter, or sometimes
“trickier,” program. The students are encouraged to try to write their own solu-
tions and compare the end results. At the end of each chapter there is a set of
homework problems. They include general problems from math and science and
problems from different disciplines of engineering.
Symbolic Calculations
MATLAB is essentially a software for numerical calculations. Symbolic math
operations, however, can be executed if the Symbolic Math toolbox is installed.
The Symbolic Math toolbox is included in the student version of the software and
can be added to the standard program.
Software and Hardware
The MATLAB program, like most other software, is continually being developed
and new versions are released frequently. This book covers MATLAB Version
7.11, Release 2010b. It should be emphasized, however, that the book covers the
basics of MATLAB, which do not change much from version to version. The book
covers the use of MATLAB on computers that use the Windows operating system.
Everything is essentially the same when MATLAB is used on other machines. The
user is referred to the documentation of MATLAB for details on using MATLAB
on other operating systems. It is assumed that the software is installed on the
computer, and the user has basic knowledge of operating the computer.
The Order of Topics in the Book
It is probably impossible to write a textbook where all the subjects are presented
in an order that is suitable for everyone. The order of topics in this book is such
that the fundamentals of MATLAB are covered first (arrays and array operations),
and, as mentioned before, every topic is covered completely in one location,
which makes the book easy to use as a reference. The order of the topics in this
fourth edition of the book is a little bit different than in previous editions. Pro-
gramming is introduced before user-defined functions. This allows using pro-
gramming in user-defined functions. Also, applications of MATLAB in numerical
analysis (now Chapter 9, previously 10) follow Chapter 8 which covers polynomi-
als, curve fitting, and interpolation.  
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Chapter 1                        
Starting with 
MATLAB

This chapter begins by describing the characteristics and purposes of the different
windows in MATLAB. Next, the Command Window is introduced in detail. This
chapter shows how to use MATLAB for arithmetic operations with scalars in a
fashion similar to the way that a calculator is used. This includes the use of ele-
mentary math functions with scalars. The chapter then shows how to define scalar
variables (the assignment operator) and how to use these variables in arithmetic
calculations. The last section in the chapter introduces script files. It shows how to
write, save, and execute simple MATLAB programs.

1.1  STARTING MATLAB, MATLAB WINDOWS

It is assumed that the software is installed on the computer, and that the user can
start the program. Once the program starts, the MATLAB desktop window opens
(Figure 1-1). The window contains four smaller windows: the Command Window,
the Current Folder Window, the Workspace Window, and the Command History
Window. This is the default view that shows four of the various windows of MAT-
LAB. A list of several windows and their purpose is given in Table 1-1. The Start
button on the lower left side can be used to access MATLAB tools and features. 

Four of the windows—the Command Window, the Figure Window, the Editor
Window, and the Help Window—are used extensively throughout the book and
are briefly described on the following pages. More detailed descriptions are
included in the chapters where they are used. The Command History Window,
Current Folder Window, and the Workspace Window are described in Sections
1.2, 1.8.4, and 4.1, respectively.
Command Window:  The Command Window is MATLAB’s main window and
opens when MATLAB is started. It is convenient to have the Command Window
as the only visible window, and this can be done by either closing all the other
windows (click on the x at the top right-hand side of the window you want to
close) or by first selecting the Desktop Layout in the Desktop menu, and then
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selecting Command Window Only from the submenu that opens. Working in the
Command Window is described in detail in Section 1.2. 

Figure Window:  The Figure Window opens automatically when graphics com-
mands are executed, and contains graphs created by these commands. An example
of a Figure Window is shown in Figure 1-2. A more detailed description of this
window is given in Chapter 5.

Figure 1-1: The default view of MATLAB desktop.

Table 1-1: MATLAB windows

Window Purpose
Command Window Main window, enters variables, runs

programs.
Figure Window Contains output from graphic

commands.
Editor Window Creates and debugs script and

function files.
Help Window Provides help information.
Command History Window Logs commands entered in the

Command Window.
Workspace Window Provides information about the

variables that are used.
Current Folder Window Shows the files in the current folder.
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Editor Window:  The Editor Window is used for writing and editing programs.
This window is opened from the File menu. An example of an Editor Window is
shown in Figure 1-3. More details on the Editor Window are given in Section
1.8.2, where it is used for writing script files, and in Chapter 7, where it is used to
write function files.

Help Window:  The Help Window contains help information. This window can
be opened from the Help menu in the toolbar of any MATLAB window. The Help
Window is interactive and can be used to obtain information on any feature of
MATLAB. Figure 1-4 shows an open Help Window.

Figure 1-2: Example of a Figure Window.

Figure 1-3: Example of an Editor Window.
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When MATLAB is started for the first time the screen looks like that shown in
Figure 1-1. For most beginners it is probably more convenient to close all the win-
dows except the Command Window. (Each of the windows can be closed by
clicking on the  button.) The closed windows can be reopened by selecting
them from the Desktop menu. The windows shown in Figure 1-1 can be displayed
by selecting first Desktop Layout in the Desktop menu and then Default from
the submenu. The various windows in Figure 1-1 are docked to the desktop. A
window can be undocked (become a separate, independent window) by clicking
on the  button on the upper right-hand corner. An independent window can be
redocked by clicking on the  button.

Figure 1-4: The Help Window.
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1.2 WORKING IN THE COMMAND WINDOW

The Command Window is MATLAB’s main window and can be used for execut-
ing commands, opening other windows, running programs written by the user, and
managing the software. An example of the Command Window, with several sim-
ple commands that will be explained later in this chapter, is shown in Figure 1-5.

Notes for working in the Command Window:

• To type a command the cursor must be placed next to the command prompt ( >> ).

• Once a command is typed and the Enter key is pressed, the command is executed.
However, only the last command is executed. Everything executed previously
(that might be still displayed) is unchanged.

• Several commands can be typed in the same line. This is done by typing a comma
between the commands. When the Enter key is pressed the commands are exe-
cuted in order from left to right. 

• It is not possible to go back to a previous line that is displayed in the Command
Window, make a correction, and then re-execute the command.

• A previously typed command can be recalled to the command prompt with the up-
arrow key (  ). When the command is displayed at the command prompt, it can
be modified if needed and then executed. The down-arrow key (  ) can be used to
move down the list of previously typed commands.

• If a command is too long to fit in one line, it can be continued to the next line by
typing three periods  … (called an ellipsis) and pressing the Enter key. The con-
tinuation of the command is then typed in the new line. The command can con-
tinue line after line up to a total of 4,096 characters.

Figure 1-5: The Command Window.

To type a command the cursor is placed
next to the command prompt ( >> ).
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The semicolon ( ; ):
When a command is typed in the Command Window and the Enter key is
pressed, the command is executed. Any output that the command generates is dis-
played in the Command Window. If a semicolon ( ; ) is typed at the end of a com-
mand the output of the command is not displayed. Typing a semicolon is useful
when the result is obvious or known, or when the output is very large.

If several commands are typed in the same line, the output from any of the
commands will not be displayed if a semicolon is typed between the commands
instead of a comma.
Typing  %:
When the symbol % (percent) is typed at the beginning of a line, the line is desig-
nated as a comment. This means that when the Enter key is pressed the line is not
executed. The % character followed by text (comment) can also be typed after a
command (in the same line). This has no effect on the execution of the command.

Usually there is no need for comments in the Command Window. Comments,
however, are frequently used in a program to add descriptions or to explain the
program (see Chapters 4 and 6).
The clc command:
The clc command (type clc and press Enter) clears the Command Window.
After working in the Command Window for a while, the display may become very
long. Once the clc command is executed a clear window is displayed. The com-
mand does not change anything that was done before. For example, if some vari-
ables were defined previously (see Section 1.6), they still exist and can be used.
The up-arrow key can also be used to recall commands that were typed before.
The Command History Window:
The Command History Window lists the commands that have been entered in the
Command Window. This includes commands from previous sessions. A com-
mand in the Command History Window can be used again in the Command Win-
dow. By double-clicking on the command, the command is reentered in the
Command Window and executed. It is also possible to drag the command to the
Command Window, make changes if needed, and then execute it.   The list in the
Command History Window can be cleared by selecting the lines to be deleted and
then selecting Delete Selection from the Edit menu (or right-click the mouse
when the lines are selected and then choose Delete Selection in the menu that
opens).   

1.3 ARITHMETIC OPERATIONS WITH SCALARS

In this chapter we discuss only arithmetic operations with scalars, which are num-
bers. As will be explained later in the chapter, numbers can be used in arithmetic
calculations directly (as with a calculator) or they can be assigned to variables,
which can subsequently be used in calculations. The symbols of arithmetic opera-
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tions are:

It should be pointed out here that all the symbols except the left division are
the same as in most calculators. For scalars, the left division is the inverse of the
right division. The left division, however, is mostly used for operations with
arrays, which are discussed in Chapter 3.

1.3.1 Order of Precedence
MATLAB executes the calculations according to the order of precedence dis-
played below. This order is the same as used in most calculators.

In an expression that has several operations, higher-precedence operations are
executed before lower-precedence operations. If two or more operations have the
same precedence, the expression is executed from left to right. As illustrated in the
next section, parentheses can be used to change the order of calculations.

1.3.2 Using MATLAB as a Calculator
The simplest way to use MATLAB is as a calculator. This is done in the Com-
mand Window by typing a mathematical expression and pressing the Enter key.
MATLAB calculates the expression and responds by displaying ans =  and the
numerical result of the expression in the next line. This is demonstrated in Tutorial
1-1.

Operation Symbol Example
Addition + 5 + 3
Subtraction – 5 – 3
Multiplication * 5 * 3
Right division / 5 / 3
Left division \ 5 \ 3 = 3 / 5
Exponentiation ^ 5 ^ 3 (means 53 = 125)

Precedence Mathematical Operation
First Parentheses. For nested parentheses, the innermost

are executed first.
Second Exponentiation.
Third Multiplication, division (equal precedence).
Fourth Addition and subtraction.
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1.4 DISPLAY FORMATS

The user can control the format in which MATLAB displays output on the screen.
In Tutorial 1-1, the output format is fixed-point with four decimal digits (called
short), which is the default format for numerical values. The format can be
changed with the format command. Once the format command is entered, all
the output that follows is displayed in the specified format. Several of the avail-
able formats are listed and described in Table 1-2.

MATLAB has several other formats for displaying numbers. Details of these
formats can be obtained by typing help format in the Command Window. The
format in which numbers are displayed does not affect how MATLAB computes
and saves numbers.

Tutorial 1-1: Using MATLAB as a calculator.

>> 7+8/2 

ans =
    11

>> (7+8)/2

ans =
    7.5000

>> 4+5/3+2

ans =
    7.6667

>> 5^3/2

ans =
   62.5000

>> 27^(1/3)+32^0.2

ans =
     5

>> 27^1/3+32^0.2

ans =
    11
 

>> 0.7854-(0.7854)^3/(1*2*3)+0.785^5/(1*2*3*4*5)...
-(0.785)^7/(1*2*3*4*5*6*7)

ans =
    0.7071
>>

Type and press Enter.

8/2 is executed first.

Type and press Enter.

7+8 is executed first.

5/3 is executed first.

5^3 is executed first, /2 is executed next.

1/3 is executed first, 27^(1/3) and 32^0.2 are
executed next, and + is executed last.

27^1 and 32^0.2 are executed first, /3 is exe-
cuted next, and + is executed last.

Type three periods ... (and press Enter) to
continue the expression on the next line.

The last expression is the first four
terms of the Taylor series for sin(π/4).
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1.5 ELEMENTARY MATH BUILT-IN FUNCTIONS

In addition to basic arithmetic operations, expressions in MATLAB can include
functions. MATLAB has a very large library of built-in functions. A function has
a name and an argument in parentheses. For example, the function that calculates
the square root of a number is sqrt(x). Its name is sqrt, and the argument is
x. When the function is used, the argument can be a number, a variable that has
been assigned a numerical value (explained in Section 1.6), or a computable
expression that can be made up of numbers and/or variables. Functions can also
be included in arguments, as well as in expressions. Tutorial 1-2 shows examples

Table 1-2: Display formats

Command Description Example

format short Fixed-point with 4 decimal 
digits for: 

 
Otherwise display format 
short e.

>> 290/7
ans =
   41.4286

format long Fixed-point with 15 decimal 
digits for: 

Otherwise display format 
long e.

>> 290/7
ans =
  41.428571428571431

format short e Scientific notation with 4 
decimal digits. 

>> 290/7
ans =
  4.1429e+001

format long e Scientific notation with 15 
decimal digits. 

>> 290/7
ans =      
 
4.142857142857143e+001

format short g Best of 5-digit fixed or 
floating point. 

>> 290/7
ans =
       41.429

format long g Best of 15-digit fixed or 
floating point.

>> 290/7
ans =
          
41.4285714285714

format bank Two decimal digits. >> 290/7
ans =
         41.43

format compact Eliminates empty lines to allow more lines with 
information displayed on the screen.

format loose Adds empty lines (opposite of compact).

0.001 number 1000≤ ≤

0.001 number 100≤ ≤
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of using the function sqrt(x) when MATLAB is used as a calculator with sca-
lars.

Some commonly used elementary MATLAB mathematical built-in functions
are given in Tables 1-3 through 1-5. A complete list of functions organized by cat-
egory can be found in the Help Window.

Tutorial 1-2: Using the sqrt built-in function.

>> sqrt(64)

ans =
     8

>> sqrt(50+14*3)

ans =
    9.5917

>> sqrt(54+9*sqrt(100))

ans =
    12

>> (15+600/4)/sqrt(121)

ans =
    15
>>

Table 1-3: Elementary math functions

Function Description Example

sqrt(x) Square root. >> sqrt(81)
ans =
     9

nthroot(x,n) Real nth root of a real number x.
(If x is negative n must be an
odd integer.)

>> nthroot(80,5)
ans =
    2.4022

exp(x) Exponential . >> exp(5)
ans =
  148.4132

abs(x) Absolute value. >> abs(-24)
ans =
    24

log(x) Natural logarithm.
Base e logarithm (ln).

>> log(1000)
ans =
    6.9078

log10(x) Base 10 logarithm. >> log10(1000)
ans =
    3.0000

Argument is a number.

Argument is an expression.

Argument includes a function.

Function is included in an expression.

ex( )
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The inverse trigonometric functions are asin(x), acos(x), atan(x),
acot(x) for the angle in radians; and asind(x), acosd(x), atand(x),
acotd(x) for the angle in degrees. The hyperbolic trigonometric functions are
sinh(x), cosh(x), tanh(x), and coth(x). Table 1-4 uses pi, which is
equal to π (see Section 1.6.3).

factorial(x) The factorial function x! 
(x must be a positive integer.)

>> factorial(5)
ans =
   120

Table 1-4: Trigonometric math functions

Function Description Example

sin(x)
sind(x)

Sine of angle x (x in radians).
Sine of angle x (x in degrees).

>> sin(pi/6)
ans =
    0.5000

cos(x)
cosd(x)

Cosine of angle x (x in radians).
Cosine of angle x (x in degrees).

>> cosd(30)
ans =
    0.8660

tan(x)
tand(x)

Tangent of angle x (x in radians). 
Tangent of angle x (x in degrees).

>> tan(pi/6)
ans =
    0.5774

cot(x)
cotd(x)

Cotangent of angle x (x in radians).
Cotangent of angle x (x in degrees).

>> cotd(30)
ans =
    1.7321

Table 1-5: Rounding functions

Function Description Example

round(x) Round to the nearest integer. >> round(17/5)
ans =
     3

fix(x) Round toward zero. >> fix(13/5)
ans =
     2

ceil(x) Round toward infinity. >> ceil(11/5)
ans =
     3

floor(x) Round toward minus infinity. >> floor(-9/4)
ans =
    -3

rem(x,y) Returns the remainder after x is 
divided by y.

>> rem(13,5)
ans =
     3

Table 1-3: Elementary math functions (Continued)

Function Description Example
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1.6 DEFINING SCALAR VARIABLES

A variable is a name made of a letter or a combination of several letters (and dig-
its) that is assigned a numerical value. Once a variable is assigned a numerical
value, it can be used in mathematical expressions, in functions, and in any MAT-
LAB statements and commands. A variable is actually a name of a memory loca-
tion. When a new variable is defined, MATLAB allocates an appropriate memory
space where the variable’s assignment is stored. When the variable is used the
stored data is used. If the variable is assigned a new value the content of the
memory location is replaced. (In Chapter 1 we consider only variables that are
assigned numerical values that are scalars. Assigning and addressing variables
that are arrays is discussed in Chapter 2.)

1.6.1 The Assignment Operator
In MATLAB the  =  sign is called the assignment operator. The assignment opera-
tor assigns a value to a variable.

• The left-hand side of the assignment operator can include only one variable name.
The right-hand side can be a number, or a computable expression that can include
numbers and/or variables that were previously assigned numerical values. When
the Enter key is pressed the numerical value of the right-hand side is assigned to
the variable, and MATLAB displays the variable and its assigned value in the next
two lines. 

The following shows how the assignment operator works.

sign(x) Signum function. Returns 1 if 
, –1 if , and 0 if 
.

>> sign(5)
ans = 
     1                

>> x=15

x =
    15

>> x=3*x-12

x =
    33
>>

Table 1-5: Rounding functions (Continued)

Function Description Example

x 0> x 0<
x 0=

Variable_name = A numerical value, or a computable expression

The number 15 is assigned to the variable x.

MATLAB displays the variable 
and its assigned value.

A new value is assigned to x. The
new value is 3 times the previous
value of x minus 12.
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The last statement ( ) illustrates the difference between the assignment
operator and the equal sign. If in this statement the = sign meant equal, the value
of x would be 6 (solving the equation for x).

The use of previously defined variables to define a new variable is demon-
strated next.

• If a semicolon is typed at the end of the command, then when the Enter key is
pressed, MATLAB does not display the variable with its assigned value (the vari-
able still exists and is stored in memory).

• If a variable already exists, typing the variable’s name and pressing the Enter key
will display the variable and its value in the next two lines.

As an example, the last demonstration is repeated below using semicolons.

• Several assignments can be typed in the same line. The assignments must be sepa-
rated with a comma (spaces can be added after the comma). When the Enter key
is pressed, the assignments are executed from left to right and the variables and
their assignments are displayed. A variable is not displayed if a semicolon is typed
instead of a comma. For example, the assignments of the variables a, B, and C
above can all be done in the same line.

>> a=12

a =
    12

>> B=4

B =
     4

>> C=(a-B)+40-a/B*10

C =
    18

>> a=12;

>> B=4;

>> C=(a-B)+40-a/B*10;

>> C
C =
    18

>> a=12, B=4; C=(a-B)+40-a/B*10

a =
    12

C =
    18

x 3x 12–=

Assign 12 to a.

Assign 4 to B.

Assign the value of the expres-
sion on the right-hand side to 
the variable C.

The variables a, B, and C are defined
but are not displayed since a semicolon
is typed at the end of each statement.

The value of the variable C is displayed
by typing the name of the variable.

The variable B is not displayed because a semi-
colon is typed at the end of the assignment. 
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• A variable that already exists can be reassigned a new value. For example:

• Once a variable is defined it can be used as an argument in functions. For exam-
ple: 

1.6.2 Rules About Variable Names
A variable can be named according to the following rules:
• Must begin with a letter. 

• Can be up to 63 characters long.

• Can contain letters, digits, and the underscore character.

• Cannot contain punctuation characters (e.g., period, comma, semicolon).

• MATLAB is case sensitive: it distinguishes between uppercase and lowercase let-
ters. For example, AA, Aa, aA, and aa are the names of four different variables.

• No spaces are allowed between characters (use the underscore where a space is
desired). 

• Avoid using the name of a built-in function for a variable (i.e., avoid using cos,
sin, exp, sqrt, etc.). Once a function name is used to define a variable, the
function cannot be used.

1.6.3 Predefined Variables and Keywords
There are 20 words, called keywords, that are reserved by MATLAB for various
purposes and cannot be used as variable names. These words are:

break   case   catch  classdef  continue   else   elseif
end   for   function    global   if   otherwise   parfor
persistent  return  spmd   switch   try   while

>> ABB=72;

>> ABB=9;

>> ABB

ABB =
     9
>>

>> x=0.75;

>> E=sin(x)^2+cos(x)^2
E =
     1
>> 

A value of 72 is assigned to the variable ABB.
A new value of 9 is assigned to the variable ABB.

The current value of the variable is dis-
played when the name of the variable is
typed and the Enter key is pressed.
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When typed, these words appear in blue. An error message is displayed if the user
tries to use a keyword as a variable name. (The keywords can be displayed by typ-
ing the command iskeyword.)   

A number of frequently used variables are already defined when MATLAB is
started. Some of the predefined variables are:
ans A variable that has the value of the last expression that was not assigned to a

specific variable (see Tutorial 1-1). If the user does not assign the value of
an expression to a variable, MATLAB automatically stores the result in
ans.

pi The number π.
eps The smallest difference between two numbers. Equal to 2^(–52), which is

approximately 2.2204e–016.
inf Used for infinity.
i Defined as , which is: 0 + 1.0000i.
j Same as i.
NaN Stands for Not-a-Number. Used when MATLAB cannot determine a valid

numeric value. Example: 0/0. 
The predefined variables can be redefined to have any other value. The vari-

ables pi, eps, and inf, are usually not redefined since they are frequently used
in many applications. Other predefined variables, such as  i and j, are sometime
redefined (commonly in association with loops) when complex numbers are not
involved in the application.

1.7 USEFUL COMMANDS FOR MANAGING VARIABLES

The following are commands that can be used to eliminate variables or to obtain
information about variables that have been created. When these commands are
typed in the Command Window and the Enter key is pressed, either they provide
information, or they perform a task as specified below.

Command Outcome

clear Removes all variables from the memory.
clear x y z Removes only variables x, y, and z from the

memory.
who Displays a list of the variables currently in the

memory.
whos Displays a list of the variables currently in the

memory and their sizes together with informa-
tion about their bytes and class (see Section 4.1).

1–
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1.8 SCRIPT FILES

So far all the commands were typed in the Command Window and were executed
when the Enter key was pressed. Although every MATLAB command can be
executed in this way, using the Command Window to execute a series of com-
mands—especially if they are related to each other (a program)—is not conve-
nient and may be difficult or even impossible. The commands in the Command
Window cannot be saved and executed again. In addition, the Command Window
is not interactive. This means that every time the Enter key is pressed only the
last command is executed, and everything executed before is unchanged. If a
change or a correction is needed in a command that was previously executed and
the results of this command are used in commands that follow, all the commands
have to be entered and executed again.

A different (better) way of executing commands with MATLAB is first to
create a file with a list of commands (program), save it, and then run (execute) the
file. When the file runs, the commands it contains are executed in the order that
they are listed. If needed, the commands in the file can be corrected or changed
and the file can be saved and run again. Files that are used for this purpose are
called script files.

IMPORTANT NOTE: This section covers only the minimum that is
required in order to run simple programs. This will allow the student to use
script files when practicing the material that is presented in this and the next
two chapters (instead of typing repeatedly in the Command Window). Script
files are considered again in Chapter 4 where many additional topics that are
essential for understanding MATLAB and writing programs in script file are
covered.

1.8.1 Notes About Script Files
• A script file is a sequence of MATLAB commands, also called a program.

• When a script file runs (is executed), MATLAB executes the commands in the
order they are written just as if they were typed in the Command Window.

• When a script file has a command that generates an output (e.g., assignment of
a value to a variable without a semicolon at the end), the output is displayed in
the Command Window.

• Using a script file is convenient because it can be edited (corrected or other-
wise changed) and executed many times.

• Script files can be typed and edited in any text editor and then pasted into the
MATLAB editor.

• Script files are also called M-files because the extension .m is used when they are
saved.
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1.8.2 Creating and Saving a Script File
In MATLAB script files are created and edited in the Editor/Debugger Window.
This window is opened from the Command Window. In the File menu, select
New, and then select Script. An open Editor/Debugger Window is shown in Fig-
ure 1-6.

Once the window is open, the commands of the script file are typed line by
line. MATLAB automatically numbers a new line every time the Enter key is
pressed. The commands can also be typed in any text editor or word processor
program and then copied and pasted in the Editor/Debugger Window. An example
of a short program typed in the Editor/Debugger Window is shown in Figure 1-7.
The first few lines in a script file are typically comments (which are not executed
since the first character in the line is %) that describe the program written in the
script file.

Figure 1-6: The Editor/Debugger Window.

Figure 1-7: A program typed in the Editor/Debugger Window.

The commands in the script file are
typed line by line. The lines are num-
bered automatically. A new line
starts when the Enter key is pressed.

Line
number

Comments.

Define three 
variables.

Calculating the two roots.

The Run icon.
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Before a script file can be executed it has to be saved. This is done by
choosing Save As... from the File menu, selecting a location (many students save
to a flash drive, which appears in the directory as Drive(F:) or (G:)), and
entering a name for the file. When saved, MATLAB adds the extension .m to the
name. The rules for naming a script file follow the rules of naming a variable
(must begin with a letter, can include digits and underscore, no spaces, and up to
63 characters long). The names of user-defined variables, predefined variables,
and MATLAB commands or functions should not be used as names of script files.

1.8.3 Running (Executing) a Script File
A script file can be executed either directly from the Editor Window by clicking
on the Run icon (see Figure 1-7) or by typing the file name in the Command Win-
dow and then pressing the Enter key. For a file to be executed, MATLAB needs
to know where the file is saved. The file will be executed if the folder where the
file is saved is the current folder of MATLAB or if the folder is listed in the search
path, as explained next.   

1.8.4 Current Folder
The current folder is shown in the “Current Folder” field in the desktop toolbar of
the Command Window, as shown in Figure 1-8. If an attempt is made to execute a
script file by clicking on the Run icon (in the Editor Window) when the current
folder is not the folder where the script file is saved, then the prompt shown in

Figure 1-9 will open. The user can then change the current folder to the folder
where the script file is saved, or add it to the search path. Once two or more differ-
ent current folders are used in a session, it is possible to switch from one to
another in the Current Folder field in the Command Window. The current folder
can also be changed in the Current Folder Window, shown in Figure 1-10, which
can be opened from the Desktop menu. The Current Folder can be changed by
choosing the drive and folder where the file is saved.

Figure 1-8: The Current folder field in the Command Window.

The current folder is shown here. 
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An alternative simple way to change the current folder is to use the cd com-
mand in the Command Window. To change the current folder to a different drive,
type cd, space, and then the name of the directory followed by a colon : and press
the Enter key. For example, to change the current folder to drive F (e.g., the flash
drive) type cd F:. If the script file is saved in a folder within a drive, the path to
that folder has to be specified. This is done by typing the path as a string in the cd
command. For example, cd('F:\Chapter 1') sets the path to the folder
Chapter 1 in drive F. The following example shows how the current folder is
changed to be drive E. Then the script file from Figure 1-7, which was saved in
drive E as ProgramExample.m, is executed by typing the name of the file and
pressing the Enter key.

Figure 1-9: Changing the current directory.

Figure 1-10: The Current Folder Window.

>> cd E:

>> ProgramExample

x1 =
    3.5000
x2 =
   -1.2500

Current
folder
shown
here.

Click here 
to change 
the folder. 

Click here 
to browse 
for a folder.

Click here to 
go up one 
level in the 
file system.

The current directory is changed to drive E.

The script file is executed by typing the 
name of the file and pressing the Enter key.

The output generated by the script file (the roots x1
and x2) is displayed in the Command Window.
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1.9 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 1-1: Trigonometric identity

A trigonometric identity is given by:

Verify that the identity is correct by calculating each side of the equation, substi-
tuting .

Solution

The problem is solved by typing the following commands in the Command Win-
dow.

Sample Problem 1-2: Geometry and trigonometry

Four circles are placed as shown in the figure.
At each point where two circles are in contact
they are tangent to each other. Determine the
distance between the centers C2 and C4.
The radii of the circles are:

mm, mm, mm, and
mm.

Solution

The lines that connect the centers of the cir-
cles create four triangles. In two of the trian-
gles, ΔC1C2C3 and ΔC1C3C4, the lengths of all
the sides are known. This information is used to
calculate the angles γ1 and γ2 in these triangles by
using the law of cosines. For example, γ1 is cal-
culated from: 

>> x=pi/5;

>> LHS=cos(x/2)^2

LHS =
    0.9045

>> RHS=(tan(x)+sin(x))/(2*tan(x))

RHS =
    0.9045

x
2
---cos2 xtan xsin+

2 xtan
---------------------------=

x π
5
---=

Define x.
Calculate the left-hand side.

Calculate the right-hand side.

R1 16= R2 6.5= R3 12=
R4 9.5=
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Next, the length of the side C2C4 is calculated by considering the triangle
ΔC1C2C4. This is done, again, by using the law of cosines (the lengths C1C2 and
C1C4 are known and the angle γ3 is the sum of the angles γ1 and γ2).

The problem is solved by writing the following program in a script file:

When the script file is executed, the following (the value of the variable C2C4) is
displayed in the Command Window:

Sample Problem 1-3: Heat transfer 

An object with an initial temperature of  that is placed at time t = 0 inside a
chamber that has a constant temperature of  will experience a temperature
change according to the equation

where T is the temperature of the object at time t, and k is a constant. A soda can at
a temperature of F (after being left in the car) is placed inside a refrigerator
where the temperature is F. Determine, to the nearest degree, the temperature
of the can after three hours. Assume k = 0.45. First define all of the variables and
then calculate the temperature using one MATLAB command.
Solution

The problem is solved by typing the following commands in the Command Win-
dow.

% Solution of Sample Problem 1-2

R1=16; R2=6.5; R3=12; R4=9.5;

C1C2=R1+R2; C1C3=R1+R3; C1C4=R1+R4;

C2C3=R2+R3; C3C4=R3+R4;

Gama1=acos((C1C2^2+C1C3^2-C2C3^2)/(2*C1C2*C1C3));

Gama2=acos((C1C3^2+C1C4^2-C3C4^2)/(2*C1C3*C1C4));

Gama3=Gama1+Gama2;

C2C4=sqrt(C1C2^2+C1C4^2-2*C1C2*C1C4*cos(Gama3))

C2C4 =
   33.5051

C2C3( )2 C1C2( )2 C1C3( )2 2 C1C2( ) C1C3( ) γ1cos–+=

Define the R’s.
Calculate the 
lengths of the sides.

Calculate γ1, γ2, and γ3.

Calculate the length of
side C2C4.

T0
Ts

T Ts T0 Ts–( )e kt–+=

120°
38°



26 Chapter 1: Starting with MATLAB

Sample Problem 1-4: Compounded interest

The balance B of a savings account after t years when a principal P is invested at
an annual interest rate r and the interest is compounded n times a year is given by:

       (1)

If the interest is compounded yearly, the balance is given by:
       (2)

Suppose $5,000 is invested for 17 years in one account where the interest is com-
pounded yearly. In addition, $5,000 is invested in a second account in which the
interest is compounded monthly. In both accounts the interest rate is 8.5%. Use
MATLAB to determine how long (in years and months) it would take for the bal-
ance in the second account to be the same as the balance of the first account after
17 years.
Solution
Follow these steps:
(a) Calculate B for $5,000 invested in a yearly compounded interest account after
17 years using Equation (2).
(b) Calculate t for the B calculated in part (a), from the monthly compounded
interest formula, Equation (1).
(c) Determine the number of years and months that correspond to t.

The problem is solved by writing the following program in a script file:

>> Ts=38;  T0=120; k=0.45; t=3;

>> T=round(Ts+(T0-Ts)*exp(-k*t))

T =
    59

% Solution of Sample Problem 1-4

P=5000;  r=0.085;  ta=17; n=12;

B=P*(1+r)^ta

t=log(B/P)/(n*log(1+r/n))

years=fix(t)

months=ceil((t-years)*12)

Round to the nearest integer.

B P 1 r
n
---+⎝ ⎠

⎛ ⎞ nt
=

B P 1 r+( )t=

Step (a): Calculate B from Eq. (2).
Step (b): Solve Eq. (1)
for t, and calculate t.

Step (c): Determine the number of years.
Determine the number of months.
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When the script file is executed, the following (the values of the variables B, t,
years, and months) is displayed in the Command Window:

1.10 PROBLEMS

The following problems can be solved by writing commands in the Command
Window, or by writing a program in a script file and then executing the file.

1. Calculate:

(a) (b)

2. Calculate:

(a) (b)

3. Calculate:

(a) (b)

4. Calculate:

(a) (b)

>> format short g
B =
        20011

t =
       16.374

years =
    16

months =
     5

The values of the variables B, t,
years, and months are displayed
(since a semicolon was not typed at the
end of any of the commands that calcu-
late the values).

14.82 6.52+( )
3.82

---------------------------------- 55
2 14+

-------------------+ 3.5–( )3 e6

524ln
-------------- 2061 3⁄+ +

16.52 8.4 70–( )

4.32 17.3–
----------------------------------------- 5.23 6.42– 3+

1.68 2–
----------------------------------- 13.3

5
----------⎝ ⎠
⎛ ⎞

1.5
+

15 10 3.72+

10 1365( )log 1.9+
-------------------------------------------⎝ ⎠
⎛ ⎞

2.53 16 216
22

---------–⎝ ⎠
⎛ ⎞

1.74 14+
------------------------------------ 20504+

2.32 1.7⋅

1 0.82–( )2 2 0.87–( )2+
------------------------------------------------------------------- 2.34 1

2
---2.7 5.92 2.42–( ) 9.8 51ln+ +
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5. Calculate:

(a)     (b)

6. Define the variable x as x = 2.34, then evaluate:

(a) (b)

7. Define the variable t as t = 6.8, then evaluate:

(a) (b)

8. Define the variables x and y as x = 8.3 and y = 2.4, then evaluate:

(a) (b)

9. Define the variables a, b, c, and d as:

, , , and , then evaluate:

(a) (b)

10. A cube has a side of 18 cm.
(a) Determine the radius of a sphere that has the same surface area as the

cube.
(b) Determine the radius of a sphere that has the same volume as the cube.

11. The perimeter P of an ellipse with semi-minor axes a and

b is given approximately by:  .

(a) Determine the perimeter of an ellipse with in.
and in.

(b) An ellipse with  has a perimeter of cm. Determine a and b.

12. Two trigonometric identities are given by:

(a) (b)

For each part, verify that the identity is correct by calculating the values of the
left and right sides of the equation, substituting .

7π
9

------⎝ ⎠
⎛ ⎞sin

5
7
---π⎝ ⎠
⎛ ⎞cos2

----------------------- 1
7
--- 5

12
------π⎝ ⎠
⎛ ⎞tan+ 64°tan

14°cos2
------------------- 3 80°sin

0.93
--------------------– 55°cos

11°sin
-----------------+

2x4 6x3– 14.8x2 9.1+ +
e2x

14 x2 x–+
------------------------------

t2 t3–( )ln 75
2t
------ 0.8t 3–( )cos

x2 y2 x2

y2
-----–+ xy x y+–

x y–
x 2y–
--------------⎝ ⎠

⎛ ⎞
2 x

y
--–+

a 13= b 4.2= c 4b( ) a⁄= d abc
a b c+ +
---------------------=

a b
c d+
------------ d

c
---a

b
--- a b2–( ) c d+( )–+ a2 b2+

d c–( )
--------------------- b a– c d–+( )ln+

a b
P 2π 1

2
--- a2 b2+( )=

a 9=
b 3=

b 2a= P 20=

4xsin 4 x xcossin 8 xsin3 xcos–= 2xcos 1 xtan2–
1 xtan2+
----------------------=

x π
9
---=
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13. Two trigonometric identities are given by:

(a) (b)

For each part, verify that the identity is correct by calculating the values of the
left and right sides of the equation, substituting .

14. Define two variables:  alpha = 5π/8, and beta = π/8. Using these variables, show
that the following trigonometric identity is correct by calculating the values of
the left and right sides of the equation.

15. Given: . Use MATLAB to calculate the following

definite integral: .

16. In the triangle shown cm, cm, and
cm. Define a, b, and c as variables, and

then:
(a) Calculate the angle α (in degrees) by substi-

tuting the variables in the Law of Cosines.
(Law of Cosines: ) 

(b) Calculate the angles β and γ (in degrees)
using the Law of Sines.

(c) Check that the sum of the angles is . 

17. In the triangle shown in., in., and .
Define a, b, and γ as variables, and then:
(a) Calculate the length of c by substituting the variables in

the Law of Cosines.
(Law of Cosines: ) 

(b) Calculate the angles α and β (in degrees) using the Law
of Sines.

(c) Verify the Law of Tangents by substituting the results
from part (b) into the right and left sides of the equation. 

(Law of Tangents: 

4xtan 4 xtan 4 xtan3–
1 6 xtan2– xtan4+
--------------------------------------------= xsin3 1

4
--- 3 xsin 3xsin–( )=

x 12°=

α βcossin 1
2
--- α β–( )sin α β+( )sin+[ ]=

ax( ) xdcos2∫ 1
2
---x 2axsin

4a
-----------------–=

0.5x( ) xdcos2
π
9
---

3π
5

------

∫

A

B
Ca

b
c α

β
γ

a 9= b 18=
c 25=

c2 a2 b2 2ab γcos–+=

180°

α

β

γ

a

b

c

A

B

Ca 5= b 7= γ 25°=

c2 a2 b2 2ab γcos–+=

a b–
a b+
------------

1
2
--- α β–( )tan

1
2
--- α β+( )tan

-----------------------------------=
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18. For the triangle shown,  mm,  mm,
and  mm. Define a, b, and c as variables,
and then:
(a) Calculate the angle γ (in degrees) by substituting

the variables in the Law of Cosines. 
(Law of Cosines: ) 

(b) Calculate the radius r of the circle inscribed in

the triangle using the formula .
(c) Calculate the radius r of the circle inscribed in the triangle using the for-

mula , where .

19. In the right triangle shown cm and  cm.
Define a and c as variables, and then:
(a) Using the Pythagorean Theorem, calculate b by

typing one line in the Command Window.
(b) Using b from part (a) and the acosd function,

calculate the angle α in degrees by typing one line
in the Command Window.

20. The distance d from a point  to a plane  is 
given by:

 

Determine the distance of the point  from the plane
. First define the variables A, B, C, D, x0, y0, and z0,

and then calculate d. (Use the abs and sqrt functions.)

21. The arc length s of the parabolic segment BOC is given 
by:

 

Calculate the arc length of a parabola with in.
and in.

22. Oranges are packed such that 52 are placed in each box. Determine how many
boxes are needed to pack 4,000 oranges. Use MATLAB built-in function
ceil.

α

β

γ a

b

c

r

a 200= b 250=
c 300=

c2 a2 b2 2ab γcos–+=

r 1
2
--- a b c–+( ) 1

2
---γ⎝ ⎠
⎛ ⎞tan=

r s s a–( ) s b–( ) s c–( )
s

-------------------------------------------------------= s 1
2
--- a b c+ +( )=

a

b

c

α

a 16= c 50=

x0 y0 z0, ,( ) Ax By Cz D+ + + 0=

d
Ax0 By0 Cz0 D+ + +

A2 B2 C2+ +
-----------------------------------------------------=

8 3 10–, ,( )
2x 23y 13z 24–+ + 0=

b

a
B

O

C

s 1
2
--- b2 16a2+

b2

8a
------ 4a b2 16a2++

b
----------------------------------------⎝ ⎠
⎛ ⎞ln+=

a 12=
b 8=
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23. The voltage difference  between points a
and b in the Wheatstone bridge circuit is:

Calculate the voltage difference when 
volts, ohms, ohms,

ohms, and ohms.

24. The prices of an oak tree and a pine tree are $54.95 and $39.95, respectively.
Assign the prices to variables named oak and pine, change the display format
to bank, and calculate the following by typing one command: 
(a) The total cost of 16 oak trees and 20 pine trees.
(b) The same as part (a), and add 6.25% sale tax.
(c) The same as part (b) and round the total cost to the nearest dollar.

25. The resonant frequency f (in Hz) for the circuit
shown is given by:

Calculate the resonant frequency when
henrys, ohms, ohms,

and farads.

26. The number of combinations  of taking r objects out of n objects is given
by:

A deck of poker cards has 52 different cards. Determine how many different
combinations are possible for selecting 5 cards from the deck. (Use the built-
in function factorial.)

27. The formula for changing the base of a logarithm is:

(a) Use MATLAB’s function log(x) to calculate . 
(b) Use MATLAB’s function log10(x) to calculate . 

+V

R1 R3

R4R2

a b

Vab

Vab V
R2

R1 R2+
------------------

R4

R3 R4+
------------------–⎝ ⎠

⎛ ⎞=

V 12=
R1 120= R2 100=

R3 220= R4 120=

V

R1 R2

L C

f 1
2π
------ LC

R1
2C L–

R2
2C L–

--------------------=

L 0.2= R1 1500= R2 1500=

C 2 10 6–×=

Cn r,

Cn r,
n!

r! n r–( )!
----------------------=

aNlog bNlog

balog
---------------=

4 0.085log

61500log
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28. The current I (in amps) t seconds after closing the
switch in the circuit shown is:

Given volts, ohms, and
henrys, calculate the current 0.003 seconds

after the switch is closed.

29. Radioactive decay of carbon-14 is used for estimating the age of organic
material. The decay is modeled with the exponential function ,
where t is time,  is the amount of material at ,  is the amount of
material at time t, and k is a constant. Carbon-14 has a half-life of approxi-
mately 5,730 years. A sample of paper taken from the Dead Sea Scrolls shows
that 78.8% of the initial ( ) carbon-14 is present. Determine the esti-
mated age of the scrolls. Solve the problem by writing a program in a script
file. The program first determines the constant k, then calculates t for

, and finally rounds the answer to the nearest year. 

30. Fractions can be added by using the smallest common denominator. For
example, the smallest common denominator of 1/4 and 1/10 is 20. Use the
MATLAB Help Window to find a MATLAB built-in function that determines
the least common multiple of two numbers. Then use the function to show
that the least common multiple of: 
(a) 6 and 26 is 78. 
(b) 6 and 34 is 102.

31. The Moment Magnitude Scale (MMS), denoted , which is used to mea-
sure the size of an earthquake, is given by:

where  is the magnitude of the seismic moment in dyne-cm (measure of
the energy released during an earthquake). Determine how many times more
energy was released from the earthquake in Sumatra, Indonesia ( ),
in 2007 than the earthquake in San Francisco, California ( ), in 1906.

32. According to special relativity, a rod of length L moving at velocity v will
shorten by an amount , given by:

where c is the speed of light (about m/s). Calculate how much a rod
2 meter long will contract when traveling at 5,000 m/s.

V +

L

R
I V

R
--- 1 e R L⁄( )t––( )=

V 120= R 240=

L 0.5=

f t( ) f 0( )ekt=
f 0( ) t 0= f t( )

t 0=

f t( ) 0.788f 0( )=

MW

MW
2
3
---

10 M0log 10.7–=

M0

MW 8.5=

MW 7.9=

δ

δ L 1 1 v2

c2
-----––⎝ ⎠

⎛ ⎞=

300 106×
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33. The monthly payment M of a loan amount P for y years and interest rate r can
be calculated by the formula:

(a) Calculate the monthly payment of a $85,000 loan for 15 years and interest
rate of 5.75% ( ). Define the variables P, r, and y and use them
to calculate M. 

(b) Calculate the total amount needed for paying back the loan.

34. The balance B of a savings account after t years when a principal P is invested
at an annual interest rate r and the interest is compounded yearly is given by

. If the interest is compounded continuously, the balance is
given by . An amount of $40,000 is invested for 20 years in an
account that pays 5.5% interest and the interest is compounded yearly. Use
MATLAB to determine how many fewer days it will take to earn the same if
the money is invested in an account where the interest is compounded contin-
uously.

35. The temperature dependence of vapor pressure p can be estimated by the
Anteing equation:

where ln is the natural logarithm, p is in mm Hg, T is in kelvins, and A, B, and
C are material constants. For toluene (C6H5CH3) in the temperature range
from 280 to 410 K the material constants are , , and

. Calculate the vapor pressure of toluene at 315 and 405 K.

36. Sound level  in units of decibels (dB) is determined by:

where p is the sound pressure of the sound, and Pa is a refer-
ence sound pressure (the sound pressure when dB). 
(a) The sound pressure of a passing car is Pa. Determine its sound

level in decibels. 
(b) The sound level of a jet engine is 110 decibels. By how many times is the

sound pressure of the jet engine larger (louder) than the sound of the pass-
ing car?

M P r 12⁄( )
1 1 r 12⁄+( ) 12y––
--------------------------------------------=

r 0.0575=

B P 1 r+( )t=
B Pert=

p( )ln A B
C T+
-------------–=

A 16.0137= B 3096.52=
C 53.67–=

LP

LP 20 10
p
p

0
-----⎝ ⎠

⎛ ⎞log=

p
0

20 10 6–×=

LP 0=

80 10 2–×
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37. Use the Help Window to find a display format that displays the output as a
ratio of integers. For example, the number 3.125 will be displayed as 25/8.
Change the display to this format and execute the following operations:
(a) (b)

38. The steady-state heat conduction q from a cylin-
drical solid wall is determined by:

where k is the thermal conductivity. Calculate q
for a copper tube ( Watts/oC/m) of length

cm with an outer radius of cm
and an inner radius of cm. The external temperature is C and
the internal temperature is C.

39. Stirling's approximation for large factorials is given by:

Use the formula for calculating 20!. Compare the result with the true value
obtained with MATLAB’s built-in function factorial by calculating the
error (  ).

40. A projectile is launched at an angle  and
speed of . The projectile’s travel time ,
maximum travel distance , and maximum
height  are given by:

,  , 

Consider the case where ft/s and . Define  and  as

MATLAB variables and calculate , , and  ( ft/s2).
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Chapter 2                 
Creating Arrays

The array is a fundamental form that MATLAB uses to store and manipulate data.
An array is a list of numbers arranged in rows and/or columns. The simplest array
(one-dimensional) is a row or a column of numbers. A more complex array (two-
dimensional) is a collection of numbers arranged in rows and columns. One use of
arrays is to store information and data, as in a table. In science and engineering,
one-dimensional arrays frequently represent vectors, and two-dimensional arrays
often represent matrices. This chapter shows how to create and address arrays, and
Chapter 3 shows how to use arrays in mathematical operations. In addition to
arrays made of numbers, arrays in MATLAB can also be a list of characters,
which are called strings. Strings are discussed in Section 2.10. 

2.1 CREATING A ONE-DIMENSIONAL ARRAY (VECTOR)
A one-dimensional array is a list of numbers arranged in a row or a column. One
example is the representation of the position of a point in space in a three-dimen-
sional Cartesian coordinate system. As shown in Figure 2-1, the position of point
A is defined by a list of the three numbers 2, 4, and 5, which are the coordinates of
the point.

The position of point A can be
expressed in terms of a position vector:

rA = 2i + 4j +5k
where i, j, and k are unit vectors in the
direction of the x, y, and z axes, respec-
tively. The numbers 2, 4, and 5 can be
used to define a row or a column vector.

Any list of numbers can be set up
as a vector. For example, Table 2-1 con-
tains population growth data that can be
used to create two lists of numbers—one
of the years and the other of the popula-
tion values. Each list can be entered as elements in a vector with the numbers
placed in a row or in a column.

x

y

z
A (2, 4, 5)

24

5

Figure 2-1: Position of a point.
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In MATLAB, a vector is created by assigning the elements of the vector to a
variable. This can be done in several ways depending on the source of the infor-
mation that is used for the elements of the vector. When a vector contains specific
numbers that are known (like the coordinates of point A), the value of each ele-
ment is entered directly. Each element can also be a mathematical expression that
can include predefined variables, numbers, and functions. Often, the elements of a
row vector are a series of numbers with constant spacing. In such cases the vector
can be created with MATLAB commands. A vector can also be created as the
result of mathematical operations as explained in Chapter 3.
Creating a vector from a known list of numbers:
The vector is created by typing the elements (numbers) inside square brackets [ ].

Row vector:  To create a row vector type the elements with a space or a comma
between the elements inside the square brackets.
Column vector:  To create a column vector type the left square bracket [ and then
enter the elements with a semicolon between them, or press the Enter key after
each element. Type the right square bracket ] after the last element.

Tutorial 2-1 shows how the data from Table 2-1 and the coordinates of point
A are used to create row and column vectors.

Table 2-1: Population data

Year 1984 1986 1988 1990 1992 1994 1996
Population
(millions) 127 130 136 145 158 178 211

Tutorial 2-1: Creating vectors from given data.

>> yr=[1984 1986 1988 1990 1992 1994 1996]

yr =
     1984     1986     1988     1990     1992     1994     1996

>> pop=[127;  130;  136;  145;  158;  178;  211]

pop =

   127

   130

   136

   145

   158

variable_name = [ type vector elements ]

The list of years is assigned to a row vector named yr.

The population data is assigned
to a column vector named pop.



2.1 Creating a One-Dimensional Array (Vector) 37

Creating a vector with constant spacing by specifying the first term, the spac-
ing, and the last term:
In a vector with constant spacing the difference between the elements is the same.
For example, in the vector  v = 2  4  6  8  10, the spacing between the elements is
2. A vector in which the first term is m, the spacing is q, and the last term is n is
created by typing:

Some examples are:

   178
   211

>> pntAH=[2,  4,  5]

pntAH =
     2     4     5

>> pntAV=[2
4
5]

pntAV =
     2
     4
     5
>> 

>> x=[1:2:13]

x =
     1     3     5     7     9    11    13

>> y=[1.5:0.1:2.1]

y =
   1.5000   1.6000   1.7000   1.8000   1.9000   2.0000   2.1000

>> z=[-3:7]

z =
    -3    -2    -1     0     1     2     3     4     5     6     
7

>> xa=[21:-3:6]

Tutorial 2-1: Creating vectors from given data. (Continued)

The coordinates of point A 
are assigned to a row vector 
called pntAH.

The coordinates of point A are assigned
to a column vector called pntAV.
(The Enter key is pressed after each
element is typed.)

variable_name = [m:q:n] variable_name = m:q:nor

(The brackets are optional.)

First element 1, spacing 2, last element 13.

First element 1.5, spacing 0.1, last element 2.1.

First element –3, last term 7.
If spacing is omitted, the default is 1.

First element 21, spacing –3, last term 6.
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• If the numbers m, q, and n are such that the value of n cannot be obtained by
adding q’s to m, then (for positive n) the last element in the vector will be the
last number that does not exceed n.

• If only two numbers (the first and the last terms) are typed (the spacing is omit-
ted), then the default for the spacing is 1.

Creating a vector with linear (equal) spacing by specifying the first and last
terms, and the number of terms:
A vector with n elements that are linearly (equally) spaced in which the first ele-
ment is xi and the last element is xf can be created by typing the linspace com-
mand (MATLAB determines the correct spacing):

When the number of elements is omitted, the default is 100. Some examples are:

xa =
      21    18    15    12     9     6
>>

>> va=linspace(0,8,6)

va =
      0    1.6000    3.2000    4.8000    6.4000    8.0000

>> vb=linspace(30,10,11)

vb =
    30   28   26   24    22    20    18    16    14    12    10

>> u=linspace(49.5,0.5)

u =
  Columns 1 through 10 
   49.5000   49.0051   48.5101   48.0152   47.5202   47.0253   
46.5303   46.0354   45.5404   45.0455
............
Columns 91 through 100 
    4.9545    4.4596    3.9646    3.4697    2.9747    2.4798    
1.9848    1.4899    0.9949    0.5000
>>

variable_name = linspace(xi,xf,n)

First 
element

Last 
element

Number of
elements

6 elements, first element 0, last element 8.

11 elements, first element 30, last element 10.

When the number of elements is
omitted, the default is 100.

First element 49.5, last element 0.5.

100 elements are displayed.
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2.2 CREATING A TWO-DIMENSIONAL ARRAY (MATRIX)
A two-dimensional array, also called a matrix, has numbers in rows and columns.
Matrices can be used to store information like the arrangement in a table. Matrices
play an important role in linear algebra and are used in science and engineering to
describe many physical quantities.

In a square matrix the number of rows and the number of columns is equal.
For example, the matrix

7   4   9
3   8   1      matrix
6   5   3

is square, with three rows and three columns. In general, the number of rows and
columns can be different. For example, the matrix:

31   26   14   18    5    30
  3   51   20   11   43   65        matrix
28     6   15   61   34   22
14   58     6   36   93     7

has four rows and six columns. A  matrix has m rows and n columns, and m
by n is called the size of the matrix.

A matrix is created by assigning the elements of the matrix to a variable.
This is done by typing the elements, row by row, inside square brackets [ ]. First
type the left bracket [  then type the first row, separating the elements with spaces
or commas. To type the next row type a semicolon or press Enter. Type the right
bracket ] at the end of the last row.

The elements that are entered can be numbers or mathematical expressions that
may include numbers, predefined variables, and functions. All the rows must have
the same number of elements. If an element is zero, it has to be entered as such.
MATLAB displays an error message if an attempt is made to define an incomplete
matrix. Examples of matrices defined in different ways are shown in Tutorial 2-2.

Tutorial 2-2: Creating matrices.

>> a=[5  35  43;  4  76  81;  21  32  40]
a =
     5    35    43
     4    76    81
    21    32    40
>> b = [7  2  76  33  8
1  98  6  25  6
5  54  68  9  0]

3 3×

4 6×

m n×

variable_name=[1st row elements; 2nd row elements; 3rd
              row elements; ... ; last row elements]

A semicolon is typed before
a new line is entered.

The Enter key is pressed
before a new line is entered.
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Rows of a matrix can also be entered as vectors using the notation for creat-
ing vectors with constant spacing, or the linspace command. For example:

In this example the first two rows were entered as vectors using the notation of
constant spacing, the third row was entered using the linspace command, and
in the last row the elements were entered individually. 

2.2.1 The zeros, ones and, eye Commands

The zeros(m,n), ones(m,n), and eye(n) commands can be used to create
matrices that have elements with special values. The zeros(m,n) and the
ones(m,n) commands create a matrix with m rows and n columns in which all
elements are the numbers 0 and 1, respectively. The eye(n) command creates a
square matrix with n rows and n columns in which the diagonal elements are equal
to 1 and the rest of the elements are 0. This matrix is called the identity matrix.
Examples are:

b =
     7     2    76    33     8
     1    98     6    25     6
     5    54    68     9     0
>> cd=6; e=3; h=4;
>> Mat=[e, cd*h, cos(pi/3); h^2, sqrt(h*h/cd), 14]
Mat =
    3.0000    24.0000     0.5000
   16.0000     1.6330    14.0000
>>

>> A=[1:2:11; 0:5:25; linspace(10,60,6); 67 2 43 68 4 13]
A =
     1      3      5      7      9    11
     0      5     10     15     20    25
    10     20     30     40     50    60
    67      2     43     68      4    13
>> 

>> zr=zeros(3,4)
zr =
     0     0     0     0
     0     0     0     0
     0     0     0     0
>> ne=ones(4,3)

Tutorial 2-2: Creating matrices. (Continued)

Three variables are defined.

Elements are defined 
by mathematical 
expressions.
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Matrices can also be created as a result of mathematical operations with
vectors and matrices. This topic is covered in Chapter 3.

2.3 NOTES ABOUT VARIABLES IN MATLAB
• All variables in MATLAB are arrays. A scalar is an array with one element, a

vector is an array with one row or one column of elements, and a matrix is an
array with elements in rows and columns.

• The variable (scalar, vector, or matrix) is defined by the input when the vari-
able is assigned. There is no need to define the size of the array (single element
for a scalar, a row or a column of elements for a vector, or a two-dimensional
array of elements for a matrix) before the elements are assigned.

• Once a variable exists—as a scalar, vector, or matrix—it can be changed to any
other size, or type, of variable. For example, a scalar can be changed to a vec-
tor or a matrix; a vector can be changed to a scalar, a vector of different length,
or a matrix; and a matrix can be changed to have a different size, or be reduced
to a vector or a scalar. These changes are made by adding or deleting elements.
This subject is covered in Sections 2.7 and 2.8. 

2.4 THE TRANSPOSE OPERATOR

The transpose operator, when applied to a vector, switches a row (column) vector
to a column (row) vector. When applied to a matrix, it switches the rows (col-
umns) to columns (rows). The transpose operator is applied by typing a single
quote  ’ following the variable to be transposed. Examples are:

ne =
     1     1     1
     1     1     1
     1     1     1
     1     1     1
>> idn=eye(5)
idn =
     1     0     0     0     0
     0     1     0     0     0
     0     0     1     0     0
     0     0     0     1     0
     0     0     0     0     1
>> 

>> aa=[3  8  1]

aa =
     3     8     1

>> bb=aa'

Define a row vector aa.

Define a column vector bb as
the transpose of vector aa.
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2.5 ARRAY ADDRESSING

Elements in an array (either vector or matrix) can be addressed individually or in
subgroups. This is useful when there is a need to redefine only some of the ele-
ments, when specific elements are to be used in calculations, or when a subgroup
of the elements is used to define a new variable.

2.5.1 Vector

The address of an element in a vector is its position in the row (or column). For a
vector named ve, ve(k) refers to the element in position k. The first position is
1. For example, if the vector ve has nine elements:
 

ve = 35  46  78  23  5  14  81  3  55
then
ve(4) = 23, ve(7) = 81, and ve(1) = 35.

A single vector element, v(k), can be used just as a variable. For example, it
is possible to change the value of only one element of a vector by assigning a new
value to a specific address. This is done by typing: v(k) = value. A single element
can also be used as a variable in a mathematical expression. Examples are:

bb =
     3
     8
     1

>> C=[2 55 14 8; 21 5 32 11; 41 64 9 1]

C =
     2    55    14      8
    21     5    32     11
    41    64     9      1

>> D=C'

D =
     2    21    41
    55     5    64
    14    32     9
     8    11     1
>>

>> VCT=[35 46 78 23 5 14 81 3 55]

VCT =
    35    46    78    23     5    14    81     3    55

>> VCT(4)

Define a matrix C 
with 3 rows and 4 
columns.

Define a matrix D as the
transpose of matrix C. (D has
4 rows and 3 columns.)

Define a vector.

Display the fourth element.
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2.5.2 Matrix

The address of an element in a matrix is its position, defined by the row number
and the column number where it is located. For a matrix assigned to a variable ma,
ma(k,p) refers to the element in row k and column p. 

For example, if the matrix is:   

then ma(1,1) = 3 and ma(2,3) = 10.
As with vectors, it is possible to change the value of just one element of a

matrix by assigning a new value to that element. Also, single elements can be used
like variables in mathematical expressions and functions. Some examples are:

ans =
    23

>> VCT(6)=273

VCT =
    35    46    78    23     5   273    81     3    55

>> VCT(2)+VCT(8)
ans =
    49

>> VCT(5)^VCT(8)+sqrt(VCT(7))

ans =
   134
>> 

>> MAT=[3 11 6 5; 4 7 10 2; 13 9 0 8]

MAT =
     3    11      6     5
     4     7     10     2
    13     9      0     8

>> MAT(3,1)=20

MAT =
     3    11      6     5
     4     7     10     2
    20     9      0     8

>> MAT(2,4)-MAT(1,2)

ans =
    -9

Assign a new value to
the sixth element.

The whole vector is displayed.

Use the vector elements in
mathematical expressions.

ma
3 11 6 5
4 7 10 2
13 9 0 8

=

Create a  matrix.3 4×

Assign a new value to the (3,1) element.

Use elements in a mathematical expression.
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2.6 USING A COLON  :  IN ADDRESSING ARRAYS

A colon can be used to address a range of elements in a vector or a matrix.
For a vector:
va(:)   Refers to all the elements of the vector va (either a row or a column vector).
va(m:n)   Refers to elements m through n of the vector va.
Example:

For a matrix:
A(:,n) Refers to the elements in all the rows of column n of the matrix A. 
A(n,:) Refers to the elements in all the columns of row n of the matrix A.
A(:,m:n) Refers to the elements in all the rows between columns m and n of the

matrix A. 
A(m:n,:) Refers to the elements in all the columns between rows m and n of the

matrix A.
A(m:n,p:q) Refers to the elements in rows m through n and columns p through

q of the matrix A.
The use of the colon symbol in addressing elements of matrices is demon-

strated in Tutorial 2-3.

>> v=[4 15 8 12 34 2 50 23 11]

v =
     4    15     8    12    34     2    50    23    11

>> u=v(3:7)

u =
     8    12    34     2    50
>>

Tutorial 2-3: Using a colon in addressing arrays.

>> A=[1 3 5 7 9 11; 2 4 6 8 10 12; 3 6 9 12 15 18; 4 8 12 16 
20 24; 5 10 15 20 25 30]

A =
     1     3     5     7     9    11
     2     4     6     8    10    12
     3     6     9    12    15    18
     4     8    12    16    20    24
     5    10    15    20    25    30

>> B=A(:,3)

A vector v is created.

A vector u is created from the ele-
ments 3 through 7 of vector v.

Define a matrix A with
5 rows and 6 columns.

Define a column
vector B from the
elements in all of the
rows of column 3 in
matrix A.
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In Tutorial 2-3 new vectors and matrices are created from existing ones by
using a range of elements, or a range of rows and columns (using :). It is possible,
however, to select only specific elements, or specific rows and columns of exist-
ing variables to create new variables. This is done by typing the selected elements
or rows or columns inside brackets, as shown below:

B =
     5
     6
     9
    12
    15

>> C=A(2,:)

C =
     2    4    6    8   10   12

>> E=A(2:4,:)

E =
     2    4    6    8   10   12
     3    6    9   12   15   18
     4    8   12   16   20   24

>> F=A(1:3,2:4)

F =
     3     5     7
     4     6     8
     6     9    12
>>

>> v=4:3:34

v =
    4    7   10   13   16   19   22   25   28   31   34

>> u=v([3,  5,  7:10])

u =
    10   16   22   25   28   31

>> A=[10:-1:4; ones(1,7); 2:2:14; zeros(1,7)]

A =
   10    9    8    7    6    5    4
    1    1    1    1    1    1    1
    2    4    6    8   10   12   14
    0    0    0    0    0    0    0

>> B = A([1,3],[1,3,5:7])

Tutorial 2-3: Using a colon in addressing arrays. (Continued)

Define a row vector C from the
elements in all of the columns of
row 2 in matrix A.

Define a matrix E from the ele-
ments in rows 2 through 4 and all 
the columns in matrix A.

Create a matrix F from the elements
in rows 1 through 3 and columns 2
through 4 in matrix A.

Create a vector v with 11 elements.

Create a vector u from the 3rd, the 5th,
and the 7th through 10th elements of v.

Create a  matrix A.4 7×

Create a matrix B from
the 1st and 3rd rows,
and 1st, 3rd, and the 5th
through 7th columns of
A.
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2.7 ADDING ELEMENTS TO EXISTING VARIABLES

A variable that exists as a vector, or a matrix, can be changed by adding elements
to it (remember that a scalar is a vector with one element). A vector (a matrix with
a single row or column) can be changed to have more elements, or it can be
changed to be a two-dimensional matrix. Rows and/or columns can also be added
to an existing matrix to obtain a matrix of different size. The addition of elements
can be done by simply assigning values to the additional elements, or by append-
ing existing variables.
Adding elements to a vector:
Elements can be added to an existing vector by assigning values to the new ele-
ments. For example, if a vector has 4 elements, the vector can be made longer by
assigning values to elements 5, 6, and so on. If a vector has n elements and a new
value is assigned to an element with an address of  or larger, MATLAB
assigns zeros to the elements that are between the last original element and the
new element. Examples:

Elements can also be added to a vector by appending existing vectors. Two exam-
ples are:

B =
    10     8     6     5     4
     2     6    10    12    14

>> DF=1:4

DF =
    1    2    3    4

>> DF(5:10)=10:5:35

DF =
    1    2    3    4   10   15   20   25   30   35

>> AD=[5  7  2]

AD =
    5    7    2

>> AD(8)=4

AD =
    5   7   2   0   0   0   0   4

>> AR(5)=24

AR =
    0    0    0    0   24
>> 

>> RE=[3  8 1  24];

n 2+

Define vector DF with 4 elements.

Adding 6 elements starting with the 5th.

Define vector AD with 3 elements.

Assign a value to the 8th element.
MATLAB assigns zeros to
the 4th through 7th elements.

Assign a value to the 5th element of a new vector.

MATLAB assigns zeros to the
1st through 4th elements.

Define vector RE with 4 elements.
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Adding elements to a matrix:
Rows and/or columns can be added to an existing matrix by assigning values to
the new rows or columns. This can be done by assigning new values, or by
appending existing variables. This must be done carefully since the size of the
added rows or columns must fit the existing matrix. Examples are:

>> GT=4:3:16;

>> KNH=[RE  GT]

KNH =
    3    8    1   24    4    7   10   13   16

>> KNV=[RE'; GT']

KNV =
     3
     8
     1
    24
     4
     7
    10
    13
    16

>> E=[1 2 3 4; 5 6 7 8]

E =
     1     2     3     4
     5     6     7     8

>> E(3,:)=[10:4:22]

E =
     1     2     3     4
     5     6     7     8
    10    14    18    22

>> K=eye(3)

K =
     1     0     0
     0     1     0
     0     0     1

>> G=[E  K]

G =
     1     2     3     4     1     0     0
     5     6     7     8     0     1     0
    10    14    18    22     0     0     1

Define vector GT with 5 elements.
Define a new vector KNH by
appending RE and GT.

Create a new column vector KNV
by appending RE’ and GT’.

Define a  matrix E.2 4×

Add the vector 10 14 18 22
as the third row of E.

Define a  matrix K.3 3×

Append matrix K to matrix E. The numbers 
of rows in E and K must be the same.
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If a matrix has a size of , and a new value is assigned to an element
with an address beyond the size of the matrix, MATLAB increases the size of the
matrix to include the new element. Zeros are assigned to the other elements that
are added. Examples:

2.8 DELETING ELEMENTS

An element, or a range of elements, of an existing variable can be deleted by re-
assigning nothing to these elements. This is done by using square brackets with
nothing typed in between them. By deleting elements a vector can be made shorter
and a matrix can be made to have a smaller size. Examples are: 

>> AW=[3 6 9; 8 5 11]

AW =
     3     6     9
     8     5    11

>> AW(4,5)=17

AW =
    3    6    9    0    0
    8    5   11    0    0
    0    0    0    0    0
    0    0    0    0   17

>> BG(3,4)=15

BG =
    0    0    0    0
    0    0    0    0
    0    0    0   15
>>

>> kt=[2 8 40 65 3 55 23 15 75 80]

kt =
    2    8   40   65    3   55   23   15   75   80

>> kt(6)=[]

kt =
    2   8  40  65   3  23  15  75  80

>> kt(3:6)=[]

kt =
    2    8   15   75   80

>> mtr=[5 78 4 24 9; 4 0 36 60 12; 56 13 5 89 3]

m n×

Define a  matrix.2 3×

Assign a value to the (4,5) element.

MATLAB changes the matrix size
to , and assigns zeros to the
new elements.

4 5×

Assign a value to the (3,4) element of a new matrix.

MATLAB creates a  matrix
and assigns zeros to all the ele-
ments except BG(3,4).

3 4×

Define a vector 
with 10 elements.

Eliminate the 6th element.

The vector now 
has 9 elements.

Eliminate elements 3 through 6.

The vector now has 5 elements.

Define a  matrix.3 5×
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2.9 BUILT-IN FUNCTIONS FOR HANDLING ARRAYS

MATLAB has many built-in functions for managing and handling arrays. Some of
these are listed below:

mtr =
     5    78     4    24     9
     4     0    36    60    12
    56    13     5    89     3

>> mtr(:,2:4)=[]

mtr =
     5     9
     4    12
    56     3
>>

Table 2-2: Built-in functions for handling arrays

Function Description Example

length(A) Returns the number of elements
in the vector A.

>> A=[5 9 2 4];

>> length(A)

ans =

     4

size(A) Returns a row vector [m,n],
where m and n are the size

 of the array A.

>> A=[6 1 4 0 12; 5 19 6 
8 2]

A =

   6   1   4   0  12

   5  19   6   8   2

>> size(A)

ans =

     2     5

reshape(A,
m,n)

Creates a m by n matrix from
the elements of matrix A. The
elements are taken column after
column. Matrix A must have m
times n elements.

>> A=[5 1 6; 8 0 2]

A =

   5   1   6

   8   0   2

>> B = reshape(A,3,2)

B =

   5   0

   8   6

   1   2

Eliminate all the rows of
columns 2 through 4.

m n×
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Additional built-in functions for manipulation of arrays are described in the
Help Window. In this window select “Functions by Category,” then “Mathemat-
ics,” and then “Arrays and Matrices.”

Sample Problem 2-1: Create a matrix

Using the ones and zeros commands, create a  matrix in which the first two
rows are 0s and the next two rows are 1s.
Solution

A different solution to the problem is:  

diag(v) When v is a vector, creates a
square matrix with the elements
of v in the diagonal.

>> v=[7 4 2];

>> A=diag(v)

A =

    7    0    0

    0    4    0

    0    0    2

diag(A) When A is a matrix, creates a
vector from the diagonal ele-
ments of A.

>> A=[1 2 3; 4 5 6; 7 
8 9]

A =

   1   2   3

   4   5   6

   7   8   9

>> vec=diag(A)

vec =

     1

     5

     9

>> A(1:2,:)=zeros(2,5)

A =
    0     0     0     0     0
    0     0     0     0     0

>> A(3:4,:)=ones(2,5)

A =
     0     0     0     0     0
     0     0     0     0     0
     1     1     1     1     1
     1     1     1     1     1 

Table 2-2: Built-in functions for handling arrays (Continued)

Function Description Example

4 5×

First, create a  matrix with 0s.2 5×

Add rows 3 and 4 with 1s.
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Sample Problem 2-2: Create a matrix

Create a  matrix in which the middle two rows and the middle two columns
are 1s, and the rest of the entries are 0s.
Solution

>> A=[zeros(2,5);ones(2,5)]

A =
     0     0     0     0     0
     0     0     0     0     0
     1     1     1     1     1
     1     1     1     1     1

>> AR=zeros(6,6)

AR =
    0    0    0    0    0    0
    0    0    0    0    0    0
    0    0    0    0    0    0
    0    0    0    0    0    0
    0    0    0    0    0    0
    0    0    0    0    0    0

>> AR(3:4,:)=ones(2,6)

AR =
    0    0    0    0    0    0
    0    0    0    0    0    0
    1    1    1    1    1    1
    1    1    1    1    1    1
    0    0    0    0    0    0
    0    0    0    0    0    0

>> AR(:,3:4)=ones(6,2)

AR =
    0    0    1    1    0    0
    0    0    1    1    0    0
    1    1    1    1    1    1
    1    1    1    1    1    1
    0    0    1    1    0    0
    0    0    1    1    0    0

Create a  matrix 
from two  matrices.

4 5×
2 5×

6 6×

First, create a  matrix with 0s.6 6×

Reassign the number 1 to 
the 3rd and 4th rows.

Reassign the num-
ber 1 to the 3rd and
4th columns.
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Sample Problem 2-3: Matrix manipulation

Given are a  matrix A, a  matrix B, and a 9-element vector v.

Create the three arrays in the Command Window, and then, by writing one com-
mand, replace the last four columns of the first and third rows of A with the first
four columns of the first two rows of B, the last four columns of the fourth row of
A with the elements 5 through 8 of v, and the last four columns of the fifth row of
A with columns 3 through 5 of the third row of B.
Solution

>> A=[2:3:17; 3:3:18; 4:3:19; 5:3:20; 6:3:21]

A =
     2     5     8    11    14    17
     3     6     9    12    15    18
     4     7    10    13    16    19
     5     8    11    14    17    20
     6     9    12    15    18    21

>> B=[5:5:30; 30:5:55; 55:5:80]

B =
     5    10    15    20    25    30
    30    35    40    45    50    55
    55    60    65    70    75    80

>> v=[99:-1:91]

v =
    99   98   97   96   95   94   93   92   91

>> A([1 3 4 5],3:6)=[B([1 2],1:4); v(5:8); B(3,2:5)]

5 6× 3 6×

v 99 98 97 96 95 94 93 92 91=

A

2 5 8 11 14 17
3 6 9 12 15 18
4 7 10 13 16 19
5 8 11 14 17 20
6 9 12 15 18 21

=

B
5 10 15 20 25 30
30 35 40 45 50 55
55 60 65 70 75 80

=

 matrix. The first two rows are columns 1 
through 4 of rows 1 and 2 of matrix B. The third 
row consists of elements 5 through 8 of vector v. 
The fourth row consists of columns 2 through 5 
of row 3 of matrix B. 

4 4× matrix made of 
columns 3 through 6 
of rows 1, 3, 4, and 5.

4 4×
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2.10 STRINGS AND STRINGS AS VARIABLES

• A string is an array of characters. It is created by typing the characters within
single quotes.

• Strings can include letters, digits, other symbols, and spaces.

• Examples of strings:  'ad ef ',  '3%fr2',  '{edcba:21!', 'MATLAB'.

• A string that contains a single quote is created by typing two single quotes
within the string.

• When a string is being typed in, the color of the text on the screen changes to
maroon when the first single quote is typed. When the single quote at the end
of the string is typed, the color of the string changes to purple.

Strings have several different uses in MATLAB. They are used in output
commands to display text messages (Chapter 4), in formatting commands of plots
(Chapter 5), and as input arguments of some functions (Chapter 7). More details
are given in these chapters when strings are used for these purposes.
• When strings are being used in formatting plots (labels to axes, title, and text

notes), characters within the string can be formatted to have a specified font,
size, position (uppercase, lowercase), color, etc. See Chapter 5 for details. 

Strings can also be assigned to variables by simply typing the string on the
right side of the assignment operator, as shown in the examples below:

When a variable is defined as a string, the characters of the string are stored
in an array just as numbers are. Each character, including a space, is an element in
the array. This means that a one-line string is a row vector in which the number of
elements is equal to the number of characters. The elements of the vectors are

A =
     2     5     5    10    15    20
     3     6     9    12    15    18
     4     7    30    35    40    45
     5     8    95    94    93    92
     6     9    60    65    70    75

>> a='FRty 8'

a =
FRty 8

>> B='My name is John Smith'

B =
My name is John Smith
>>
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addressed by position. For example, in the vector B that was defined above the 4th
element is the letter n, the 12th element is J, and so on.

As with a vector that contains numbers, it is also possible to change specific
elements by addressing them directly. For example, in the vector B above the
name John can be changed to Bill by:

Strings can also be placed in a matrix. As with numbers, this is done by typ-
ing a semicolon  ;  (or pressing the Enter key) at the end of each row. Each row
must be typed as a string, which means that it must be enclosed in single quotes.
In addition, as with a numerical matrix, all rows must have the same number of
elements. This requirement can cause problems when the intention is to create
rows with specific wording. Rows can be made to have the same number of ele-
ments by adding spaces.

MATLAB has a built-in function named char that creates an array with
rows having the same number of characters from an input of rows not all of the
same length. MATLAB makes the length of all the rows equal to that of the long-
est row by adding spaces at the end of the short lines. In the char function, the
rows are entered as strings separated by a comma according to the following for-
mat:

For example:

>> B(4)
ans =
n
>> B(12)
ans =
J

>> B(12:15)='Bill'

B =
My name is Bill Smith
>>

>> Info=char('Student Name:','John Smith','Grade:','A+')

Info =
Student Name:
John Smith   
Grade:       
A+
>> 

Using a colon to assign new char-
acters to elements 12 through 15 in
the vector B.

variable_name = char('string 1','string 2','string 3')

A variable named Info is assigned four rows
of strings, each with different length.

The function char creates an array with four rows
with the same length as the longest row by adding
empty spaces to the shorter lines.
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A variable can be defined as either a number or a string made up of the
same digits. For example, as shown below, x is defined to be the number 536, and
y is defined to be a string made up of the digits 536.

The two variables are not the same even though they appear identical on the
screen. Note that the characters 536 in the line below the x= are indented, while
the characters 536 in the line below the y= are not indented. The variable x can be
used in mathematical expressions, while the variable y cannot.

2.11 PROBLEMS

1. Create a row vector that has the following elements: 3, , , 45,
,  , and 0.05.

2. Create a row vector that has the following elements: , 32, ,

54, , and .

3. Create a column vector that has the following elements:  25.5, ,

,  , 0.0375, and .

4. Create a column vector that has the following elements:  , , 6.1,

, 0.00552, , and 133.

5. Define the variables , , and then use them to create a col-
umn vector that has the following elements:  , , , , and .

6. Define the variables , , and then use them to create a row
vector that has the following elements:  , , , , and .

7. Create a row vector in which the first element is 2 and the last element is 37,
with an increment of 5 between the elements (2, 7, 12, … , 37).

>> x=536

x =
   536

>> y='536'

y =
536
>>

4 2.55⋅ 68 16⁄

1103 25°cos

54
3 4.22+
------------------- 6.32 7.22–

e3.7 66°sin 3π
8

------cos+

14 58°tan( )
2.12 11+( )

----------------------------

6! 2.74 π 5⁄

32
3.22
--------- 35°sin2

292ln 29ln2

x 0.85= y 12.5=

y yx y x⁄( )ln y x⋅ x y+

a 3.5= b 6.4–=

a a2 a b⁄ a b⋅ a
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8. Create a row vector with 9 equally spaced elements in which the first element
is 81 and the last element is 12.

9. Create a column vector in which the first element is 22.5, the elements
decrease with increments of –2.5, and the last element is 0. (A column vector
can be created by the transpose of a row vector.)

10. Create a column vector with 15 equally spaced elements in which the first ele-
ment is –21 and the last element is 12.

11. Using the colon symbol, create a row vector (assign it to a variable named
same) with seven elements that are all –3.

12. Use a single command to create a row vector (assign it to a variable named a)
with 9 elements such that the last element is 7.5 and the rest of the elements
are 0s. Do not type the vector explicitly.

13. Use a single command to create a row vector (assign it to a variable named b)
with 19 elements such that

b = 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1
Do not type the vector explicitly.

14. Create a vector (name it vecA) that has 14 elements of which the first is 49,
the increment is –3, and the last element is 10. Then, using the colon symbol,
create a new vector (call it vecB) that has 8 elements. The first 4 elements are
the first 4 elements of the vector vecA, and the last 4 are the last 4 elements
of the vector vecA.

15. Create a vector (name it vecC) that has 16 elements of which the first is 13,
the increment is 4 and the last element is 73. Then create the following two
vectors:
(a) A vector (name it Codd) that contains all the elements with odd index of

vecCodd (vecCodd(1), vecCodd(3), etc; i.e., Codd = 13 21 29 ...
69).

(b) A vector (name it Ceven) that contains all the elements with even index
of vecCodd (vecCodd(2), vecCodd(4), etc; i.e., Codd = 17 25 33
... 73).

In both parts use vectors of odd and even numbers for the index of Codd and
Ceven, respectively. Do not type the vectors explicitly.



2.11 Problems 57

16. Create the following matrix by using vector notation for creating vectors with
constant spacing and/or the linspace command. Do not type individual
elements explicitly.

17. Create the following matrix by using vector notation for creating vectors with
constant spacing and/or the linspace command. Do not type individual
elements explicitly.

18. Using the colon symbol, create a  matrix (assign it to a variable named
Anine) in which all the elements are the number 9.

19. Create the following matrix by typing one command. Do not type individual
elements explicitly.

20. Create the following matrix by typing one command. Do not type individual
elements explicitly.

21. Create the following matrix by typing one command. Do not type individual
elements explicitly.

A
0 5 10 15 20 25 30

600 500 400 300 200 100 0
0 0.8333 1.6667 2.5 3.3333 4.1667 5

=

B

1 0 3
2 0 3
3 0 3
4 0 3
5 0 3

=

4 6×

C
0 0 0 0 0
0 0 0 0 0
0 0 0 0 8

=

D
0 0 0 0 0
0 0 0 6 6
0 0 0 6 6

=

E

0 0 0 0 0
0 0 1 2 3
0 0 4 5 6
0 0 7 8 9

=
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22. Create the following matrix by typing one command. Do not type individual
elements explicitly.

23. Create three row vectors:
,  ,  

(a) Use the three vectors in a MATLAB command to create a  matrix in
which the rows are the vectors a, b, and c.

(b) Use the three vectors in a MATLAB command to create a  matrix in
which the columns are the vectors a, b, and c. 

24. Create three row vectors:
,  ,  

(a) Use the three vectors in a MATLAB command to create a  matrix
such that the first, second, and third rows consist of the first three ele-
ments of the vectors a, b, and c, respectively.

(b) Use the three vectors in a MATLAB command to create a  matrix
such that the first, second, and third columns consist of the last three ele-
ments of the vectors a, b, and c, respectively. 

25. Create two row vectors:
,    

(a) Use the two vectors in a MATLAB command to create a  matrix
such that the first row consists of elements 2 through 5 of vector a, and the
second row consists of elements 3 through 6 of vector b.

(b) Use the two vectors in a MATLAB command to create a  matrix
such that the first column consists of elements 2 through 4 of vector a, the
second column consists of elements 4 through 6 of vector a, the third col-
umn consists of elements 1 through 3 of vector b, and the fourth column
consists of elements 3 through 5 of vector b.

26. By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB. (Parts (b), (c), and (d) use the vector that was defined
in part (a).) 
(a) a=9:-3:0 (b) b=[a a] or  b=[a,a]  (c) c=[a;a]
(d) d=[a’ a’] or  d=[a’,a’]       (e)     e=[[a; a; a; a] a’]

F

0 0 0 0 0
0 0 1 10 20
0 0 2 8 26
0 0 3 6 32

=

a 7 2 3– 1 0= b 3– 10 0 7 2–= c 1 0 4 6– 5=

3 5×

5 3×

a 7 2 3– 1 0= b 3– 10 0 7 2–= c 1 0 4 6– 5=

3 3×

3 3×

a 4– 10 0.5 1.8 2.3– 7= b 0.7 9 5– 3 0.6– 12=

2 4×

3 4×
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27. The following vector is defined in MATLAB:

By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB.
(a) a=v(2:5) (b) b=v([1,3:7,11]) (c) c=v([10,2,9,4])

28. The following vector is defined in MATLAB:

By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB.
(a) a=[v([2 7:10]);v([3,5:7,2])]
(b) b=[v([3:5,8])' v([10 6 4 1])' v(7:-1:4)']

29. Create the following matrix A.      

 

Use the matrix A to:
(a) Create a six-element row vector named ha that contains the elements of

the first row of A.
(b) Create a three-element row vector named hb that contains the elements of

the sixth column of A.
(c) Create a six-element row vector named hc that contains the first three

elements of the second row of A and the last three element of the third row
of A. 

30. Create the following matrix B.       

Use the matrix B to:
(a) Create a six-element column vector named va that contains the elements

of the second and fifth columns of B.
(b) Create a seven-element column vector named vb that contains elements 3

through 6 of the third row of B and the elements of the second column of B.
(c) Create a nine-element column vector named vc that contains the ele-

ments of the second, fourth, and sixth columns of B.

v 15 0 6 2– 3 5– 4 9 1.8 0.35– 7=

v 15 0 6 2– 3 5– 4 9 1.8 0.35– 7=

A
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18

=

B
18 17 16 15 14 13
12 11 10 9 8 7
6 5 4 3 2 1

=
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31. Create the following vector C.
   

Then use MATLAB’s built-in reshape function and the transpose operation
to create the following matrix D from the vector C:       

Use the matrix D to:
(a) Create a nine-element column vector named ua that contains the ele-

ments of the first, third, and fourth columns of D.
(b) Create an eight-element raw vector named ub that contains the elements

of the second row of D and the third column of D.
(c) Create a six-element row vector named uc that contains the first three ele-

ments of the first row of D and the last three elements of the last row of D.

32. Create the following matrix E.          

 

(a) Create a  matrix F from the second and fourth rows, and the third
through the seventh columns of matrix E.

(b) Create a  matrix G from all rows and the third through fifth columns
of matrix E.

33. Create the following matrix H.          

 

(a) Create a  matrix G such that its first row includes the first two ele-
ments and the last two elements of the first row of H, and the second row
of G includes the second through the fifth elements of the third row of H.

(b) Create a  matrix K such that the first, second, and third rows are the
first, fourth, and sixth columns of matrix H.

C 0.7 1.9 3.1 4.3 5.5 6.7 7.9 9.1 10.3 11.5 12.7 13.9 15.1 16.3 17.5=

D
0.7 1.9 3.1 4.3 5.5
6.7 7.9 9.1 10.3 11.5

12.7 13.9 15.1 16.3 17.5

=

E

0 0 0 0 2 2 2
0.7 0.6 0.5 0.4 0.3 0.2 0.1
2 4 6 8 10 12 14

22 19 16 13 10 7 4

=

2 5×

4 3×

H
1.7 1.6 1.5 1.4 1.3 1.2
22 24 26 28 30 32
9 8 7 6 5 4

=

2 4×

3 3×
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34. The following matrix is defined in MATLAB: 

By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB.
a) A=M([1,2],[2,4,5]) b) B=M(:,[1:3,6])
c) C=M([1,3],:) d) D=M([2,3],5)

35. The following matrix is defined in MATLAB: 

By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB.
(a) A=[N(1,1:4)’,N(2,2:5)’]
(b) B=[N(:,3)' N(3,:)]
(c) C(3:4,5:6)=N(2:3,4:5)

36. By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB.
v=1:3:34
M=reshape(v,3,4)
M(2,:)=[]
M(:,3)=[]
N=ones(size(M))

37. Using the zeros, ones, and eye commands, create the following arrays:

(a)                   (b)                      (c)    

M
3 5 7 9 11 13
15 14 13 12 11 10
1 2 3 1 2 3

=

N

33 21 9 14 30
30 18 6 18 34
27 15 6 22 38
24 12 10 26 42

=

1 1
1 1
0 0
0 0

1 0 0 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1

1 1 1 1
1 1 1 1
0 0 0 0
1 1 1 1
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38. Using the zeros, ones, and eye commands create the following arrays:

(a)                  (b)                      (c)    

39. Use the eye command to create the array A shown on the left below. Then use
the colon to address elements in the arrays and the eye command to change A
to match the array shown on the right.

                    

40. Create a  matrix A in which all the elements are 1. Then reassign A to
itself (several times) such that A will become:

1 0 0 1 1
0 1 0 1 1

0 0 1 1
0 0 1 1
0 0 0 0
1 1 1 1

1 1 0 0 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

A

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

= A

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

=

2 2×

A

1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1

=
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Chapter 3           
Mathematical 
Operations with Arrays

Once variables are created in MATLAB they can be used in a wide variety of
mathematical operations. In Chapter 1 the variables that were used in mathemati-
cal operations were all defined as scalars. This means that they were all 
arrays (arrays with one row and one column that have only one element) and the
mathematical operations were done with single numbers. Arrays, however, can be
one-dimensional (arrays with one row, or with one column), two-dimensional
(arrays with multiple rows and columns), and even of higher dimensions. In these
cases the mathematical operations are more complex. MATLAB, as its name indi-
cates, is designed to carry out advanced array operations that have many applica-
tions in science and engineering. This chapter presents the basic, most common
mathematical operations that MATLAB performs using arrays.

Addition and subtraction are relatively simple operations and are covered
first, in Section 3.1. The other basic operations—multiplication, division, and
exponentiation—can be done in MATLAB in two different ways. One way, which
uses the standard symbols (*, /, and ^), follows the rules of linear algebra and is
presented in Sections 3.2 and 3.3. The second way, which is called element-by-
element operations, is covered in Section 3.4. These operations use the symbols
.*, ./, and .^ (a period is typed in front of the standard operation symbol). In addi-
tion, in both types of calculations, MATLAB has left division operators ( .\ or \ ),
which are also explained in Sections 3.3 and 3.4.
A Note to First-Time Users of MATLAB:
Although matrix operations are presented first and element-by-element operations
next, the order can be reversed since the two are independent of each other. It is
expected that almost every MATLAB user has some knowledge of matrix opera-
tions and linear algebra, and thus will be able to follow the material covered in
Sections 3.2 and 3.3 without any difficulty. Some readers, however, might prefer
to read Section 3.4 first. MATLAB can be used with element-by-element opera-
tions in numerous applications that do not require linear algebra multiplication (or
division) operations.

1 1×
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3.1 ADDITION AND SUBTRACTION

The operations + (addition) and – (subtraction) can be used to add (subtract)
arrays of identical size (the same numbers of rows and columns) and to add (sub-
tract) a scalar to an array. When two arrays are involved the sum, or the difference,
of the arrays is obtained by adding, or subtracting, their corresponding elements.

In general, if A and B are two arrays (for example,  matrices),

  and  

then the matrix that is obtained by adding A and B is:

Examples are:

>> VectA=[8 5 4]; VectB=[10 2 7];

>> VectC=VectA+VectB

VectC =
    18     7    11

>> A=[5 -3 8; 9 2 10]

A =
     5    -3      8
     9     2     10

>> B=[10 7 4; -11 15 1]

B =
    10      7     4
   -11     15     1

>> A-B

ans =
     -5   -10     4
     20   -13     9

>> C=A+B

C =
    15     4    12
    -2    17    11

>> VectA+A

??? Error using ==> plus
Matrix dimensions must agree.
 
>> 

2 3×

A A11 A12 A13

A21 A22 A23

= B B11 B12 B13

B21 B22 B23

=

A11 B11+( ) A12 B12+( ) A13 B13+( )

A21 B21+( ) A22 B22+( ) A23 B23+( )

Define two vectors.

Define a vector VectC that
is equal to VectA + VectB.

Define two  matrices A and B.2 3×

Subtracting matrix B from matrix A.

Define a matrix C that is equal to A + B.

Trying to add arrays of different size.

An error message is displayed.
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When a scalar (number) is added to (or subtracted from) an array, the scalar is
added to (or subtracted from) all the elements of the array. Examples are:

3.2 ARRAY MULTIPLICATION

The multiplication operation  *  is executed by MATLAB according to the rules of
linear algebra. This means that if A and B are two matrices, the operation A*B can
be carried out only if the number of columns in matrix A is equal to the number of
rows in matrix B. The result is a matrix that has the same number of rows as A and
the same number of columns as B. For example, if A is a  matrix and B is a

 matrix:

  and  

then the matrix that is obtained with the operation A*B has dimensions  with
the elements:

A numerical example is:

>> VectA=[1 5 8 -10 2]
VectA =
     1     5     8   -10     2

>> VectA+4

ans =
     5     9    12    -6     6

>> A=[6 21 -15; 0 -4 8]

A =
     6    21   -15
     0    -4     8

>> A-5
ans =
     1    16   -20
    -5    -9     3

Define a vector named VectA.

Add the scalar 4 to VectA.

4 is added to each element of VectA.

Define a  matrix A.2 3×

Subtract the scalar 5 from A.

5 is subtracted from each element of A.

4 3×
3 2×

A

A11 A12 A13
A21 A22 A23
A31 A32 A33
A41 A42 A43

= B
B11 B12

B21 B22

B31 B32

=

4 2×

A11B11 A12B21 A13B31+ +( ) A11B12 A12B22 A13B32+ +( )

A21B11 A22B21 A23B31+ +( ) A21B12 A22B22 A23B32+ +( )

A31B11 A32B21 A33B31+ +( ) A31B12 A32B22 A33B32+ +( )

A41B11 A42B21 A43B31+ +( ) A41B12 A42B22 A43B32+ +( )

1 4 3
2 6 1
5 2 8

5 4
1 3
2 6

1 5⋅ 4 1⋅ 3 2⋅+ +( ) 1 4⋅ 4 3⋅ 3 6⋅+ +( )
2 5⋅ 6 1⋅ 1 2⋅+ +( ) 2 4⋅ 6 3⋅ 1 6⋅+ +( )
5 5⋅ 2 1⋅ 8 2⋅+ +( ) 5 4⋅ 2 3⋅ 8 6⋅+ +( )

15 34
18 32
43 74

= =
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The product of the multiplication of two square matrices (they must be of the
same size) is a square matrix of the same size. However, the multiplication of
matrices is not commutative. This means that if A and B are both , then
A* *A. Also, the power operation can be executed only with a square matrix
(since A*A can be carried out only if the number of columns in the first matrix is
equal to the number of rows in the second matrix). 

Two vectors can be multiplied only if they have the same number of elements,
and one is a row vector and the other is a column vector. The multiplication of a
row vector by a column vector gives a  matrix, which is a scalar. This is the
dot product of two vectors. (MATLAB also has a built-in function, dot(a,b),
that computes the dot product of two vectors.) When using the dot function, the
vectors a and b can each be a row vector or a column vector (see Table 3-1). The
multiplication of a column vector by a row vector, each with n elements, gives an

 matrix. Multiplication of array is demonstrated in Tutorial 3-1,
Tutorial 3-1: Multiplication of arrays.

>> A=[1 4 2; 5 7 3; 9 1 6; 4 2 8]

A =
     1     4     2
     5     7     3
     9     1     6
     4     2     8

>> B=[6 1; 2 5; 7 3]

B =
     6     1
     2     5
     7     3

>> C=A*B

C =
    28    27
    65    49
    98    32
    84    38

>> D=B*A
??? Error using ==> *
Inner matrix dimensions must agree.

>> F=[1 3; 5 7]

F =
     1     3
     5     7

>> G=[4 2; 1 6]

n n×
B B≠

1 1×

n n×

Define a  matrix A.4 3×

Define a  matrix B.3 2×

Multiply matrix A by matrix B and assign
the result to variable C.

Trying to multiply B by A,
B*A, gives an error since
the number of columns in
B is 2 and the number of
rows in A is 4.

Define two  matrices F and G.2 2×
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When an array is multiplied by a number (actually a number is a  array),
each element in the array is multiplied by the number. For example:

G =
     4     2
     1     6

>> F*G

ans =
     7    20
    27    52

>> G*F

ans =
    14    26
    31    45

>> AV=[2 5 1]

AV =
     2     5     1

>> BV=[3; 1; 4]

BV =
     3
     1
     4

>> AV*BV

ans =
    15

>> BV*AV

ans =
     6    15     3
     2     5     1
     8    20     4
>> 

>> A=[2 5 7 0; 10 1 3 4; 6 2 11 5]

A =
     2     5     7     0
    10     1     3     4
     6     2    11     5

>> b=3

b =
     3

Tutorial 3-1: Multiplication of arrays. (Continued)

Multiply F*G

Multiply G*F

Note that the answer for G*F is not the
same as the answer for F*G.

Define a three-element row vector AV.

Define a three-element column vector BV.

Multiply AV by BV. The answer is a scalar. 
(Dot product of two vectors.)

Multiply BV by AV. The 
answer is a  matrix.3 3×

1 1×

Define a  matrix A.3 4×

Assign the number 3 to the variable b.
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Linear algebra rules of array multiplication provide a convenient way for
writing a system of linear equations. For example, the system of three equations
with three unknowns

can be written in a matrix form as

and in matrix notation as

  where , , and .

3.3 ARRAY DIVISION

The division operation is also associated with the rules of linear algebra. This
operation is more complex and only a brief explanation is given below. A full
explanation can be found in books on linear algebra.

The division operation can be explained with the help of the identity matrix
and the inverse operation.
Identity matrix:
The identity matrix is a square matrix in which the diagonal elements are 1s, and
the rest of the elements are 0s. As was shown in Section 2.2.1, an identity matrix
can be created in MATLAB with the eye command. When the identity matrix
multiplies another matrix (or vector), that matrix (or vector) is unchanged (the

>> b*A

ans =
     6    15    21     0
    30     3     9    12
    18     6    33    15

>> C=A*5

C =
    10    25    35     0
    50     5    15    20
    30    10    55    25

Multiply the matrix A by b. This can be
done by either typing b*A or A*b.

Multiply the matrix A by 5 and assign 
the result to a new variable C. (Typ-
ing C = 5*A gives the same result.)

A11x1 A12x2 A13x3+ + B1=

A21x1 A22x2 A23x3+ + B2=

A31x1 A32x2 A33x3+ + B3=

A11 A12 A13

A21 A22 A23

A31 A32 A33

x1

x2

x3

B1

B2

B3

=

AX B= A
A11 A12 A13

A21 A22 A23

A31 A32 A33

= X
x1

x2

x3

= B
B1

B2

B3

=
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multiplication has to be done according to the rules of linear algebra). This is
equivalent to multiplying a scalar by 1. For example:

  or    or  

If a matrix A is square, it can be multiplied by the identity matrix, I, from the left
or from the right:

Inverse of a matrix:
The matrix B is the inverse of the matrix A if, when the two matrices are multi-
plied, the product is the identity matrix. Both matrices must be square and the
multiplication order can be  or .

Obviously B is the inverse of A, and A is the inverse of B. For example:

The inverse of a matrix A is typically written as . In MATLAB the inverse of a
matrix can be obtained either by raising A to the power of –1, , or with the
inv(A) function. Multiplying the matrices above with MATLAB is shown
below.

>> A=[2 1 4; 4 1 8; 2 -1 3]

A =
     2     1     4
     4     1     8
     2    -1     3

>> B=inv(A)

B =
    5.5000   -3.5000    2.0000
    2.0000   -1.0000         0
   -3.0000    2.0000   -1.0000

>> A*B

ans =
     1     0     0
     0     1     0
     0     0     1

7 3 8
4 11 5

1 0 0
0 1 0
0 0 1

7 3 8
4 11 5

=
1 0 0
0 1 0
0 0 1

8
2

15

8
2

15

=
6 2 9
1 8 3
7 4 5

1 0 0
0 1 0
0 0 1

6 2 9
1 8 3
7 4 5

=

AI IA A= =

BA AB

BA AB I= =

2 1 4
4 1 8
2 1– 3

5.5 3.5– 2
2 1– 0
3– 2 1

5.5 3.5– 2
2 1– 0
3– 2 1

2 1 4
4 1 8
2 1– 3

1 0 0
0 1 0
0 0 1

= =

A 1–

A 1–

Creating the matrix A.

Use the inv function to find the
inverse of A and assign it to B.

Multiplication of A and B gives the identity matrix.
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Not every matrix has an inverse. A matrix has an inverse only if it is square and its
determinant is not equal to zero.
Determinants:
A determinant is a function associated with square matrices. A short review on
determinants is given below. For a more detailed coverage refer to books on linear
algebra.

The determinant is a function that associates with each square matrix A a
number, called the determinant of the matrix. The determinant is typically denoted
by det(A) or |A|. The determinant is calculated according to specific rules. For a
second-order  matrix the rule is:

,  for example,    

The determinant of a square matrix can be calculated with the det command (see 
Table 3-1).
Array division:
MATLAB has two types of array division, right division and left division.
Left division, \ :
Left division is used to solve the matrix equation . In this equation X and
B are column vectors. This equation can be solved by multiplying, on the left, both
sides by the inverse of A:

The left-hand side of this equation is X since

So the solution of  is:

In MATLAB the last equation can be written by using the left division character:
X = A\B

It should be pointed out here that although the last two operations appear to give
the same result, the method by which MATLAB calculates X is different. In the
first, MATLAB calculates  and then uses it to multiply B. In the second (left
division), the solution X is obtained numerically with a method that is based on
Gauss elimination. The left division method is recommended for solving a set of

>> A*A^-1

ans =
     1     0     0
     0     1     0
     0     0     1

Use the power –1 to find the inverse of A.
Multiplying it by A gives the identity matrix.

2 2×

A a11 a12

a21 a22

a11a22 a12a21–= = 6 5
3 9

6 9⋅ 5– 3⋅ 39= =

AX B=

A 1– AX A 1– B=

A 1– AX IX X= =

AX B=

X A 1– B=

A 1–
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linear equations because the calculation of the inverse may be less accurate than
the Gauss elimination method when large matrices are involved.
Right division, / :
The right division is used to solve the matrix equation . In this equation X
and D are row vectors. This equation can be solved by multiplying, on the right,
both sides by the inverse of C:

which gives

In MATLAB the last equation can be written using the right division character:
X = D/C

The following example demonstrates the use of the left and right division, and
the inv function to solve a set of linear equations.

Sample Problem 3-1: Solving three linear equations (array division)

Use matrix operations to solve the following system of linear equations.

Solution
Using the rules of linear algebra demonstrated earlier, the above system of equa-
tions can be written in the matrix form  or in the form :

     or     

Solutions for both forms are shown below: 

>> A=[4 -2 6; 2 8 2; 6 10 3];

>> B=[8; 4; 0];

>> X=A\B
X =
   -1.8049
    0.2927
    2.6341

>> Xb=inv(A)*B

Xb =
   -1.8049
    0.2927
    2.6341

XC D=

X CC 1–⋅ D C 1–⋅=

X D C 1–⋅=

4x 2y– 6z+ 8=

2x 8y 2z+ + 4=

6x 10y 3z+ + 0=

AX B= XC D=

4 2– 6
2 8 2
6 10 3

x
y
z

8
4
0

= x y z
4 2 6
2– 8 10

6 2 3
8 4 0=

Solving the form AX = B.

Solving by using left division: X = A \ B.

Solving by using the inverse of A: .X A 1– B=
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3.4 ELEMENT-BY-ELEMENT OPERATIONS

In Sections 3.2 and 3.3 it was shown that when the regular symbols for multiplica-
tion and division (* and /) are used with arrays, the mathematical operations fol-
low the rules of linear algebra. There are, however, many situations that require
element-by-element operations. These operations are carried out on each of the
elements of the array (or arrays). Addition and subtraction are by definition
already element-by-element operations since when two arrays are added (or sub-
tracted) the operation is executed with the elements that are in the same position in
the arrays. Element-by-element operations can be done only with arrays of the
same size.

Element-by-element multiplication, division, or exponentiation of two vectors
or matrices is entered in MATLAB by typing a period in front of the arithmetic
operator. 

If two vectors a and b are  and , then
element-by-element multiplication, division, and exponentiation of the two vec-
tors gives:

a .* b = 

a ./ b = 

a .^ b = 

>> C=[4 2 6; -2 8 10; 6 2 3];

>> D=[8 4 0];

>> Xc=D/C

Xc =
   -1.8049    0.2927    2.6341

>> Xd=D*inv(C)

Xd =
   -1.8049    0.2927    2.6341

Symbol Description Symbol Description
.* Multiplication ./ Right division
.^ Exponentiation .\ Left Division

Solving the form XC = D.

Solving by using right division: X = D/C.

Solving by using the inverse of C: .X D C 1–⋅=

a a1 a2 a3 a4= b b1 b2 b3 b4=

a1b1 a2b2 a3b3 a4b4

a1 b1⁄ a2 b2⁄ a3 b3⁄ a4 b4⁄

a1( )b1 a2( )b2 a3( )b3 a4( )b4
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If two matrices A and B are

  and  

then element-by-element multiplication and division of the two matrices give:

A .* B =      A ./ B = 

Element-by-element exponentiation of matrix A gives:

A .^ n = 

Element-by-element multiplication, division, and exponentiation are dem-
onstrated in Tutorial 3-2.

Tutorial 3-2: Element-by-element operations.

>> A=[2 6 3; 5 8 4]

A =
     2     6     3
     5     8     4

>> B=[1 4 10; 3 2 7]

B =
     1     4    10
     3     2     7

>> A.*B

ans =
     2    24    30
    15    16    28

>> C=A./B

C =
    2.0000    1.5000    0.3000
    1.6667    4.0000    0.5714

A
A11 A12 A13

A21 A22 A23

A31 A32 A33

= B
B11 B12 B13

B21 B22 B23

B31 B32 B33

=

A11B11 A12B12 A13B13

A21B21 A22B22 A23B23

A31B31 A32B32 A33B33

A11 B11⁄ A12 B12⁄ A13 B13⁄

A21 B21⁄ A22 B22⁄ A23 B23⁄

A31 B31⁄ A32 B32⁄ A33 B33⁄

A11( )n A12( )n A13( )n

A21( )n A22( )n A23( )n

A31( )n A32( )n A33( )n

Define a  array A.2 3×

Define a  array B.2 3×

Element-by-element multiplica-
tion of array A by B.

Element-by-element division 
of array A by B. The result is 
assigned to variable C.
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Element-by-element calculations are very useful for calculating the value of a
function at many values of its argument. This is done by first defining a vector
that contains values of the independent variable, and then using this vector in ele-
ment-by-element computations to create a vector in which each element is the cor-
responding value of the function. One example is:

In the example above . Element-by-element operation is needed when
x is squared. Each element in the vector y is the value of y that is obtained when
the value of the corresponding element of the vector x is substituted in the equa-
tion. Another example is:

In the last example . Element-by-element operations are used in this

example three times: to calculate  and , and to divide the numerator by the
denominator.

>> B.^3

ans =
     1     64   1000
    27      8    343

>> A*B

??? Error using ==> *
Inner matrix dimensions must agree.

>> x=[1:8]

x =
   1   2   3   4   5   6   7   8

>> y=x.^2-4*x

y =
  -3  -4  -3   0   5  12  21  32
>>

>> z=[1:2:11]

z =
    1    3    5    7    9   11

>> y=(z.^3 + 5*z)./(4*z.^2 - 10)

 y =
   -1.0000    1.6154    1.6667    2.0323    2.4650    2.9241 

Tutorial 3-2: Element-by-element operations. (Continued)

Element-by-element exponen-
tiation of array B. The result is 
an array in which each term is 
the corresponding term in B 
raised to the power of 3. 

Trying to multiply A*B gives 
an error since A and B cannot 
be multiplied according to lin-
ear algebra rules. (The number 
of columns in A is not equal to 
the number of rows in B.) 

Create a vector x with eight elements.

Vector x is used in element-
by-element calculations of 
the elements of vector y.

y x2 4x–=

Create a vector z with six elements.

Vector z is used in element-
by-element calculations of 
the elements of vector y.

y z3 5z+

4z2 10–
--------------------=

z3 z2
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3.5 USING ARRAYS IN MATLAB BUILT-IN MATH FUNCTIONS

The built-in functions in MATLAB are written such that when the argument
(input) is an array, the operation that is defined by the function is executed on each
element of the array. (One can think of the operation as element-by-element appli-
cation of the function.) The result (output) from such an operation is an array in
which each element is calculated by entering the corresponding element of the
argument (input) array into the function. For example, if a vector with seven ele-
ments is substituted in the function cos(x), the result is a vector with seven ele-
ments in which each element is the cosine of the corresponding element in x. This
is shown below.

An example in which the argument variable is a matrix is:

The feature of MATLAB in which arrays can be used as arguments in functions is
called vectorization.

3.6 BUILT-IN FUNCTIONS FOR ANALYZING ARRAYS

MATLAB has many built-in functions for analyzing arrays. Table 3-1 lists some
of these functions.

>> x=[0:pi/6:pi]

x =
    0   0.5236   1.0472   1.5708   2.0944    2.6180    3.1416

>>y=cos(x)

y =
  1.0000   0.8660   0.5000   0.0000  -0.5000  -0.8660  -1.0000
>>

>> d=[1 4 9; 16 25 36; 49 64 81]

d =
     1     4     9
    16    25    36
    49    64    81

>> h=sqrt(d)

h =
     1     2     3
     4     5     6
     7     8     9 

Creating a  array.3 3×

h is a  array in which each
element is the square root of the
corresponding element in array d.

3 3×
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Table 3-1: Built-in array functions

Function Description Example

mean(A) If A is a vector, returns the 
mean value of the elements 
of the vector.

>> A=[5 9 2 4];

>> mean(A)

ans =

     5

C=max(A)

[d,n]=max(A)

If A is a vector, C is the larg-
est element in A. If A is a 
matrix, C is a row vector 
containing the largest ele-
ment of each column of A.

If A is a vector, d is the larg-
est element in A, and n is the 
position of the element (the 
first if several have the max 
value).

>> A=[5 9 2 4 11 6 11 1];

>> C=max(A)

C =

    11

>> [d,n]=max(A)

d =

    11

n =

     5

min(A)

[d,n]=min(A)

The same as max(A), but 
for the smallest element.

The same as [d,n]= 
max(A), but for the smallest 
element.

>> A=[5 9 2 4];

>> min(A)

ans =

     2

sum(A) If A is a vector, returns the 
sum of the elements of the 
vector.

>> A=[5 9 2 4];

>> sum(A)

ans =

    20

sort(A) If A is a vector, arranges the 
elements of the vector in 
ascending order.

>> A=[5 9 2 4];

>> sort(A)

ans =

     2     4     5     9

median(A) If A is a vector, returns the 
median value of the elements 
of the vector.

>> A=[5 9 2 4];

>> median(A)

ans =

    4.5000
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3.7 GENERATION OF RANDOM NUMBERS

Simulations of many physical processes and engineering applications frequently
require using a number (or a set of numbers) with a random value. MATLAB has
three commands—rand, randn, and randi—that can be used to assign ran-
dom numbers to variables.

The rand command:
The rand command generates uniformly distributed random numbers with val-
ues between 0 and 1. The command can be used to assign these numbers to a sca-
lar, a vector, or a matrix, as shown in Table 3-2.

std(A) If A is a vector, returns the 
standard deviation of the ele-
ments of the vector.

>> A=[5 9 2 4];

>> std(A)

ans =

    2.9439

det(A) Returns the determinant of a 
square matrix A.

>> A=[2 4; 3 5];

>> det(A)

ans =

    -2

dot(a,b) Calculates the scalar (dot) 
product of two vectors a and 
b. The vectors can each be 
row or column vectors.

>> a=[1 2 3];

>> b=[3 4 5];

>> dot(a,b)

ans =

    26

cross(a,b) Calculates the cross product 
of two vectors a and b, 
(axb). The two vectors must 
have each three elements.

>> a=[1 3 2];

>> b=[2 4 1];

>> cross(a,b)

ans =

    -5     3    -2

inv(A) Returns the inverse of a 
square matrix A.

>> A=[2 -2 1; 3 2 -1; 2 -3 2];

>> inv(A)

ans =

  0.2000  0.2000       0

 -1.6000  0.4000  1.0000

 -2.6000  0.4000  2.0000

Table 3-1: Built-in array functions (Continued)

Function Description Example
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Sometimes there is a need for random numbers that are distributed in an inter-
val other than (0,1), or for numbers that are integers only. This can be done using
mathematical operations with the rand function. Random numbers that are dis-
tributed in a range (a,b) can be obtained by multiplying rand by (b – a) and add-
ing the product to a:

(b – a)*rand + a

For example, a vector of 10 elements with random values between –5 and 10 can
be created by (a = –5, b = 10):

The randi command:
The randi command generates uniformly distributed random integer. The com-
mand can be used to assign these numbers to a scalar, a vector, or a matrix, as
shown in Table 3-3.

Table 3-2: The rand command

Command Description Example

rand Generates a single random 
number between 0 and 1. 

>> rand

ans =

    0.2311

rand(1,n) Generates an n-element 
row vector of random 
numbers between 0 and 1.

>> a=rand(1,4)

a =

  0.6068  0.4860  0.8913  0.7621

rand(n) Generates an  matrix 
with random numbers 
between 0 and 1.

>> b=rand(3)

b =

  0.4565  0.4447  0.9218

  0.0185  0.6154  0.7382

  0.8214  0.7919  0.1763

rand(m,n) Generates an  matrix 
with random numbers 
between 0 and 1.

>> c=rand(2,4)

c =

  0.4057  0.9169  0.8936  0.3529

  0.9355  0.4103  0.0579  0.8132

randperm(n) Generates a row vector 
with n elements that are 
random permutation of 
integers 1 through n.

>> randperm(8)

ans =

   8   2   7   4   3   6   5   1

>> v=15*rand(1,10)-5

v =
   -1.8640    0.6973    6.7499    5.2127    1.9164    3.5174
6.9132   -4.1123    4.0430   -4.2460

n n×

m n×
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The range of the random integers can be set to be between any two integers by
typing [imin imax] instead of imax. For example, a  matrix with ran-
dom integers between 50 and 90 is created by:

The randn command:
The randn command generates normally distributed numbers with mean 0 and
standard deviation of 1. The command can be used to generate a single number, a
vector, or a matrix in the same way as the rand command. For example, a 
matrix is created by:

The mean and standard deviation of the numbers can be changed by mathematical
operations to have any values. This is done by multiplying the number generated
by the randn function by the desired standard deviation, and adding the desired
mean. For example, a vector of six numbers with a mean of 50 and standard devi-

Table 3-3: The randi command

Command Description Example

randi(imax)

(imax is an inte-
ger)

Generates a single random 
number between 1 and 
imax. 

>> a=randi(15)

a =

     9

randi(imax,
n)

Generates an  matrix 
with random integers 
between 1 and imax.

>> b=randi(15,3)

b =

     4     8    11

    14     3     8

     1    15     8

randi(imax,
m,n)

Generates an  matrix 
with random integers 
between 1 and imax.

>> c=randi(15,2,4)

c =

     1     1     8    13

    11     2     2    13

>> d=randi([50 90],3,4)

d =
    57    82    71    75
    66    52    67    61
    84    66    76    67 

>> d=randn(3,4)

d =
   -0.4326    0.2877     1.1892    0.1746
   -1.6656   -1.1465    -0.0376   -0.1867
    0.1253    1.1909     0.3273    0.7258 

n n×

m n×

3 4×

3 4×
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ation of 6 is generated by:

Integers of normally distributed numbers can be obtained by using the round
function.

3.8 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 3-2: Equivalent force system (addition of vectors)

Three forces are applied to a bracket as
shown. Determine the total (equivalent)
force applied to the bracket.
Solution
A force is a vector (a physical quantity
that has a magnitude and direction). In a
Cartesian coordinate system a two-
dimensional vector F can be written as:

where F is the magnitude of the force and θ is its angle relative to the x axis, Fx
and Fy are the components of F in the directions of the x and y axes, respectively,
and i and j are unit vectors in these directions. If Fx and Fy are known, then F and
θ can be determined by:

  and  

The total (equivalent) force applied on the bracket is obtained by adding the forces
that are acting on the bracket. The MATLAB solution below follows three steps:
• Write each force as a vector with two elements, where the first element is the x

component of the vector and the second element is the y component.

• Determine the vector form of the equivalent force by adding the vectors.

• Determine the magnitude and direction of the equivalent force.

The problem is solved in the following script file.

>> v=4*randn(1,6)+50

v =
   42.7785   57.4344   47.5819   50.4134   52.2527   50.4544

>> w=round(4*randn(1,6)+50)

w =
    51    49    46    49    50    44

30o

20o

143o

F2 = 500 N
F3 = 700 N

F1 = 400 N

x

y

F Fxi Fyj+ F θicos F θj F θicos θjsin+( )=sin+= =

F Fx
2 Fy

2+= θtan
Fy

Fx
-----=
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When the program is executed, the following is displayed in the Command Win-
dow:

The equivalent force has a magnitude of 589.98 N, and is directed  (ccw)
relative to the x axis. In vector notation the force is  N.

% Sample Problem 3-2 solution (script file)
clear

F1M=400; F2M=500; F3M=700;

Th1=-20; Th2=30; Th3=143;

F1=F1M*[cosd(Th1) sind(Th1)]

F2=F2M*[cosd(Th2) sind(Th2)]

F3=F3M*[cosd(Th3) sind(Th3)]

Ftot=F1+F2+F3

FtotM=sqrt(Ftot(1)^2+Ftot(2)^2)

Th=atand(Ftot(2)/Ftot(1))

F1 =
  375.8770 -136.8081

F2 =
  433.0127  250.0000

F3 =
 -559.0449  421.2705

Ftot =
  249.8449  534.4625

FtotM =
  589.9768

Th =
   64.9453

Define variables with the 
magnitude of each vector.

Define variables with the angle of each vector.

Define the three vectors.

Calculate the total force vector.

Calculate the magnitude of
the total force vector.

Calculate the angle of the total force vector.

The components of F1.

The components of F2.

The components of F3.

The components of the total force.

The magnitude of the total force.

The direction of the total force in degrees.

64.95°
F 249.84i 534.46j+=
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Sample Problem 3-3: Friction experiment (element-by-element 
calculations)

The coefficient of friction, μ, can be determined in
an experiment by measuring the force F required to
move a mass m. When F is measured and m is
known, the coefficient of friction can be calculated
by:

  (g = 9.81 m/s2).
Results from measuring F in six tests are given in the table below. Determine the
coefficient of friction in each test, and the average from all tests.

Solution
A solution using MATLAB commands in the Command Window is shown below. 

Test 1 2 3 4 5 6
Mass m (kg) 2 4 5 10 20 50
Force F (N) 12.5 23.5 30 61 117 294

>> m=[2 4 5 10 20 50];

>> F=[12.5 23.5 30 61 117 294];

>> mu=F./(m*9.81)

mu =

   0.6371   0.5989   0.6116   0.6218   0.5963   0.5994

>> mu_ave=mean(mu)

mu_ave =
    0.6109

m
F

friction

m
F

frictionμ F mg( )⁄=

Enter the values of m in a vector.

Enter the values of F in a vector.

A value for mu is calculated for each test,
using element-by-element calculations.

The average of the elements in the vector mu
is determined by using the function mean.
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Sample Problem 3-4: Electrical resistive network analysis (solving a 
system of linear equations)

The electrical circuit shown consists of
resistors and voltage sources. Determine
the current in each resistor using the mesh
current method, which is based on Kirch-
hoff’s voltage law.

V,  V,  V
Ω,  Ω,  Ω
Ω,  Ω,  Ω 
Ω,  Ω

Solution
Kirchhoff’s voltage law states that the sum
of the voltage around a closed circuit is
zero. In the mesh current method a current
is first assigned for each mesh (i1, i2, i3, i4

in the figure). Then Kirchhoff’s voltage
law is applied for each mesh. This results
in a system of linear equations for the currents (in this case four equations). The
solution gives the values of the mesh currents. The current in a resistor that
belongs to two meshes is the sum of the currents in the corresponding meshes. It is
convenient to assume that all the currents are in the same direction (clockwise in
this case). In the equation for each mesh, the voltage source is positive if the cur-
rent flows to the – pole, and the voltage of a resistor is negative for current in the
direction of the mesh current.
The equations for the four meshes in the current problem are:

The four equations can be rewritten in matrix form [A][x] = [B]:
_

+

+
_

+
_

i1

i2

i3

i4

R1

R2 R3

R5

R4

R6

R7

R8

V1

V2

V3

V1 20= V2 12= V3 40=

R1 18= R2 10= R3 16=

R4 6= R5 15= R6 8=

R7 12= R8 14=

V1 R1i1– R3 i1 i3–( )– R2 i1 i2–( )– 0=

R– 5i2 R2 i2 i1–( )– R4 i2 i3–( )– R7 i2 i4–( )– 0=

V– 2 R6 i3 i4–( )– R4 i3 i2–( )– R3 i3 i1–( )– 0=

V3 R8i4– R7 i4 i2–( )– R6 i4 i3–( )– 0=

R1 R2 R3+ +( )– R2 R3 0
R2 R2 R4 R5 R7+ + +( )– R4 R7

R3 R4 R3 R4 R6+ +( )– R6

0 R7 R6 R6 R7 R8+ +( )–

i1

i2

i3

i4

V– 1

0
V2

V– 3

=
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The problem is solved in the following program, written in a script file:

When the script file is executed, the following is displayed in the Command Win-
dow:

The last column vector gives the current in each mesh. The currents in the resis-
tors R1, R5, and R8 are A, A, and A, respec-
tively. The other resistors belong to two meshes and their current is the sum of the
currents in the meshes.
The current in resistor R2 is A.
The current in resistor R3 is A.
The current in resistor R4 is A.
The current in resistor R6 is A.
The current in resistor R7 is A.

V1=20; V2=12; V3=40;

R1=18; R2=10; R3=16; R4=6;

R5=15; R6=8; R7=12; R8=14;

A=[-(R1+R2+R3) R2 R3 0
R2 -(R2+R4+R5+R7) R4 R7
R3 R4 -(R3+R4+R6) R6
0 R7 R6 -(R6+R7+R8)]

>> B=[-V1; 0; V2; -V3]

>> I=A\B

A =
   -44    10    16    0
    10   -43     6   12
    16     6   -30    8
     0    12     8  -34

B =
   -20
     0
    12
   -40

I =
    0.8411
    0.7206
    0.6127
    1.5750
>>

Define variables with the 
values of the V’s and R’s.

Create the matrix A.

Create the vector B.
Solve for the currents by using left division.

The numerical value 
of the matrix A.

The numerical value 
of the vector B.

The solution.
i1

i2

i3

i4

i1 0.8411= i2 0.7206= i4 1.5750=

i1 i2– 0.1205=

i1 i3– 0.2284=

i2 i3– 0.1079=

i4 i3– 0.9623=

i4 i2– 0.8544=
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Sample Problem 3-5: Motion of two particles

A train and a car are approaching a road crossing. At
time  the train is 400 ft south of the crossing
traveling north at a constant speed of 54 mi/h. At the
same time the car is 200 ft west of the crossing trav-
eling east at a speed of 28 mi/h and accelerating at 4
ft/s2. Determine the positions of the train and the car,
the distance between them, and the speed of the train
relative to the car every second for the next 10 sec-
onds.

To show the results, create an  matrix in
which each row has the time in the first column and
the train position, car position, distance between the
train and the car, car speed, and the speed of the train relative to the car, in the next
five columns, respectively.
Solution
The position of an object that moves along a straight line at a constant acceleration
is given by  where  and  are the position and velocity at

, and a is the acceleration. Applying this equation to the train and the car
gives:

    (train)
    (car)

The distance between the car and the train is: .
The velocity of the train is constant and in vector notation is . The
car is accelerating and its velocity at time t is given by . The
velocity of the train relative to the car, , is given by

. The magnitude (speed) of this
velocity is the length of the vector.

The problem is solved in the following program, written in a script file. First a
vector t with 11 elements for the time from 0 to 10 s is created, then the positions
of the train and the car, the distance between them, and the speed of the train rela-
tive to the car at each time element are calculated. 

v0train=54*5280/3600; v0car=28*5280/3600; acar=4;

t=0:10;

y=-400+v0train*t;

x=-200+v0car*t+0.5*acar*t.^2;

d=sqrt(x.^2+y.^2);

t 0=

11 6×

s so vot 1
2
--at2+ += so vo

t 0=

y 400– votraint+=

x 200– vocart
1
2
--acart

2+ +=

d x2 y2+=
vtrain votrainj=

vcar vocar acart+( )i=
vt c⁄

vt c⁄ vtrain vcar– vocar acart+( )i– votrainj+= =

Create variables for the initial velocities (in ft/s) and the acceleration.
Create the vector t.
Calculate the train and
car positions.

Calculate the distance between the train and car.
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Note: In the commands above, table is the name of the variable that is a matrix
containing the data to be displayed.

When the script file is executed, the following is displayed in the Command
Window:

In this problem the results (numbers) are displayed by MATLAB without any
text. Instructions on how to add text to output generated by MATLAB are pre-
sented in Chapter 4.

3.9 PROBLEMS

Note:   Additional problems for practicing mathematical operations with arrays
are provided at the end of Chapter 4.

1. For the function , calculate the value of y for the following
values of x using element-by-element operations: .

2. For the function , calculate the value of y for the following values

of x using element-by-element operations: .

vcar=v0car+acar*t;

speed_trainRcar=sqrt(vcar.^2+v0train^2);

table=[t' y' x' d' vcar' speed_trainRcar']

table =
         0 -400.0000 -200.0000  447.2136   41.0667   89.2139
    1.0000 -320.8000 -156.9333  357.1284   45.0667   91.1243
    2.0000 -241.6000 -109.8667  265.4077   49.0667   93.1675
    3.0000 -162.4000  -58.8000  172.7171   53.0667   95.3347
    4.0000  -83.2000   -3.7333   83.2837   57.0667   97.6178
    5.0000   -4.0000   55.3333   55.4777   61.0667  100.0089
    6.0000   75.2000  118.4000  140.2626   65.0667  102.5003
    7.0000  154.4000  185.4667  241.3239   69.0667  105.0849
    8.0000  233.6000  256.5333  346.9558   73.0667  107.7561
    9.0000  312.8000  331.6000  455.8535   77.0667  110.5075
   10.0000  392.0000  410.6667  567.7245   81.0667  113.3333

Calculate the car’s velocity.

Calculate the speed of the train relative to the car.

Create a table (see note below).

Time
(s)

Train
position
(ft)

Car
position
(ft)

Car-train 
distance 
(ft)

Car
speed
(ft/s)

Train speed 
relative to the 
car (ft/s)

y x3 2x2– x+=

2– 1– 0 1 2 3 4, , , , , ,

y x2 2–
x 4+
--------------=

3– 2– 1– 0 1 2 3, , , , , ,
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3. For the function , calculate the value of y for the following

values of x using element-by-element operations: .

4. For the function , calculate the value of y for the

following values of t using element-by-element operations:
.    

5. A ball that is dropped on the floor bounces back up
many times, reaching a lower height after each bounce.
When the ball impacts the floor its rebound velocity is
0.85 times the impact velocity. The velocity v with
which a ball hits the floor after being dropped from a
height h is given by , where m/s2.
The time between successive bounces is given by

, where v is the upward velocity after the last
impact. Consider a ball that is dropped from a height of
2 m. Determine the times at which the ball hits the floor for the first eight
bounces. Set  when the ball hits the floor for the first time. (Calculate
the velocity of the ball when it hits the floor for the first time. Derive a for-
mula for the time of the following hits as a function of the bounce number.
Then create a vector  and use the formula (use element-by ele-
ment operations) to calculate a vector with the values of t for each n.) Display
the results in a two-column table where the values of n and t are displayed in
the first and second columns, respectively.   

6. An aluminum sphere ( cm) is dropped in a glass cyl-
inder filled with glycerin. The velocity of the sphere as a
function of time  can be modeled by the equation

where V is the volume of the sphere, m/s2 is the
gravitational acceleration,  is a constant, and

kg/m3 and kg/m3 are the density of
aluminum and glycerin, respectively. Determine the velocity
of the sphere for t = 0, 0.05,  0.1,  0.15,  0.2,  0.25, 0.3, and
0.35 s. Note that initially the velocity increases rapidly, but
then, due to the resistance of the glycerin, the velocity
increases more gradually. Eventually the velocity approaches a limit that is
called the terminal velocity. 
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7. The current i (in amps) t seconds after closing
the switch in the circuit shown is given by:

Consider the case where volts,
ohms and henry.

(a) Find the time  required for the current to
reach 1% of its initial value, then use linspace to create a vector t hav-
ing 10 elements with the first element 0 and maximum value .

(b) Calculate the current i for each value of t from part (a).

8. The length  (magnitude) of a vector  is given by
. Given the vector , determine its

length two ways:
(a) Define the vector in MATLAB, and then write a mathematical expression

that uses the components of the vector.
(b) Define the vector in MATLAB, then use element-by element operations

to create a new vector with elements that are the squares of the elements
of the original vector. Then use MATLAB built-in functions sum and
sqrt to calculate the length. All of these steps can be written in one com-
mand.

9. The unit vector  in the direction of the vector  is given by

. Determine the unit vector of the vector

 by writing one MATLAB command.

10. The following two vectors are defined in MATLAB:
    

By hand (pencil and paper) write what will be displayed if the following com-
mands are executed by MATLAB. Check your answers by executing the com-
mands with MATLAB.
(a) v.*u (b) v*u’ (c) v’*u

11. Two vectors are given:
  and  

Use MATLAB to calculate the dot product  of the vectors in three ways:
(a) Write an expression using element-by-element calculation and the MAT-

LAB built-in function sum. 
(b) Define u as a row vector and v as a column vector, and then use matrix

multiplication.
(c) Use the MATLAB built-in function dot.

V L
R

+
_

i(t)

i t( ) V
R
--- 1 e R L⁄( ) t––( )=

V 120=
R 120= L 0.1=

tm

tm

u u xi yj zk+ +=

u x2 y2 z2+ += u 23.5i 17j– 6k+=

un u xi yj zk+ +=

un
xi yj zk+ +

x2 y2 z2+ +
-------------------------------=

u 8i– 14j– 25k+=

v 3 2– 4, ,[ ]= u 5 3 1–, ,[ ]=

u 3i– 8j 2k–+= v 6.5i 5j– 4k–=

u v⋅
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12. Define the vector . Then use the vector in a mathematical
expression to create the following vectors:

(a) (b)

(c) (d)

13. Define the vector . Then use the vector in a mathematical
expression to create the following vectors:
(a) (b)
(c) (d)

14. Define x and y as the vectors  and . Then
use them in the following expressions to calculate z using element-by-element
calculations.

(a) (b)

15. Define p and w as scalars,  and define , and, t, x, and y as the
vectors , , and .
Then use these variables to calculate the following expressions using element-
by-element calculations for the vectors.

(a) (b)

16. The area of the parallelogram shown can be cal-
culated by . Use the following steps
in a script file to calculate the area:
Define the position of points A, B, and C as vec-
tors , , and .
Determine the vectors  and  from the
points.
Determine the area by using MATLAB’s built-in functions cross, sum, and
sqrt.

17. Define the vectors:
, , and 

  Use the vectors to verify the identity:

Using MATLAB’s built-in functions cross and abs, calculate the value of
the left and right sides of the identity.
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18. The dot product can be used for determining the
angle between two vectors:

Use MATLAB’s built-in functions cosd, sqrt, 
and dot to find the angle (in degrees) between 

 and .
Recall that .

19. The position as a function of time 
of a projectile fired with a speed of  at an
angle  is given by

      

where m/s2. The polar coordinates of
the projectile at time t are , where

 and . Consider the case where m/s

and . Determine  and  for s.

20. Two projectiles, A and B, are shot at the same
instant from the same spot. Projectile A is shot at
a speed of 560 m/s at an angle of  and pro-
jectile B is shot at a speed of 680 m/s at an angle
of . Determine which projectile will hit the
ground first. Then take the flying time tf of that
projectile and divide it into ten increments by
creating a vector t with 11 equally spaced elements (the first element is 0, the
last is ). At each time t calculate the position vector  between the two
projectiles. Display the results in a three-column matrix where the first col-
umn is t and the second and third columns are the corresponding x and y com-
ponents of .

21. Show that .

Do this by first creating a vector x that has the elements 1.5, 1.0,  0.5,  0.1,  0.01,
0.001, and 0.00001. Then, create a new vector y in which each element is deter-

mined from the elements of x by . Compare the elements of y with the
value 1 (use format long to display the numbers).

x y
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y
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B

43°

50°

tf rAB
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xsin
x

----------
x 0→
lim 1=

xsin
x
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22. Show that .

Do this by first creating a vector x that has the elements: 5,  3,  2,  1.5,  1.1,
1.001, and 1.00001. Then, create a new vector y in which each element is deter-

mined from the elements of x by . Compare the elements of y with the
value 2 (use format long to display the numbers).

23. Use MATLAB to show that the sum of the infinite series

 converges to 1. Do it by computing the sum for:

(a) n = 10 (b) n = 20
(c) n = 30 (c) n = 40
For each part create a vector n in which the first element is 1, the increment is
1, and the last term is 10, 20, 30, or 40. Then use element-by-element calcula-

tions to create a vector in which the elements are . Finally, use the MAT-

LAB built-in function sum to add the terms of the series. Compare the values
obtained in parts (a), (b), (c), and (d) with the value of 1. (Don’t forget to type
semicolons at the end of commands that otherwise will display large vectors.)

24. Use MATLAB to show that the sum of the infinite series  is

equal to . Do this by computing the sum for:
(a) n = 10 (b) n = 20 (c) n = 50
For each part create a vector n in which the first element is 0, the increment is
1 and the last term is 10, 50, or 100. Then, use element-by-element calculation

to create a vector in which the elements are . Finally, use the function

sum to add the terms of the series and multiply the result by . Compare
the values obtained in parts (a), (b), and (c) to the value of  in MATLAB.

25. Fisheries commonly estimate the growth of a fish population using the von
Bertalanffy growth law:

where  is the maximum length, K is a rate constant, and τ is a time con-
stant. These constants vary with the species of fish. Assuming cm,

years–1, and years, calculate the length of a fish at 0, 1, 2,
3, 4, and 5 years of age.
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26. The path of a projectile fired with an initial
speed  at an angle  is described by the
equation

 where m/s2. Consider the case where
 and m/s. Write a MAT-

LAB script that does the following: calculates
the distance s traveled by the projectile, creates a vector x with 100 elements
such that the first element is 0 and the last is s, calculates the value of y for
each value of x, finds the maximum height  that the projectile reaches (use
MATLAB built-in function max) and the distance  where the maximum
height is reached. When the script is executed only the values of  and 
are displayed. 

27. Create the following three matrices:

              

(a) Calculate  and  to show that addition of matrices is commuta-
tive.

(b) Calculate  and  to show that addition of matrices is
associative.

(c) Calculate  and  to show that, when matrices are multi-
plied by a scalar, the multiplication is distributive.

(d) Calculate  and  to show that matrix multiplication is
distributive.

28. Use the matrices A, B, and C from the previous problem to answer the follow-
ing:

(a) Does ? (b) Does A*(B*C) = (A*B)*C?

(c) Does (A*B)t = Bt*At? ( t means transpose) (d) Does (A + B)t = At + Bt?

29. Create a  matrix having random integer values between 1 and 10. Call
the matrix A and using MATLAB perform the following operations. For each
part explain the operation.
(a) A * A (b) A .*A (c) A \ A

(d) A . \ A (e) det(A) (e) inv(A)

v0
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y
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30. The mechanical power output P in a contracting muscle is given by

where T is the muscle tension, v is the shortening velocity (max of ),  is 
the isometric tension (i.e., tension at zero velocity), and k is a non-dimen-
sional constant that ranges between 0.15 and 0.25 for most muscles. The equa-
tion can be written in non-dimensional form:

where , and . A 
figure with  is shown here.
(a) Create a vector u ranging from 0 to 1 with 

increments of 0.05.
(b) Using , calculate the value of p 

for each value of u.
(c) Using MATLAB built-in function max, find the maximum value of p.
(d) Repeat the first three steps with increments of 0.01 and calculate the

percent relative error, defined by .

31. Solve the following system of three linear equations:

   

    

32. Solve the following system of five linear equations:

33. A juice company manufactures one-gallon bottles of three types of juice
blends using orange, pineapple, and mango juice. The blends have the follow-
ing compositions:
1 gallon orange blend: 3 quarts of orange juice, 0.75 quart of pineapple juice,
0.25 quart of mango juice.
1 gallon pineapple blend: 1 quart of orange juice, 2.5 quarts of pineapple
juice, 0.5 quart of mango juice.
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1 gallon mango blend: 0.5 quart of orange juice, 0.5 quart of pineapple juice,
3 quarts of mango juice.
How many gallons of each blend can be manufactured if 7,600 gallons of
orange juice, 4,900 gallons of pineapple juice, and 3,500 gallons mango juice
are available? Write a system of linear equations and solve.

34. The electrical circuit shown consists of resis-
tors and voltage sources. Determine the cur-
rent in each resistor, using the mesh current
method based on Kirchhoff’s voltage law
(see Sample Problem 3-4).

V,  V
Ω,  Ω,  Ω
Ω,  Ω

35. The electrical circuit shown consists
of resistors and voltage sources.
Determine the current in each resis-
tor, using the mesh current method
based on Kirchhoff’s voltage law
(see Sample Problem 3-4).

V,  V
Ω,  Ω,  Ω
Ω,  Ω
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Chapter 4                              
Using Script Files and 
Managing Data 

A script file (see Section 1.8) is a list of MATLAB commands, called a program,
that is saved in a file. When the script file is executed (run), MATLAB executes
the commands. Section 1.8 describes how to create, save, and run a simple script
file in which the commands are executed in the order in which they are listed, and
in which all the variables are defined within the script file. The present chapter
gives more details of how to input data to a script file, how data is stored in MAT-
LAB, various ways to display and save data that is created in script files, and how
to exchange data between MATLAB and other applications. (How to write more
advanced programs where commands are not necessarily executed in a simple
order is covered in Chapter 6.)   

In general, variables can be defined (created) in several ways. As shown in
Chapter 2, variables can be defined implicitly by assigning values to a variable
name. Variables can also be assigned values by the output of a function. In addi-
tion, variables can be defined with data that is imported from files outside MAT-
LAB. Once defined (either in the Command Window or when a script file is
executed) the variables are stored in MATLAB’s Workspace.

Variables that reside in the workspace can be displayed in various ways,
saved, or exported to applications outside MATLAB. Similarly, data from files
outside MATLAB can be imported to the workspace and then used in MATLAB. 

Section 4.1 explains how MATLAB stores data in the workspace and how
the user can see the data that is stored. Section 4.2 shows how variables that are
used in script files can be defined in the Command Window and/or in script files.
Section 4.3 shows how to output data that is generated when script files are exe-
cuted. Section 4.4 explains how the variables in the workspace can be saved and
then retrieved, and Section 4.5 shows how to import and export data from and to
applications outside MATLAB.
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4.1 THE MATLAB WORKSPACE AND THE WORKSPACE WINDOW

The MATLAB workspace consists of the set of variables (named arrays) that are
defined and stored during a MATLAB session. It includes variables that have
been defined in the Command Window and variables defined when script files are
executed. This means that the Command Window and script files share the same
memory zone within the computer. This implies that once a variable is in the
workspace, it is recognized and can be used, and it can be reassigned new values,
in both the Command Window and script files. As will be explained in Chapter 7
(Section 7.3), there is another type of file in MATLAB, called a function file,
where variables can also be defined. These variables, however, are normally not
shared with other parts of the program since they use a separate workspace.

Recall from Chapter 1 that the who command displays a list of the variables
currently in the workspace. The whos command displays a list of the variables
currently in the workspace and information about their size, bytes, and class. An
example is shown below.

>> 'Variables in memory'

ans =
Variables in memory

>> a = 7;

>> E = 3;

>> d = [5,  a+E,  4,  E^2]

d =
     5    10     4     9

>> g = [a, a^2,  13;  a*E,  1,  a^E]

g =
      7    49     13
     21     1    343

>> who

Your variables are:
E    a    ans  d    g

>> whos
  Name     Size          Bytes  Class     Attributes

  E        1x1               8  double              
  a        1x1               8  double              
  ans      1x19             38  char                
  d        1x4              32  double              
  g        2x3              48  double  

>>

Typing a string.

The string is assigned to ans.

Creating the variables a, 
E, d, and g.

The who command displays the vari-
ables currently in the workspace.

The whos command 
displays the variables 
currently in the work-
space, and informa-
tion about their size 
and other information.
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The variables currently in memory can also be viewed in the Workspace Win-
dow. If not open, this window can be opened by selecting Workspace in the
Desktop menu. Figure 4-1 shows the Workspace Window that corresponds to the
variables defined above. The variables that are displayed in the Workspace Win-

dow can also be edited (changed). Double-clicking on a variable opens the Vari-
able Editor Window, where the content of the variable is displayed in a table. For
example, Figure 4-2 shows the Variable Editor Window that opens when the vari-
able g in Figure 4-1 is double-clicked.

The elements in the Variable Editor Window can be edited. The variables in the
Workspace Window can be deleted by selecting them, and then either pressing the
delete key on the keyboard or selecting delete from the edit menu. This has the
same effect as entering the command clear variable_name in the Com-
mand Window. 

4.2 INPUT TO A SCRIPT FILE

When a script file is executed, the variables that are used in the calculations within
the file must have assigned values. In other words, the variables must be in the
workspace. The assignment of a value to a variable can be done in three ways,
depending on where and how the variable is defined.

Figure 4-1: The Workspace Window.

Figure 4-2: The Variable Editor Window.
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1.  The variable is defined and assigned a value in the script file.
In this case the assignment of a value to the variable is part of the script file. If the
user wants to run the file with a different variable value, the file must be edited
and the assignment of the variable changed. Then, after the file is saved, it can be
executed again.

The following is an example of such a case. The script file (saved as
Chapter4Example2) calculates the average points scored in three games.

The display in the Command Window when the script file is executed is:

2.  The variable is defined and assigned a value in the Command Window.
In this case the assignment of a value to the variable is done in the Command
Window. (Recall that the variable is recognized in the script file.) If the user wants
to run the script file with a different value for the variable, the new value is
assigned in the Command Window and the file is executed again.

For the previous example in which the script file has a program that calcu-
lates the average of points scored in three games, the script file (saved as
Chapter4Example3) is:

The Command Window for running this file is:

% This script file calculates the average points scored in three games.

% The assignment of the values of the points is part of the script file.

game1=75;

game2=93;

game3=68;

ave_points=(game1+game2+game3)/3

>> Chapter4Example2

ave_points =
   78.6667
>>

% This script file calculates the average points scored in three games.

% The assignment of the values of the points to the variables

% game1, game2, and game3 is done in the Command Window.

ave_points=(game1+game2+game3)/3

>> game1 = 67;
>> game2 = 90;
>> game3 = 81;

The variables are assigned 
values within the script file.

The script file is executed by typing the name of the file.

The variable ave_points with its value
is displayed in the Command Window.

The variables are assigned values in
the Command Window.
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3.  The variable is defined in the script file, but a specific value is entered
in the Command Window when the script file is executed.
In this case the variable is defined in the script file, and when the file is executed,
the user is prompted to assign a value to the variable in the Command Window.
This is done by using the input command for creating the variable.

The form of the input command is:

When the input command is executed as the script file runs, the string is dis-
played in the Command Window. The string is a message prompting the user to
enter a value that is assigned to the variable. The user types the value and presses
the Enter key. This assigns the value to the variable. As with any variable, the
variable and its assigned value will be displayed in the Command Window unless
a semicolon is typed at the very end of the input command. A script file that
uses the input command to enter the points scored in each game to the program
that calculates the average of the scores is shown below.

The following shows the Command Window when this script file (saved as

>> Chapter4Example3

ave_points =
   79.3333

>> game1 = 87;
>> game2 = 70;
>> game3 = 50;

>> Chapter4Example3

ave_points =
    69
>> 

% This script file calculates the average of points scored in three games.

% The points from each game are assigned to the variables by

% using the input command.

game1=input('Enter the points scored in the first game ');

game2=input('Enter the points scored in the second game ');

game3=input('Enter the points scored in the third game ');

ave_points=(game1+game2+game3)/3

The script file is executed.

The output from the script file is displayed
in the Command Window.

New values are assigned to
the variables.

The script file is executed again.

The output from the script file is displayed
in the Command Window.

variable_name = input(‘string with a message that
               is displayed in the Command Window’)
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Chapter4Example4) is executed.

In this example scalars are assigned to the variables. In general, however,
vectors and arrays can also be assigned. This is done by typing the array in the
same way that it is usually assigned to a variable (left bracket, then typing row by
row, and a right bracket).

The input command can also be used to assign a string to a variable. This
can be done in one of two ways. One way is to use the command in the same form
as shown above, and when the prompt message appears the string is typed
between two single quotes in the same way that a string is assigned to a variable
without the input command. The second way is to use an option in the input
command that defines the characters that are entered as a string. The form of the
command is:

where the ‘s’ inside the command defines the characters that will be entered as a
string. In this case when the prompt message appears, the text is typed in without
the single quotes, but it is assigned to the variable as a string. An example where
the input command is used with this option is included in Sample Problem 6-4. 

4.3 OUTPUT COMMANDS

As discussed before, MATLAB automatically generates a display when some
commands are executed. For example, when a variable is assigned a value, or the
name of a previously assigned variable is typed and the Enter key is pressed,
MATLAB displays the variable and its value. This type of output is not displayed
if a semicolon is typed at the end of the command. In addition to this automatic
display, MATLAB has several commands that can be used to generate displays.
The displays can be messages that provide information, numerical data, and plots.
Two commands that are frequently used to generate output are disp and
fprintf. The disp command displays the output on the screen, while the
fprintf command can be used to display the output on the screen or to save the
output to a file. The commands can be used in the Command Window, in a script
file, and, as will be shown later, in a function file. When these commands are used

>> Chapter4Example4

Enter the points scored in the first game   67

Enter the points scored in the second game   91
Enter the points scored in the third game   70

ave_points =
    76
>>

The computer displays 
the message. Then the 
value of the score is 
typed by the user and 
the Enter key is 
pressed.

variable_name = input(‘prompt message’,‘s’)
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in a script file, the display output that they generate is displayed in the Command
Window.

4.3.1 The disp Command

The disp command is used to display the elements of a variable without display-
ing the name of the variable, and to display text. The format of the disp com-
mand is:

• Every time the disp command is executed, the display it generates appears in
a new line. One example is:

The next example shows the use of the disp command in the script file that cal-
culates the average points scored in three games.

When this file (saved as Chapter4Example5) is executed, the display in the

>> abc = [5  9  1;  7  2  4];

>> disp(abc)

     5     9     1
     7     2     4

>> disp('The problem has no solution.')

The problem has no solution.
>> 

% This script file calculates the average points scored in three games.

% The points from each game are assigned to the variables by

% using the input command.

% The disp command is used to display the output.

game1=input('Enter the points scored in the first game    ');

game2=input('Enter the points scored in the second game   ');

game3=input('Enter the points scored in the third game    ');

ave_points=(game1+game2+game3)/3;

disp(' ')

disp('The average of points scored in a game is:')

disp(' ')

disp(ave_points)

disp(name of a variable) or   disp(‘text as string’)

A  array is assigned to variable abc.2 3×

The disp command is used to display the abc array.

The array is displayed without its name.

The disp command is used
to display a message.

Display empty line.
Display text.

Display empty line.
Display the value of the variable ave_points.
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Command Window is:

• Only one variable can be displayed in a disp command. If elements of two
variables need to be displayed together, a new variable (that contains the ele-
ments to be displayed) must first be defined and then displayed.

In many situations it is nice to display output (numbers) in a table. This can
be done by first defining a variable that is an array with the numbers and then
using the disp command to display the array. Headings to the columns can also
be created with the disp command. Since in the disp command the user cannot
control the format (the width of the columns and the distance between the col-
umns) of the display of the array, the position of the headings has to be aligned
with the columns by adding spaces. As an example, the script file below shows
how to display the population data from Chapter 2 in a table.

When this script file (saved as PopTable) is executed, the display in the Command
Window is:

>> Chapter4Example5

Enter the points scored in the first game    89

Enter the points scored in the second game   60

Enter the points scored in the third game    82

The average of points scored in a game is:

   77

yr=[1984 1986 1988 1990 1992 1994 1996];

pop=[127 130 136 145 158 178 211];

tableYP(:,1)=yr';

tableYP(:,2)=pop';

disp('        YEAR     POPULATION')

disp('                 (MILLIONS)')

disp(' ')

disp(tableYP)

>> PopTable

        YEAR     POPULATION
                 (MILLIONS)
 

        1984        127

        1986        130

An empty line is displayed.
The text line is displayed.

An empty line is displayed.
The value of the variable ave_points is displayed.

The population data is 
entered in two row vectors.

yr is entered as the first column in the array tableYP.
pop is entered as the second column in the array tableYP.

Display heading (first line).
Display heading (second line).

Display an empty line.
Display the array tableYP.

Headings are displayed.

An empty line is displayed.



4.3 Output Commands 103

Another example of displaying a table is shown in Sample Problem 4-3.
Tables can also be created and displayed with the fprintf command, which is
explained in the next section.

4.3.2 The fprintf Command

The fprintf command can be used to display output (text and data) on the
screen or to save it to a file. With this command (unlike with the disp command)
the output can be formatted. For example, text and numerical values of variables
can be intermixed and displayed in the same line. In addition, the format of the
numbers can be controlled.

With many available options, the fprintf command can be long and
complicated. To avoid confusion, the command is presented gradually. First, this
section shows how to use the command to display text messages, then how to mix
numerical data and text, next how to format the display of numbers, and finally
how to save the output to a file.
Using the fprintf command to display text:
To display text, the fprintf command has the form:

For example:

If this line is part of a script file, then when the line is executed, the following is
displayed in the Command Window: 

With the fprintf command it is possible to start a new line in the middle of the
string. This is done by inserting \n before the character that will start the new
line. For example, inserting \n after the first sentence in the previous example
gives:

        1988        136

        1990        145

        1992        158

        1994        178

        1996        211

fprintf('The problem, as entered, has no solution. Please check the 
input data.')

The problem, as entered, has no solution. Please check the input data.

fprintf('The problem, as entered, has no solution.\nPlease 
check the input data.')

The tableYP array is displayed.

fprintf(‘text typed in as a string’)
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When this line executes, the display in the Command Window is: 

The \n is called an escape character. It is used to control the display. Other escape
characters that can be inserted within the string are:

\b Backspace.
\t Horizontal tab.
When a program has more than one fprintf command, the display gener-

ated is continuous (the fprintf command does not automatically start a new
line). This is true even if there are other commands between the fprintf com-
mands. An example is the following script file:

When this file is executed the display in the Command Window is:

To start a new line with the fprintf command, \n must be typed at the start of
the string.
Using the fprintf command to display a mix of text and numerical data:
To display a mix of text and a number (value of a variable), the fprintf com-
mand has the form:

The problem, as entered, has no solution.
Please check the input data.

fprintf('The problem, as entered, has no solution. Please check the 
input data.')

x = 6; d = 19 + 5*x;

fprintf('Try to run the program later.')

y = d + x;

fprintf('Use different input values.')

The problem, as entered, has no solution. Please check the 
input data.Try to run the program later.Use different input 
values.

fprintf(‘text as string %-5.2f additional text’, 
                                    variable_name)

The name of the 
variable whose 
value is displayed.

Formatting elements
(define the format of
the number).

The % sign marks the
spot where the number is
inserted within the text.
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The formatting elements are:

The flag, which is optional, can be one of the following three characters: 

The field width and precision (5.2 in the previous example) are optional.
The first number (5 in the example) is the field width, which specifies the mini-
mum number of digits in the display. If the number to be displayed is shorter than
the field width, spaces or zeros are added in front of the number. The precision is
the second number (2 in the example). It specifies the number of digits to be dis-
played to the right of the decimal point.

The last element in the formatting elements, which is required, is the con-
version character, which specifies the notation in which the number is displayed.
Some of the common notations are:

e Exponential notation using lower-case e (e.g., 1.709098e+001).
E Exponential notation using upper-case E (e.g., 1.709098E+001).
f Fixed-point notation (e.g., 17.090980).
g The shorter of e or f notations.
G The shorter of E or f notations.
 i Integer.

Information about additional notation is available in the help menu of MATLAB.
As an example, the fprintf command with a mix of text and a number is used
in the script file that calculates the average points scored in three games.

Character used 
for flag

Description

– (minus sign) Left-justifies the number within the field.
+ (plus sign) Prints a sign character (+ or –) in front of the number.

0 (zero) Adds zeros if the number is shorter than the field.

% This script file calculates the average points scored in three games.

% The values are assigned to the variables by using the input command.

% The fprintf command is used to display the output.

game(1) = input('Enter the points scored in the first game    ');

game(2) = input('Enter the points scored in the second game   ');

game(3) = input('Enter the points scored in the third game    ');

ave_points = mean(game);

–5.2f

Conversion character
(required). 

Field width 
and precision
(optional).

Flag
(optional).
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Notice that, besides using the fprintf command, this file differs from the ones
shown earlier in the chapter in that the scores are stored in the first three elements
of a vector named game, and the average of the scores is calculated by using the
mean function. The Command Window where the script file above (saved as
Chapter4Example6) was run is shown below.

With the fprintf command it is possible to insert more than one number
(value of a variable) within the text. This is done by typing %g (or % followed by
any formatting elements) at the places in the text where the numbers are to be
inserted. Then, after the string argument of the command (following the comma),
the names of the variables are typed in the order in which they are inserted in the
text. In general the command looks like:

An example is shown in the following script file:

fprintf('An average of %f points was scored in the three games.',ave_points)

>> Chapter4Example6

Enter the points scored in the first game    75

Enter the points scored in the second game   60

Enter the points scored in the third game    81

An average of 72.000000 points was scored in the three games.
>> 

% This program calculates the distance a projectile flies,

% given its initial velocity and the angle at which it is shot.

% the fprintf command is used to display a mix of text and numbers.

v=1584;  % Initial velocity (km/h)

theta=30;  % Angle (degrees)

vms=v*1000/3600;

t=vms*sind(30)/9.81;

d=vms*cosd(30)*2*t/1000;

Text Additional
text.

% marks the 
position of 
the number.

The name of the 
variable whose 
value is displayed.

The display generated by the fprintf command
combines text and a number (value of a variable).

fprintf(‘..text...%g...%g...%f...’,variable1,variable2,variable3)

Changing velocity units to m/s.
Calculating the time to highest point.

Calculating max distance.
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When this script file (saved as Chapter4Example7) is executed, the display in the
Command Window is: 

Additional remarks about the fprintf command:

• To place a single quotation mark in the displayed text, type two single quota-
tion marks in the string inside the command. 

• The fprintf command is vectorized. This means that when a variable that is
a vector or a matrix is included in the command, the command repeats itself
until all the elements are displayed. If the variable is a matrix, the data is used
column by column.

For example, the script file below creates a  matrix T in which the first
row contains the numbers 1 through 5, and the second row shows the correspond-
ing square roots.

When this script file is executed, the display in the Command Window is:

fprintf('A projectile shot at %3.2f degrees with a velocity 
of %4.2f km/h will travel a distance of %g km.\n',theta,v,d)

>> Chapter4Example7

A projectile shot at 30.00 degrees with a velocity of 
1584.00 km/h will travel a distance of 17.091 km.
>> 

x=1:5;

y=sqrt(x);

T=[x; y]

fprintf('If the number is: %i, its square root is: %f\n',T)

T =
    1.0000    2.0000    3.0000    4.0000    5.0000
    1.0000    1.4142    1.7321    2.0000    2.2361

If the number is: 1, its square root is: 1.000000

If the number is: 2, its square root is: 1.414214

If the number is: 3, its square root is: 1.732051

If the number is: 4, its square root is: 2.000000

If the number is: 5, its square root is: 2.236068

2 5×

Create a vector x.
Create a vector y.

Create  matrix T, first row is x, second row is y.2 5×

The fprintf command displays two numbers from T in every line.

The  matrix T.2 5×

The fprintf 
command repeats 
five times, using 
the numbers from 
the matrix T col-
umn after column.



108 Chapter 4: Using Script Files and Managing Data

Using the fprintf command to save output to a file:

In addition to displaying output in the Command Window, the fprintf com-
mand can be used for writing the output to a file when it is necessary to save the
output. The data that is saved can subsequently be displayed or used in MATLAB
and in other applications.
Writing output to a file requires three steps:

a) Opening a file using the fopen command.
b) Writing the output to the open file using the fprintf command.
c) Closing the file using the fclose command.

Step a:
Before data can be written to a file, the file must be opened. This is done with the
fopen command, which creates a new file or opens an existing file. The fopen
command has the form:

fid is a variable called the file identifier. A scalar value is assigned to fid when
fopen is executed. The file name is written (including its extension) within sin-
gle quotes as a string. The permission is a code (also written as a string) that tells
how the file is opened. Some of the more common permission codes are:

‘r’ Open file for reading (default).
‘w’ Open file for writing. If the file already exists, its content is deleted.

If the file does not exist, a new file is created.
‘a’ Same as ‘w’, except that if the file exists the written data is

appended to the end of the file.
‘r+’ Open file for reading and writing.
‘w+’ Open file for writing and writing. If the file already exists, its con-

tent is deleted. If the file does not exists, a new file is created.
‘a+’ Same as ‘w+’, except that if the file exists the written data is

appended to the end of the file.
If a permission code is not included in the command, the file opens with the

default code ‘r’. Additional permission codes are described in the help menu.
Step b:
Once the file is open, the fprintf command can be used to write output to the
file. The fprintf command is used in exactly the same way as it is used to dis-
play output in the Command Window, except that the variable fid is inserted
inside the command. The fprintf command then has the form:

fid = fopen(‘file_name’,‘permission’)

fprintf(fid,‘text %-5.2f additional text’,vari
                                        able_name)

fid is added to the fprintf command.
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Step c:
When the writing of data to the file is complete, the file is closed using the
fclose command. The fclose command has the form:

Additional notes on using the fprintf command for saving output to a file:

• The created file is saved in the current directory.

• It is possible to use the fprintf command to write to several different files.
This is done by first opening the files, assigning a different fid to each (e.g.
fid1, fid2, fid3, etc.), and then using the fid of a specific file in the
fprintf command to write to that file.

An example of using fprintf commands for saving output to two files is
shown in the following script file. The program in the file generates two unit con-
version tables. One table converts velocity units from miles per hour to kilometers
per hour, and the other table converts force units from pounds to newtons. Each
conversion table is saved to a different text file (extension .txt).

% Script file in which fprintf is used to write output to files.

% Two conversion tables are created and saved to two different files.

% One converts mi/h to km/h, the other converts lb to N.

clear all

Vmph=10:10:100;

Vkmh=Vmph.*1.609;

TBL1=[Vmph; Vkmh];

Flb=200:200:2000;

FN=Flb.*4.448;

TBL2=[Flb; FN];

fid1=fopen('VmphtoVkm.txt','w');

fid2=fopen('FlbtoFN.txt','w');

fprintf(fid1,'Velocity Conversion Table\n \n');

fprintf(fid1,'      mi/h           km/h    \n');

fprintf(fid1,'   %8.2f       %8.2f\n',TBL1);

fclose(fid)

Creating a vector of velocities in mi/h. 
Converting mph to km/h. 

Creating a table (matrix) with two rows. 
Creating a vector of forces in lb. 

Converting lb to N. 
Creating a table (matrix) with two rows. 

Open a .txt file named VmphtoVkm. 
Open a .txt file named FlbtoFN. 

Writing a title and an empty line to the file fid1.

Writing two column headings to the file fid1.

Writing the data from the variable TBL1 to the file fid1.
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When the script file above is executed two new .txt files, named
VmphtoVkm and FlbtoFN, are created and saved in the current directory. These
files can be opened with any application that can read .txt files. Figures 4-3 and 4-
4 show how the two files appear when they are opened with Microsoft Word.  

fprintf(fid2,'Force Conversion Table\n \n');
fprintf(fid2,'     Pounds       Newtons    \n');
fprintf(fid2,'   %8.2f       %8.2f\n',TBL2);

fclose(fid1);

fclose(fid2);

Figure 4-3: The VmphtoVkm.txt file opened in Word.

Figure 4-4: The FlbtoFN.txt file opened in Word.

Writing the force con-
version table (data in 
variable TBL2) to the 
file fid2.

Closing the files fid1 and fid2.
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4.4 THE save AND load COMMANDS

The save and load commands are most useful for saving and retrieving data for
use in MATLAB. The save command can be used for saving the variables that
are currently in the workspace, and the load command is used for retrieving vari-
ables that have been previously saved, to the workspace. The workspace can be
saved when MATLAB is used in one type of platform (e.g., PC), and retrieved for
use in MATLAB in another platform (e.g., Mac). The save and load com-
mands can also be used for exchanging data with applications outside MATLAB.
Additional commands that can be used for this purpose are presented in Section
4.5.

4.4.1 The save Command

The save command is used for saving the variables (all or some of them) that are
stored in the workspace. The two simplest forms of the save command are:

When either one of these commands is executed, all of the variables currently in
the workspace are saved in a file named file_name.mat that is created in the
current directory. In mat files, which are written in a binary format, each variable
preserves its name, type, size, and value. These files cannot be read by other appli-
cations. The save command can also be used for saving only some of the vari-
ables that are in the workspace. For example, to save two variables named var1
and var2 the command is:

The save command can also be used for saving in ASCII format, which
can be read by applications outside MATLAB. Saving in ASCII format is done by
adding the argument -ascii in the command (for example, save file_name
-ascii). In the ASCII format the variable’s name, type, and size are not pre-
served. The data is saved as characters separated by spaces but without the vari-
able names. For example, the following shows how two variables (a  vector
and a  matrix) are defined in the Command Window and then saved in
ASCII format to a file named DatSavAsci:

>> V=[3 16 -4 7.3];

>> A=[6 -2.1 15.5; -6.1 8 11];

>> save -ascii DatSavAsci

save file_name save(‘file_name’)and

save file_name var1 var2

save(‘file_name’,‘var1’,‘var2’)

or

1 4×
2 3×

Create a  vector V.1 4×
Create a  matrix A.2 3×

Save variables to a file named DatSavAsci.
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Once saved, the file can be opened by any application that can read ASCII files.
For example, Figure 4-5 shows the data when the file is opened with Notepad.

Note that the file does not include the names of the variables just the numerical
values of the variables (first A and then V) are listed.

4.4.2 The load Command

The load command can be used for retrieving variables that were saved with the
save command back to the workspace, and for importing data that was created
with other applications and saved in ASCII format or in text (.txt) files. Variables
that were saved with the save command in .mat files can be retrieved with the
command:

When the command is executed, all the variables in the file (with the name, type,
size, and values as were saved) are added (loaded back) to the workspace. If the
workspace already has a variable with the same name as a variable that is
retrieved with the load command, then the variable that is retrieved replaces the
existing variable. The load command can also be used for retrieving only some
of the variables that are in the saved .mat file. For example, to retrieve two vari-
ables named var1 and var2, the command is:

The load command can also be used to import data that is saved in ASCII
or text (.txt) to the workspace. This is possible, however, only if the data in the file
is in the form of a variable in MATLAB. Thus, the file can have one number (sca-
lar), a row or a column of numbers (vector), or rows with the same number of
numbers in each (matrix). For example, the data shown in Figure 4-5 cannot be
loaded with the load command (even though it was saved in ASCII format with
the save command) because the number of elements is not the same in all rows.
(Recall that this file was created by saving two different variables.)

Figure 4-5: Data saved in ASCII format.

load file_name load(‘file_name’)or

load file_name var1 var2

load(‘file_name’,‘var1’,‘var2’)

or
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When data is loaded from an ASCII or text file into the workspace it has to be
assigned to a variable name. Data in ASCII format can be loaded with either of the
following two forms of the load command:

If the data is in a text file, the extension .txt has to be added to the file name. The
form of the load command is then:

In the first form of the command the data is assigned to a variable that has the
name of the file. In the second form the data is assigned to a variable named
VarName.

For example, the data shown in Figure 4-6 (a  matrix) is typed in
Notepad, and then saved as DataFromText.txt. 

Next, two forms of the load command are used to import the data in the text
file to the Workspace of MATLAB. In the first command the data is assigned to a
variable named DfT. In the second command the data is automatically assigned to
a variable named DataFromText, which is the name of the text file where the
data was saved.

Importing data to (or exporting from) other applications can also be done, with
MATLAB commands that are presented in the next section.

Figure 4-6: Data saved as .txt file.

>> DfT=load('DataFromText.txt')

DfT =
   56.0000   -4.2000
    3.0000    7.5000
   -1.6000  198.0000

>> load DataFromText.txt

>> DataFromText
DataFromText =
   56.0000   -4.2000
    3.0000    7.5000
   -1.6000  198.0000

load file_name VarName=load(‘file_name’)or

load file_name.txt VarName=load(‘file_name.txt’)or

3 2×

Load the file 
DataFromText and 
assign the loaded data to the 
variable Dft.

Use the load command with 
the file DataFromText.

The data is assigned to a vari-
able named DataFromText.
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4.5 IMPORTING AND EXPORTING DATA

MATLAB is often used for analyzing data that was recorded in experiments or
generated by other computer programs. This can be done by first importing the
data into MATLAB. Similarly, data that is produced by MATLAB sometimes
needs to be transferred to other computer applications. There are various types of
data (numerical, text, audio, graphics, and images). This section describes only
how to import and export numerical data, which is probably the most common
type of data that needs to be transferred by new users of MATLAB. For other
types of data transfer, look in the Help Window under File I/O.

Importing data can be done either by using commands or by using the
Import Wizard. Commands are useful when the format of the data being imported
is known. MATLAB has several commands that can be used for importing vari-
ous types of data. Importing commands can also be included in a script file such
that the data is imported when the script is executed. The Import Wizard is useful
when the format of the data (or the command that is applicable for importing the
data) is not known. The Import Wizard determines the format of the data and
automatically imports it.

4.5.1 Commands for Importing and Exporting Data

This section describes—in detail—how to transfer data into and out of Excel
spreadsheets. Microsoft Excel is commonly used for storing data, and Excel is
compatible with many data recording devices and computer applications. Many
people are also capable of importing and exporting various data formats into and
from Excel. MATLAB also has commands for transferring data directly to and
from formats such as csv and ASCII, and to the spreadsheet program Lotus 123.
Details of these and many other commands can be found in the Help Window
under File I/O
Importing and exporting data into and from Excel:
Importing data from Excel is done with the xlsread command. When the com-
mand is executed, the data from the spreadsheet is assigned as an array to a vari-
able. The simplest form of the xlsread command is: 

• ‘filename’ (typed as a string) is the name of the Excel file. The directory
of the Excel file must be either the current directory or listed in the search path.

• If the Excel file has more than one sheet, the data will be imported from the
first sheet.

variable_name = xlsread(‘filename’) 
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When an Excel file has several sheets, the xlsread command can be used to
import data from a specified sheet. The form of the command is then:

• The name of the sheet is typed as a string.

Another option is to import only a portion of the data that is in the spreadsheet.
This is done by typing an additional argument in the command:

• The ‘range’ (typed as a string) is a rectangular region of the spreadsheet
defined by the addresses (in Excel notation) of the cells at opposite corners of
the region. For example, ‘C2:E5’ is a  region of rows 2, 3, 4, and 5 and
columns C, D, and E.

Exporting data from MATLAB to an Excel spreadsheet is done by using the
xlswrite command. The simplest form of the command is:

• ‘filename’ (typed as a string) is the name of the Excel file to which the
data is exported. The file must be in the current directory. If the file does not
exist, a new Excel file with the specified name will be created.

• variable_name is the name of the variable in MATLAB with the assigned
data that is being exported.

• The arguments ‘sheet_name’ and ‘range’ can be added to the
xlswrite command to export to a specified sheet and to a specified range of
cells, respectively.

As an example, the data from the Excel spreadsheet shown in Figure 4-7 is
imported into MATLAB by using the xlsread command.

Figure 4-7: Excel spreadsheet with data.

variable_name = xlsread(‘filename’,‘sheet_name’) 

variable_name = xlsread(‘filename’,‘sheet_name’,‘range’) 

4 3×

xlswrite(‘filename’,variable_name) 
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The spreadsheet is saved in a file named TestData1 in a disk in drive A.
After the Current Directory is changed to drive A, the data is imported into MAT-
LAB by assigning it to the variable DATA:

4.5.2 Using the Import Wizard

Using the Import Wizard is probably the easiest way to import data into MAT-
LAB since the user does not have to know, or to specify, the format of the data.
The Import Wizard is activated by selecting Import Data in the File menu of the
Command Window. (It can also be started by typing the command uiimport.)
The Import Wizard starts by displaying a file selection box that shows all the data
files recognized by the Wizard. The user then selects the file that contains the data
to be imported, and clicks Open. The Import Wizard opens the file and displays a
portion of the data in a preview box so that the user can verify that the data is the
correct choice. The Import Wizard tries to process the data, and if the wizard is
successful, it displays the variables it has created with a portion of the data. The
user clicks next and the wizard shows the Column Separator that was used. If the
variable has the correct data, the user can proceed with the wizard (click next);
otherwise the user can choose a different Column Separator. In the next window
the wizard shows the name and size of the variable to be created in MATLAB.
(When the data is all numerical, the variable in MATLAB has the same name as
the file from which the data was imported.) When the wizard ends (click finish),
the data is imported to MATLAB. 

As an example, the Import Wizard is used to import numerical ASCII data
saved in a .txt file. The data saved with the file name TestData2 is shown in Figure
4-8.

>> DATA = xlsread('TestData1')

DATA =

 11.0000   2.0000  34.0000  14.0000  -6.0000        0   8.0000
 15.0000   6.0000 -20.0000   8.0000   0.5600  33.0000   5.0000
  0.9000  10.0000   3.0000  12.0000 -25.0000  -0.1000   4.0000
 55.0000   9.0000   1.0000  -0.5550  17.0000   6.0000 -30.0000

Figure 4-8: Numerical ASCII data.
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The display of the Import Wizard during the import process for the TestData2 file
is shown in Figures 4-9 and 4-10. Figure 4-10 shows that the name of the variable
in MATLAB is TestData2 and its size is . 

In the Command Window of MATLAB, the imported data can be displayed by
typing the name of the variable.

Figure 4-9: Import Wizard, first display.

Figure 4-10: Import Wizard, second display.

>> TestData2

TestData2 =
  5.1200   33.0000   22.0000   13.0000    4.0000
  4.0000   92.0000         0    1.0000    7.5000
 12.0000    5.0000    6.5300   15.0000    3.0000

3 5×
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4.6 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 4-1: Height and surface area of a silo

A cylindrical silo with radius r has a spher-
ical cap roof with radius R. The height of
the cylindrical portion is H. Write a pro-
gram in a script file that determines the
height H for given values of r, R, and the
volume V. In addition, the program calcu-
lates the surface area of the silo.
Use the program to calculate the height and
surface area of a silo with r = 30 ft, R = 45
ft, and a volume of 120,000 ft3. Assign val-
ues for r, R, and V in the Command Win-
dow. 
Solution
The total volume of the silo is obtained by
adding the volume of the cylindrical part and the volume of the spherical cap. The
volume of the cylinder is given by

              

and the volume of the spherical cap is given
by:

where ,
and θ is calculated from .
Using the equations above, the height, H, of
the cylindrical part can be expressed by

The surface area of the silo is obtained by
adding the surface areas of the cylindrical part and the spherical cap.

A program in a script file that solves the problem is presented below: 

theta=asin(r/R);

h=R*(1-cos(theta));

Vcap=pi*h^2*(3*R-h)/3;

Vcyl πr2H=

Vcap
1
3
---πh2 3R h–( )=

h R R θcos– R 1 θcos–( )= =

θsin r
R
---=

H
V Vcap–

πr2
--------------------=

S Scyl Scap+ 2πrH 2πRh+= =

Calculating θ. 
Calculating h. 

Calculating the volume of the cap. 
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The Command Window where the script file, named silo, was executed is:

Sample Problem 4-2: Centroid of a composite area

Write a program in a script file that calcu-
lates the coordinates of the centroid of a
composite area. (A composite area can
easily be divided into sections whose
centroids are known.) The user needs to
divide the area into sections and know the
coordinates of the centroid (two num-
bers) and the area of each section (one
number). When the script file is executed,
it asks the user to enter the three numbers
as a row in a matrix. The user enters as
many rows as there are sections. A sec-
tion that represents a hole is taken to have
a negative area. For output, the program
displays the coordinates of the centroid of the composite area. Use the program to
calculate the centroid of the area shown in the figure.
Solution
The area is divided into six sections as shown in the following figure. The total
area is calculated by adding the three sections on the left and subtracting the three
sections on the right. The location and coordinates of the centroid of each section
are marked in the figure, as well as the area of each section.
The coordinates  and  of the centroid of the total area are given by

 and , where , , and A are the coordinates of the centroid

and area of each section, respectively.
A script file with a program for calculating the coordinates of the centroid

of a composite area is provided below.

H=(V-Vcap)/(pi*r^2);

S=2*pi*(r*H + R*h);

fprintf('The height H is: %f ft.',H)

fprintf('\nThe surface area of the silo is: %f square ft.',S)

>> r=30; R=45; V=200000;

>> silo

The height H is: 64.727400 ft.

The surface area of the silo is: 15440.777753 square ft.

Calculating H. 
Calculating the surface area S. 

Assigning values to r, R, and V. 
Running the script file named silo. 

200

3040

150
200

50

50

100

50

20

R 60

Dimensions in mm

X Y

X ΣAx
ΣA
----------= Y ΣAy

ΣA
----------= x y
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The script file was saved with the name Centroid. The following shows the Com-
mand Window where the script file was executed.

% The program calculates the coordinates of the centroid

% of a composite area.

clear C xs ys As

C=input('Enter a matrix in which each row has three ele-
ments.\nIn each row enter the x and y coordinates of the 
centroid and the area of a section.\n');

xs=C(:,1)';

ys=C(:,2)';

As=C(:,3)';

A=sum(As);

x=sum(As.*xs)/A;

y=sum(As.*ys)/A;

fprintf('The coordinates of the centroid are: ( %f, %f )\n',x,y)

>> Centroid

Enter a matrix in which each row has three elements.

In each row enter the x and y coordinates of the centroid
and the area of a section.

Units: coordinates mm, area mm2

(100, 100)
A = 200*200

(60 +        , 220)140
3

(60 -      ,                )

A = π*602/4

80
π 200 + 80

π (        , 100 )

A = π502/2

200
3π (150, 95)

A = 40*150

x x

y y
(105, 145)
A = 50*50A = 140*60/2

Creating a row vector for the x coordinate of 
each section (first column of C). 

Creating a row vector for the y coordinate of 
each section (second column of C). 

Creating a row vector for the area of each 
section (third column of C). 

Calculating the total area. 

Calculating the coordinates of the 
centroid of the composite area. 
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Sample Problem 4-3: Voltage divider 

When several resistors are connected in an electrical circuit in series, the voltage
across each of them is given by the voltage divider rule:

where vn and Rn are the voltage across resistor n and its resistance, respectively,
 is the equivalent resistance, and vs is the source voltage. The power

dissipated in each resistor is given by:

The figure below shows a circuit with seven resistors connected in series.

Write a program in a script file that calculates the voltage across each resistor, and
the power dissipated in each resistor, in a circuit that has resistors connected in
series. When the script file is executed it requests the user to first enter the source
voltage and then to enter the resistances of the resistors in a vector. The program
displays a table with the resistance listed in the first column, the voltage across the
resistor in the second column, and the power dissipated in the resistor in the third
column. Following the table, the program displays the current in the circuit and
the total power. 

Execute the file and enter the following data for vs and the R’s.
V,  Ω,  Ω,  Ω,  Ω,  Ω,
Ω,      Ω.

[100 100 200*200
60-80/pi 200+80/pi pi*60^2/4
60+140/3 220 140*60/2
200/(3*pi) 100 -pi*50^2/2
105 145 -50*50
150 95 -40*150]

The coordinates of the centroid are: ( 85.387547 , 131.211809 )

Entering the data for matrix C. 
Each row has three elements: the 
x, y, and A of a section. 

vn
Rn

Req
--------vs=

Req ΣRn=

Pn
Rn

Req
2

--------vs
2=

+
_

R1 R2 R3

vs R4

R5R6R7

vs 24= R1 20= R2 14= R3 12= R4 18= R5 8=
R6 15= R7 10=
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Solution
A script file that solves the problem is shown below.

The Command Window where the script file was executed is:

% The program calculates the voltage across each resistor

% in a circuit that has resistors connected in series.

vs=input('Please enter the source voltage ');

Rn=input('Enter the values of the resistors as elements in a 
row vector\n');

Req=sum(Rn);

vn=Rn*vs/Req;

Pn=Rn*vs^2/Req^2;

i = vs/Req;

Ptotal = vs*i;

Table = [Rn', vn', Pn'];

disp(' ')

disp(' Resistance Voltage   Power')

disp('    (Ohms)    (Volts)   (Watts)')

disp(' ')

disp(Table)

disp(' ')

fprintf('The current in the circuit is %f Amps.',i)

fprintf('\nThe total power dissipated in the circuit is %f
Watts.',Ptotal)

>> VoltageDivider

Please enter the source voltage 24

Enter the value of the resistors as elements in a row vector

[20  14  12  18  8  15  10]

  Resistance  Voltage    Power

     (Ohms)    (Volts)   (Watts)

   20.0000      4.9485    1.2244

   14.0000      3.4639    0.8571

   12.0000      2.9691    0.7346

   18.0000      4.4536    1.1019

    8.0000      1.9794    0.4897

Calculate the equivalent resistance.
Apply the voltage divider rule.

Calculate the power in each resistor.
Calculate the current in the circuit.

Calculate the total power in the circuit.

Create a variable table with the 
vectors Rn, vn, and Pn as columns.

Display headings for 
the columns.

Display an empty line.
Display the variable Table.

Name of the script file.
Voltage entered by the user.

Resistor values entered as a vector.
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4.7 PROBLEMS

Solve the following problems by first writing a program in a script file and then
executing the program.

1. The wind chill temperature, , is the air temperature felt on exposed skin
due to wind. In U.S. customary units it is calculated by

where T is the temperature in degrees F and v is the wind speed in mi/h. Write
a MATLAB program in a script file that calculates . For input the program
asks the user to enter values for T and v. For output the program displays the
message: “The wind chill temperature is: XX,” where XX is the value of the
wind chill temperature rounded to the nearest integer. Execute the program
entering  and  mi/h. 

2. The monthly payment M of a loan amount P for y years and with interest rate r
can be calculated by the formula:

Calculate the monthly payment and the total payment for a $100,000 loan for
10, 11, 12, ... , 29, 30 years with an interest rate of 4.85%. Display the results
in a three-column table where the first column is the number of years, the sec-
ond is the monthly payment, and the third is the total payment.

3. A torus-shaped water tube is designed to have a
volume of 8,000 in.3. The volume of the tube, V,
and its surface area, S, are given by:

 and 

If , determine S and a and b for K = 0.2, 0.3,
0.4, 0.6, and 0.7. Display the results in a table.

   15.0000      3.7113    0.9183

   10.0000      2.4742    0.6122

The current in the circuit is 0.247423 Amps.

The total power dissipated in the circuit is 5.938144 Watts.

Twc

Twc 35.74 0.6215T 35.75v0.16– 0.4275T v0.16+ +=

Twc

T 30°F= v 42=

M P r 12⁄( )
1 1 r 12⁄+( ) 12y––
--------------------------------------------=

ab
V 1

4
---π2 a b+( ) b a–( )2= S π2 b2 a2–( )=

a Kb=



124 Chapter 4: Using Script Files and Managing Data

4. An ice cream container shaped as a frustum of a cone
with  is designed to have a volume of 1,000
cm3. Determine , , and the surface area, S, of the
paper for containers with heights h of 8, 10, 12, 14,
and 16 cm. Display the results in a table.

The volume of the container, V, and the surface area
of the paper are given by:

 

5. Write a MATLAB program in a script file that calculate the average, standard
deviation, and median of a list of grades as well as the number of grades on
the list. The program asks the user (input command) to enter the grades as
elements of a vector. The program then calculates the required quantities
using MATLAB’s built-in functions length, mean, std, and median. 
The results are displayed in the Command Window in the following format:
“There are XX grades.” where XX is the numerical value.
“The average grade is XX.” where XX is the numerical value.
“The standard deviation is XX.” where XX is the numerical value.
“The median deviation is XX.” where XX is the numerical value.
Execute the program and enter the following grades: 81, 65, 61, 78, 94, 80,
65, 76, 77, 95, 82, 49, and 75.

6. The growth of some bacteria populations can be described by

where N is the number of individuals at time t,  is the number at time ,
and k is a constant. Assuming the number of bacteria doubles every hour,
determine the number of bacteria every hour for 24 hours starting from an ini-
tial single bacterium.

7. A rocket flying straight up measures the angle  with
the horizon at different heights h. Write a MATLAB
program in a script file that calculates the radius of the
earth R (assuming the earth is a perfect sphere) at each
data point and then determines the average of all the val-
ues.

h (km) 4 8 12 16 20 24 28 32 36 40

 θ (deg) 2.0 2.9 3.5 4.1 4.5 5.0 5.4 5.7 6.1 6.4

h

R2

R1

R2 1.2R1=

R1 R2

V 1
3
---πh R1

2 R2
2 R1R2+ +( )=

S π R1 R2+( ) R2 R1–( )2 h2+ π R1
2 R2

2+( )+=

N N0ekt=

N0 t 0=

R

h

R

θ
θ
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8. A railroad bumper is designed to slow down a
rapidly moving railroad car. After a 20,000 kg
railroad car traveling at 20 m/s engages the
bumper, its displacement x (in meters) and
velocity v (in m/s) as a function of time t (in
seconds) is given by: 

  and  
Determine x and v for every two hundredth of a second for the first half sec-
ond after impact. Display the results in a three-column table in which the first
column is time (s), the second is displacement (m), and the third is velocity
(m/s).

9. Decay of radioactive materials can be modeled by the equation   ,
where A is the amount at time t,  is the amount at t = 0, and k is the decay
constant ( ). Iodine-132 is a radioisotope that is used in thyroid function
tests. Its half-life time is 13.3 hours. Calculate the relative amount of Iodine-
132 ( ) in a patient’s body 48 hours after receiving a dose. After deter-
mining the value of k, define a vector  and calculate the cor-
responding values of .

10. The value, B, of a savings account of an amount A that is deposited for n years
with a yearly interest rate of r is given by:

Write a MATLAB program in a script file that calculates the balance B after
10 years for an initial deposit of $10,000 for yearly interest rates ranging from
2% to 6% with increments of 0.5%. Display the results in a table. The table
should have two columns where the first column displays the interest rate and
the second displays the corresponding value of B. 

11. A rectangular printed page with sides of lengths a
and b is designed to have a printed area of 60 in.2
and margins of 1.75 in. at the top and bottom and
1.2 in. at both sides. Write a MATLAB program
that determine the dimensions of a and b such that
the overall area of the page will be as small as pos-
sible. In the program define a vector a with values
ranging from 5 to 20 with increments of 0.05. Use
this vector for calculating the corresponding val-
ues of b and the overall area of the page. Then use
MATLAB’s built-in function min to find the dimensions of the smallest
page.

x

m

v

x t( ) 4.219 e 1.58 t– e 6.32t––( )= v t( ) 26.67e 6.32t– 6.67e 1.58 t––=

A A0ekt=

A0

k 0≤

A A0⁄
t 0 4 8 … 48, , , ,=

A A0⁄

B A 1 r
100
---------+⎝ ⎠

⎛ ⎞ n
=

A = 60 in2

1.75 in.

1.2 in.

b

a
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12. A round billboard with radius in. is
designed to have a rectangular picture placed
inside a rectangle with sides a and b. The mar-
gins between the rectangle and the picture are
10 in. at the top and bottom and 4 in. at each
side. Write a MATLAB program that deter-
mines the dimensions a and b such that the
overall area of the picture will be as large as
possible. In the program define a vector a with
values ranging from 5 to 100 with increments
of 0.25. Use this vector for calculating the cor-
responding values of b and the overall area of the picture. Then use MAT-
LAB’s built-in function max to find the dimensions of the largest rectangle.

13. The balance of a loan, B, after n monthly payments is given by

where A is the loan amount, P is the amount of a monthly payment, and r is the
yearly interest rate entered in % (e.g., 7.5% entered as 7.5). Consider a 5-year,
$20,000 car loan with 6.5% yearly interest that has a monthly payment of
$391.32. Calculate the balance of the loan after every 6 months (i.e., at n = 6,
12, 18, 24, ... , 54, 60). Each time calculate the percent of the loan that is
already paid. Display the results in a three-column table, where the first col-
umn displays the month, and the second and third columns display the corre-
sponding value of B and percentage of the loan that is already paid,
respectively. 

14. A large TV screen of height ft is placed
on the side wall of a tall building. The height from
the street to the bottom of the screen is ft.
The best view of the screen is when θ is maxi-
mum. Write a MATLAB program that determines
the distance x at which θ is at maximum. Define a
vector x with elements ranging from 30 to 300
with spacing of 0.5. Use this vector to calculate the corresponding values of θ.
Then use MATLAB’s built-in function min to find the value of x that corre-
sponds to the largest value of θ.  

Picture

10 in

4 in

b

a

R

R 55=

B A 1 r
1200
------------–⎝ ⎠

⎛ ⎞ n P
r 1200⁄
------------------ 1 r

1200
------------+⎝ ⎠

⎛ ⎞ n
1––=

h

x

H
θ

H 50=

h 130=



4.7 Problems 127

15. A student has a summer job as a
lifeguard at the beach. After spotting a
swimmer in trouble, he tries to deduce
the path by which he can reach the
swimmer in the shortest time. The
path of shortest distance (path A) is
obviously not the best since it
maximizes the time spent swimming
(he can run faster than he can swim).
Path B minimizes the time spent swimming but is probably not the best since
it is the longest (reasonable) path. Clearly the optimal path is somewhere in
between paths A and B. 

Consider an intermediate path C and determine the time required to reach
the swimmer in terms of the running speed m/s the swimming speed

m/s; the distances m, m, and m; and the
lateral distance y at which the lifeguard enters the water. Create a vector y that
ranges between path A and path B ( m) and compute a
time t for each y. Use MATLAB built-in function min to find the minimum
time  and the entry point y for which it occurs. Determine the angles that
correspond to the calculated value of y and investigate whether your result sat-
isfies Snell’s law of refraction:

 
16. The airplane shown is flying at a constant speed of

m/s in a circular path of radius m
and is being tracked by a radar station positioned a
distance m below the bottom of the plane
path (point A). The airplane is at point A at ,
and the angle  as a function of time is given (in
radians) by . Write a MATLAB program

that calculates  and r as functions of time. The
program should first determine the time at which . Then construct a
vector t having 15 elements over the interval , and calculate  and r
at each time. The program should print the values of , h, and v, followed by a

 table where the first column is t, the second is the angle  in degrees,
and the third is the corresponding value of r.

φ
α

d w
ds

L

Lifeguard

swimmer

shoreline

A
C

B

y

vrun 3=

vswim 1= L 48= ds 30= dw 42=

y 20 21 22 … 48, , , ,=

tmin

φsin
αsin

-----------
vrun

vswim
------------=

α

θ

ρ

r

v

h

A

v 50= ρ 2000=

h 500=
t 0=

α

α v
ρ
---t=

θ
α 90°=

0 t t90°≤ ≤ θ
ρ

15 3× θ
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17. Early explorers often estimated altitude by measuring the temperature of boil-
ing water. Use the following two equations to make a table that modern-day
hikers could use for the same purpose.

,      
where p is atmospheric pressure in inches of mercury,  is boiling tempera-
ture in F, and h is altitude in feet. The table should have two columns, the
first altitude and the second boiling temperature. The altitude should range
between –500 ft and 10,000 ft at increments of 500 ft.

18. The variation of vapor pressure p (in units of mm Hg) of benzene with tem-
perature in the range of C can be modeled with the equation
(Handbook of Chemistry and Physics, CRC Press) 

where  and  are material constants and T is absolute
temperature (K). Write a program in a script file that calculates the pressure
for various temperatures. The program should create a vector of temperatures
from C to oC with increments of 2 degrees, and display a two-
column table p and T, where the first column temperatures in C, and the sec-
ond column the corresponding pressures in mm Hg.

19. For many gases the temperature dependence of the heat capacity  of can be
described in terms of a cubic equation:

The following table gives the coefficients of the cubic equation for four gases.
 is in joules/(g mol)( C) and T is in C.

Calculate the heat capacity for each gas at temperatures ranging between 200
and 400 C at 20 C increments. To present the results, create an 
matrix where the first column is the temperature, and the second through fifth
columns are the heat capacities of SO2,  SO3,  O2, and N2, respectively.

Gas a b c d

SO2 38.91

SO3 48.50

O2 29.10

N2 29.00

p 29.921 1 6.8753 10 6– h×–( )= Tb 49.161 pln 44.932+=

Tb

°

0 T 42°≤ ≤

10 plog b 0.05223a
T

----------------------–=

a 34172= b 7.9622=

T 0°= T 42°=

°

Cp

Cp a bT cT 2 dT 3+ + +=

Cp ° °

3.904 10 2–× 3.105– 10 5–× 8.606 10 9–×

9.188 10 2–× 8.540– 10 5–× 32.40 10 9–×

1.158 10 2–× 0.6076– 10 5–× 1.311 10 9–×

0.2199 10 2–× 0.5723– 10 5–× 2.871– 10 9–×

° ° 11 5×
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20. The heat capacity of an ideal mixture of four gases  can be expressed in
terms of the heat capacity of the components by the mixture equation

 
where , and  are the fractions of the components, and

, and  are the corresponding heat capacities. A mixture of
unknown quantities of the four gases SO2,  SO3,  O2, and N2 is given. To deter-
mine the fractions of the components, the following values of the heat capac-
ity of the mixture were measured at three temperatures:

Use the equation and data in the Problem 19 to determine the heat capacity of
each of the four components at the three temperatures. Then use the mixture
equation to write three equations for the mixture at the three temperatures.
The fourth equation is . Determine , and  by
solving the linear system of equations. 

21. When several resistors are connected in an electrical circuit in parallel, the
current through each of them is given by  where in and Rn are the cur-

rent through resistor n and its resistance, respectively, and vs is the source
voltage. The equivalent resistance, Req, can be determined from the equation

The source current is given by , and the power, Pn, dissipated in
each resistor is given by .

Write a program in a script file that calculates the current through each
resistor and the power dissipated in a circuit that has resistors connected in
parallel. When the script file runs, it asks the user first to enter the source volt-
age and then to enter the resistors’ resistance in a vector. The program dis-
plays a table with the resistance shown in the first column, the current through
the resistor in the second column, and the power dissipated in the resistor in
the third column. Following the table, the program displays the source current
and the total power. Use the script file to solve the following circuit.

Temperature C 25 150 300

 joules/(g mol)( C) 39.82 44.72 49.10

Cpmixture

Cpmixture
x1Cp1 x2Cp2 x3Cp3 x4Cp4+ + +=

x1 x2 x3, , x4
Cp1 Cp2 Cp3, , Cp4

°

Cpmixture
°

x1 x2 x3 x4+ + + 1= x1 x2 x3, , x4

in
vs
Rn
-----=

1
Req
-------- 1

R1
----- 1

R2
----- … 1

Rn
-----+ + +=

is vs Req⁄=

Pn vsin=

vs = 48 V

+
_ 34

 Ω

26
 Ω
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 Ω

60
 Ω

10
 Ω

20
 Ω



130 Chapter 4: Using Script Files and Managing Data

22. A truss is a structure made of members
joined at their ends. For the truss shown
in the figure, the forces in the nine mem-
bers are determined by solving the fol-
lowing system of nine equations.

,   
,  ,    

,  
Write the equations in matrix form and use MATLAB to determine the forces
in the members. A positive force means tensile force and a negative force
means compressive force. Display the results in a table.

23. A truss is a structure made of members
joined at their ends. For the truss shown
in the figure, the forces in the 11 mem-
bers are determined by solving the fol-
lowing system of 11 equations.

, 

, , 

,  ,      

,  ,  

Write the equations in matrix form and use MATLAB to determine the forces
in the members. A positive force means tensile force and a negative force
means compressive force. Display the results in a table.

24. The graph of the function  passes through the
points (–4, –7.6), (–2, –17.2), (0.2, 9.2), (1, –1.6), and (4, –36.4). Determine the
constants a, b, c, d, and e. (Write a system of five equations with five
unknowns and use MATLAB to solve the equations.)

2

3

4

5

6

7

8

9
1800 lb

4800 lb

600 lb

148 ft

48 ft 42 ft 42 ft
45°( )F1cos– F4+ 0=

F– 3 45°( )sin F1– 0=

F2– 45°( )sin F5 F6+ + 0=

48.81°( )Fcos– 5 F4– F8+ 0= 48.81°( )Fsin– 5 F7– 600=

48.81°( )Fsin– 9 1800= F– 8 48.81°( )cos F9– 0=

F7 48.81°( )sin F9+ 4800= 48.81°( )cos F9 F6– 0=
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25. The surface of many airfoils can be
described with an equation of the form

  

       
where t is the maximum thickness as a fraction of the chord length c (e.g.,

). Given that m and m, the following values for y have
been measured for a particular airfoil:

Determine the constants , and . (Write a system of five equa-
tions and five unknowns and use MATLAB to solve the equations.)

26. During a golf match, a certain number of points are awarded for each eagle
and a different number for each birdie. No points are awarded for par, and a
certain number of points are deducted for each bogey and a different number
deducted for each double bogey (or worse). The newspaper report of an
important match neglected to mention what these point values were, but did
provide the following table of the results: 

From the information in the table write four equations in terms of four
unknowns. Solve the equations for the unknown points awarded for eagles
and birdies and points deducted for bogeys and double bogeys.

27. The dissolution of copper sulfide in aqueous nitric acid is described by the
following chemical equation:

where the coefficients a, b, c, d, e, f, and g are the numbers of the various mol-
ecule participating in the reaction and are unknown. The unknown coeffi-
cients are determined by balancing each atom on left and right and then
balancing the ionic charge. The resulting equations are:

,   ,   ,   , ,   

x (m) 0.15 0.35 0.5 0.7 0.85

 y (m) 0.08909 0.09914 0.08823 0.06107 0.03421

Golfer Eagles Birdies Pars Bogeys Doubles Points

A 1 2 10 1 1 5

B 2 3 11 0 1 12

C 1 4 10 1 10 11

D 1 3 10 12 0 8

x

 y

c

Thickness
tmax

y tc
0.2
------- a0 x c⁄ a1 x c⁄( )+ +[+−=

a+ 2 x c⁄( )2 a3 x c⁄( )3 a4 x c⁄( )4 ]+ +

tmax ct= c 1= t 0.2=

a0 a1 a2 a3, , , a4

aCuS bNO3
– cH ++ + dCu2 + eSO4

2 – f NO gH2O+ + +→

a d= a e= b f= 3b 4e f g+ += c 2g= b– c+ 2d 2e–=
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There are seven unknowns and only six equations. A solution can still be
obtained, however, by taking advantage of the fact that all the coefficients
must be positive integers. Add a seventh equation by guessing  and
solve the system of equations. The solution is valid if all the coefficients are
positive integers. If this is not the case, take  and repeat the solution.
Continue the process until all the coefficients in the solution are positive inte-
gers. 

28. The wind chill temperature, , is the air temperature felt on exposed skin
due to wind. In U.S. customary units it is calculated by:

where T is the temperature in degrees F, and v is the wind speed in mi/h. Write
a MATLAB program in a script file that displays the following chart of wind
chill temperature for given air temperature and wind speed in the Command
Window:

                        Temperature (F)
          40    30    20    10     0   -10   -20   -30   -40
  Speed
  (mi/h)
    10    34    21     9    -4   -16   -28   -41   -53   -66
    20    30    17     4    -9   -22   -35   -48   -61   -74
    30    28    15     1   -12   -26   -39   -53   -67   -80
    40    27    13    -1   -15   -29   -43   -57   -71   -84
    50    26    12    -3   -17   -31   -45   -60   -74   -88
    60    25    10    -4   -19   -33   -48   -62   -76   -91

29. The stress intensity factor due to the crack shown depends
upon a geometrical parameter  given by:

  

where . Calculate  for  between 0.05 and 0.95

at 0.05 increments, and display the results in a two-column
table with the first column showing  and the second .

a 1=

a 2=

Twc

Twc 35.74 0.6215T 35.75v0.16– 0.4275T v0.16+ +=

M

M

b
a

CI

CI
2
πα
------- πα

2
-------tan

0.923 0.199 1 πα
2

-------sin–⎝ ⎠
⎛ ⎞+

πα
2

-------cos
---------------------------------------------------------------=

α a
b
---= CI α

α CI
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Chapter 5                                   
Two-Dimensional 
Plots

Plots are a very useful tool for presenting information. This is true in any field, but
especially in science and engineering, where MATLAB is mostly used. MATLAB
has many commands that can be used for creating different types of plots. These
include standard plots with linear axes, plots with logarithmic and semi-logarith-
mic axes, bar and stairs plots, polar plots, three-dimensional contour surface and
mesh plots, and many more. The plots can be formatted to have a desired appear-
ance. The line type (solid, dashed, etc.), color, and thickness can be prescribed,
line markers and grid lines can be added, as can titles and text comments. Several
graphs can be created in the same plot, and several plots can be placed on the
same page. When a plot contains several graphs and/or data points, a legend can
be added to the plot as well.

This chapter describes how MATLAB can be used to create and format
many types of two-dimensional plots. Three-dimensional plots are addressed sep-
arately in Chapter 9. An example of a simple two-dimensional plot that was cre-
ated with MATLAB is shown in Figure 5-1. The figure contains two curves that
show the variation of light intensity with distance. One curve is constructed from
data points measured in an experiment, and the other curve shows the variation of
light as predicted by a theoretical model. The axes in the figure are both linear,
and different types of lines (one solid and one dashed) are used for the curves. The
theoretical curve is shown with a solid line, while the experimental points are con-
nected with a dashed line. Each data point is marked with a circular marker. The
dashed line that connects the experimental points is actually red when the plot is
displayed in the Figure Window. As shown, the plot in Figure 5-1 is formatted to
have a title, axis titles, a legend, markers, and a boxed text label.
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5.1 THE plot COMMAND

The plot command is used to create two-dimensional plots. The simplest form
of the command is:

The arguments x and y are each a vector (one-dimensional array). The two vec-
tors must have the same number of elements. When the plot command is exe-
cuted, a figure is created in the Figure Window. If not already open, the Figure
Window opens automatically when the command is executed. The figure has a
single curve with the x values on the abscissa (horizontal axis) and the y values
on the ordinate (vertical axis). The curve is constructed of straight-line segments
that connect the points whose coordinates are defined by the elements of the vec-
tors x and y. Each of the vectors, of course, can have any name. The vector that is
typed first in the plot command is used for the horizontal axis, and the vector
that is typed second is used for the vertical axis.

The figure that is created has axes with a linear scale and default range. For
example, if a vector x has the elements 1, 2, 3, 5, 7, 7.5, 8, 10, and a vector y has
the elements 2, 6.5, 7, 7, 5.5, 4, 6, 8, a simple plot of y versus x can be created by
typing the following in the Command Window:

Figure 5-1: Example of a formatted two-dimensional plot.
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Once the plot command is executed, the Figure Window opens and the plot is
displayed, as shown in Figure 5-2.

The plot appears on the screen in blue, which is the default line color.
The plot command has additional, optional arguments that can be used to

specify the color and style of the line and the color and type of markers, if any are
desired. With these options the command has the form:

Line Specifiers:

Line specifiers are optional and can be used to define the style and color of the
line and the type of markers (if markers are desired). The line style specifiers are:

>> x=[1  2  3  5  7  7.5  8  10];

>> y=[2  6.5  7  7  5.5  4  6  8];

>> plot(x,y)

Figure 5-2: The Figure Window with a simple plot.

Line Style Specifier Line Style Specifier

solid (default) - dotted :
dashed -- dash-dot -.

plot(x,y,‘line specifiers’,‘PropertyName’,PropertyValue)

(Optional) Specifiers that
define the type and color
of the line and markers.

Vector Vector
(Optional) Properties with
values that can be used to
specify the line width, and a
marker’s size and edge, and
fill colors.
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The line color specifiers are:

The marker type specifiers are:

Notes about using the specifiers:

• The specifiers are typed inside the plot command as strings.

• Within the string the specifiers can be typed in any order.

• The specifiers are optional. This means that none, one, two, or all three types
can be included in a command.

Some examples:
plot(x,y) A blue solid line connects the points with no markers

(default).
plot(x,y,‘r’) A red solid line connects the points.
plot(x,y,‘--y’) A yellow dashed line connects the points.
plot(x,y,‘*’) The points are marked with * (no line between the

points).
plot(x,y,‘g:d’) A green dotted line connects the points that are marked

with diamond markers.
Property Name and Property Value:
Properties are optional and can be used to specify the thickness of the line, the size
of the marker, and the colors of the marker’s edge line and fill. The Property
Name is typed as a string, followed by a comma and a value for the property, all
inside the plot command.

Line Color Specifier Line Color Specifier

red r magenta m

green g yellow y

blue b black k

cyan c white w

Marker Type Specifier Marker Type Specifier

plus sign + square s

circle o diamond d

asterisk * five-pointed star p

point . six-pointed star h

cross x triangle (pointed left) <

triangle (pointed up) ^ triangle (pointed right) >

triangle (pointed down) v
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Four properties and their possible values are:

For example, the command
 

plot(x,y,‘-mo’,‘LineWidth’,2,‘markersize’,12,  
      ‘MarkerEdgeColor’,‘g’,‘markerfacecolor’,‘y’)

creates a plot that connects the points with a magenta solid line and circles as
markers at the points. The line width is 2 points and the size of the circle markers
is 12 points. The markers have a green edge line and yellow filling.
A note about line specifiers and properties:
The three line specifiers, which indicate the style and color of the line, and the
type of the marker can also be assigned with a PropertyName argument fol-
lowed by a PropertyValue argument. The Property Names for the line speci-
fiers are:

As with any command, the plot command can be typed in the Command
Window, or it can be included in a script file. It also can be used in a function file
(explained in Chapter 7). It should also be remembered that before the plot com-
mand can be executed the vectors x and y must have assigned elements. This can

Property name Description Possible property 
values

LineWidth
(or linewidth)

Specifies the width of the
line.

A number in units of
points (default 0.5).

MarkerSize
(or markersize)

Specifies the size of the
marker.

A number in units of
points.

MarkerEdgeColor
(or 
markeredgecolor)

Specifies the color of the
marker, or the color of the
edge line for filled mark-
ers.

Color specifiers from
the table above, typed
as a string.

MarkerFaceColor
(or 
markerfacecolor)

Specifies the color of the
filling for filled markers.

Color specifiers from
the table above, typed
as a string.

Specifier Property Name Possible property values

Line style linestyle 
(or LineStyle)

Line style specifier from the 
table above, typed as a string.

Line color color (or Color) Color specifier from the table 
above, typed as a string. 

Marker marker (or Marker) Marker specifier from the 
table above, typed as a string.
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be done, as was explained in Chapter 2, by entering values directly, by using com-
mands, or as the result of mathematical operations. The next two subsections
show examples of creating simple plots.

5.1.1 Plot of Given Data
In this case given data is used to create vectors that are then used in the plot
command. The following table contains sales data of a company from 1988 to
1994.

To plot this data, the list of years is assigned to one vector (named yr), and
the corresponding sales data is assigned to a second vector (named sle). The
Command Window where the vectors are created and the plot command is used
is shown below:

Once the plot command is executed, the Figure Window with the plot, as shown
in Figure 5-3, opens. The plot appears on the screen in red.

Year 1988 1989 1990 1991 1992 1993 1994

Sales
 (millions)

8 12 20 22 18 24 27

>> yr=[1988:1:1994];

>> sle=[8  12  20  22  18  24  27];

>> plot(yr,sle,'--r*','linewidth',2,'markersize',12)

>> 

Figure 5-3: The Figure Window with a plot of the sales data.

Line Specifiers:
dashed red line and
asterisk marker. 

Property Name and Property Value:
the line width is 2 points and the marker
size is 12 points. 
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5.1.2 Plot of a Function
In many situations there is a need to plot a given function. This can be done in
MATLAB by using the plot or the fplot command. The use of the plot com-
mand is explained below. The fplot command is explained in detail in the next
section.

In order to plot a function  with the plot command, the user needs
to first create a vector of values of x for the domain over which the function will
be plotted. Then a vector y is created with the corresponding values of  by
using element-by-element calculations (see Chapter 3). Once the two vectors are
defined, they can be used in the plot command.

As an example, the plot command is used to plot the function
 for . A program that plots this function is shown in

the following script file.

Once the script file is executed, the plot is created in the Figure Window, as
shown in Figure 5-4. Since the plot is made up of segments of straight lines that
connect the points, to obtain an accurate plot of a function, the spacing between
the elements of the vector x must be appropriate. Smaller spacing is needed for a

%  A script file that creates a plot of

%  the function: 3.5.^(-0.5*x).*cos(6x)

x=[-2:0.01:4];

y=3.5.^(-0.5*x).*cos(6*x);

plot(x,y)

Figure 5-4:  The Figure Window with a plot of the function .

y f x( )=

f x( )

y 3.5 0.5x– 6x( )cos= 2– x 4≤ ≤

Create vector x with the domain of the function. 

Create vector y with the function 
value at each x. 

Plot y as a function of x. 

y 3.5 0.5x– 6x( )cos=
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function that changes rapidly. In the last example a small spacing of 0.01 pro-
duced the plot that is shown in Figure 5-4. However, if the same function in the
same domain is plotted with much larger spacing—for example, 0.3—the plot that
is obtained, shown in Figure 5-5, gives a distorted picture of the function. Note

also that in Figure 5-4 the plot is shown with the Figure Window, while in Figure
5-5 only the plot is shown. The plot can be copied from the Figure Window (in the
Edit menu, select Copy Figure) and then pasted into other applications.

5.2 THE fplot COMMAND

The fplot command plots a function with the form  between specified
limits. The command has the form:

‘function’:   The function can be typed directly as a string inside the com-
mand. For example, if the function that is being plotted is , it
is typed as: ‘8*x^2+5*cos(x)’. The functions can include MATLAB built-in
functions and functions that are created by the user (covered in Chapter 6).

• The function to be plotted can be typed as a function of any letter. For example,
the function in the previous paragraph can be typed as ‘8*z^2+5*cos(z)’
or ‘8*t^2+5*cos(t)’.

Figure 5-5: A plot of the function  with large spacing.

  x=[-2:0.3:4];
 y=3.5.^(-0.5*x).*cos(6*x);
 plot(x,y)

y 3.5 0.5x– 6x( )cos=

y f x( )=

fplot(‘function’,limits,‘line specifiers’)

Specifiers that define the
type and color of the line
and markers (optional).

The function to
be plotted.

The domain of x and,
optionally, the limits
of the y axis.

f x( ) 8x2 5 x( )cos+=
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• The function cannot include previously defined variables. For example, in the
function above it is not possible to assign 8 to a variable, and then use the vari-
able when the function is typed in the fplot command.

limits:   The limits argument is a vector with two elements that specify the
domain of x [xmin,xmax], or a vector with four elements that specifies the
domain of x and the limits of the y-axis [xmin,xmax,ymin,ymax].
line specifiers:   The line specifiers are the same as in the plot com-
mand. For example, a plot of the function  for  can
be created with the fplot command by typing:

in the Command Window. The figure that is obtained in the Figure Window is
shown in Figure 5-6.

5.3 PLOTTING MULTIPLE GRAPHS IN THE SAME PLOT

In many situations there is a need to make several graphs in the same plot. This is
shown, for example, in Figure 5-1 where two graphs are plotted in the same fig-
ure. There are three methods to plot multiple graphs in one figure. One is by using
the plot command, the second is by using the hold on and hold off com-
mands, and the third is by using the line command.

5.3.1 Using the plot Command
Two or more graphs can be created in the same plot by typing pairs of vectors
inside the plot command. The command

plot(x,y,u,v,t,h)

creates three graphs—y vs. x, v vs. u, and h vs. t—all in the same plot. The vec-
tors of each pair must be of the same length. MATLAB automatically plots the
graphs in different colors so that they can be identified. It is also possible to add
line specifiers following each pair. For example the command

plot(x,y,‘-b’,u,v,‘--r’,t,h,‘g:’)

>> fplot('x^2+4*sin(2*x)-1',[-3 3])

Figure 5-6: A plot of the function .

y x2 4 2x( )sin 1–+= 3– x 3≤ ≤

-3 -2 -1 0 1 2 3
-5

0

5

10

y x2 4 2x( )sin 1–+=
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plots y vs. x with a solid blue line, v vs.u with a dashed red line, and h vs. t with
a dotted green line.

Sample Problem 5-1: Plotting a function and its derivatives

Plot the function , and its first and second derivatives, for
, all in the same plot.

Solution

The first derivative of the function is:   .
The second derivative of the function is:   .
A script file that creates a vector x and calculates the values of y, , and  is:

The plot that is created is shown in Figure 5-7.

5.3.2 Using the hold on and hold off Commands
To plot several graphs using the hold on and hold off commands, one graph
is plotted first with the plot command. Then the hold on command is typed.
This keeps the Figure Window with the first plot open, including the axis proper-

x=[-2:0.01:4];

y=3*x.^3-26*x+6;

yd=9*x.^2-26;

ydd=18*x;

plot(x,y,'-b',x,yd,'--r',x,ydd,':k')

Figure 5-7: A plot of the function  and its first and second 
 derivatives.

y 3x3 26x– 10+=

2– x 4≤ ≤

y' 9x2 26–=

y'' 18x=

y′ y″

Create vector x with the domain of the function. 
Create vector y with the function value at each x. 

Create vector yd with values of the first derivative. 
Create vector ydd with values of the second derivative. 

Create three graphs, y vs. x, yd vs. x, and ydd vs. x, in the same figure.

−2 −1 0 1 2 3 4
−50

0

50

100

150

y 3x3 26x– 10+=
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ties and formatting (see Section 5.4) if any was done. Additional graphs can be
added with plot commands that are typed next. Each plot command creates a
graph that is added to that figure. The hold off command stops this process. It
returns MATLAB to the default mode, in which the plot command erases the
previous plot and resets the axis properties.

As an example, a solution of Sample Problem 5-1 using the hold on and
hold off commands is shown in the following script file:

5.3.3 Using the line Command
With the line command additional graphs (lines) can be added to a plot that
already exists. The form of the line command is:

The format of the line command is almost the same as the plot command (see
Section 5.1). The line command does not have the line specifiers, but the line
style, color, and marker can be specified with the Property Name and property
value features. The properties are optional and if none are entered MATLAB uses
default properties and values. For example, the command:

line(x,y,‘linestyle’,‘--’,‘color’,‘r’,‘marker’,‘o’)

will add a dashed red line with circular markers to a plot that already exists.
The major difference between the plot and line commands is that the

plot command starts a new plot every time it is executed, while the line com-
mand adds lines to a plot that already exists. To make a plot that has several
graphs, a plot command is typed first and then line commands are typed for addi-
tional graphs. (If a line command is entered before a plot command an error mes-
sage is displayed.)

x=[-2:0.01:4];

y=3*x.^3-26*x+6;

yd=9*x.^2-26;

ydd=18*x;

plot(x,y,'-b')

hold on

plot(x,yd,'--r')

plot(x,ydd,':k')

hold off

The first graph is created. 

Two more graphs are added to the figure.

line(x,y,‘PropertyName’,PropertyValue)

(Optional) Properties with values that can be
used to specify the line style, color, and width,
marker type, size, and edge and fill colors.
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The solution to Sample Problem 5-1, which is the plot in Figure 5-7, can be
obtained by using the plot and line commands as shown in the following
script file:

5.4 FORMATTING A PLOT

The plot and fplot commands create bare plots. Usually, however, a figure
that contains a plot needs to be formatted to have a specific look and to display
information in addition to the graph itself. This can include specifying axis labels,
plot title, legend, grid, range of custom axis, and text labels.

Plots can be formatted by using MATLAB commands that follow the plot
or fplot command, or interactively by using the plot editor in the Figure Win-
dow. The first method is useful when a plot command is a part of a computer
program (script file). When the formatting commands are included in the pro-
gram, a formatted plot is created every time the program is executed. On the other
hand, formatting that is done in the Figure Window with the plot editor after a plot
has been created holds only for that specific plot, and will have to be repeated the
next time the plot is created.

5.4.1 Formatting a Plot Using Commands
The formatting commands are entered after the plot or the fplot command.
The various formatting commands are:
The xlabel and ylabel commands:

Labels can be placed next to the axes with the xlabel and ylabel command
which have the form:

The title command:

A title can be added to the plot with the command:

x=[-2:0.01:4];

y=3*x.^3-26*x+6;

yd=9*x.^2-26;

ydd=18*x;

plot(x,y,'LineStyle','-','color','b')

line(x,yd,'LineStyle','--','color','r')

line(x,ydd,'linestyle',':','color','k')

xlabel(‘text as string’)
ylabel(‘text as string’)

title(‘text as string’)
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The text is placed at the top of the figure as a title.
The text command:

A text label can be placed in the plot with the text or gtext commands:

The text command places the text in the figure such that the first character is
positioned at the point with the coordinates x, y (according to the axes of the fig-
ure). The gtext command places the text at a position specified by the user.
When the command is executed, the Figure Window opens and the user specifies
the position with the mouse.
The legend command:

The legend command places a legend on the plot. The legend shows a sample of
the line type of each graph that is plotted, and places a label, specified by the user,
beside the line sample. The form of the command is:
legend(‘string1’,‘string2’, ..... ,pos)

The strings are the labels that are placed next to the line sample. Their order corre-
sponds to the order in which the graphs were created. The pos is an optional
number that specifies where in the figure the legend is to be placed. The options
are:
pos = -1 Places the legend outside the axes boundaries on the right side.
pos = 0 Places the legend inside the axes boundaries in a location that inter-

feres the least with the graphs.
pos = 1 Places the legend at the upper-right corner of the plot (default).
pos = 2 Places the legend at the upper-left corner of the plot.
pos = 3 Places the legend at the lower-left corner of the plot.
pos = 4 Places the legend at the lower-right corner of the plot.

Formatting the text within the xlabel, ylabel, title, text 
and legend commands:

The text in the string that is included in the command and is displayed when the
command is executed can be formatted. The formatting can be used to define the
font, size, position (superscript, subscript), style (italic, bold, etc.), and color of
the characters, the color of the background, and many other details of the display.
Some of the more common formatting possibilities are described below. A com-
plete explanation of all the formatting features can be found in the Help Window
under Text and Text Properties. The formatting can be done either by adding mod-
ifiers inside the string, or by adding to the command optional PropertyName
and PropertyValue arguments following the string.

text(x,y,‘text as string’)
gtext(‘text as string’)
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The modifiers are characters that are inserted within the string. Some of the
modifiers that can be added are:

These modifiers affect the text from the point at which they are inserted until the
end of the string. It is also possible to have the modifiers applied to only a section
of the string by typing the modifier and the text to be affected inside braces { }.
Subscript and superscript:
A single character can be displayed as a subscript or a superscript by typing _ (the
underscore character) or ^ in front of the character, respectively. Several consecu-
tive characters can be displayed as a subscript or a superscript by typing the char-
acters inside braces { } following the _ or the ^.
Greek characters:
Greek characters can be included in the text by typing \name of the
letter within the string. To display a lowercase Greek letter the name of the
letter should be typed in all lowercase English characters, To display a capital
Greek letter the name of the letter should start with a capital letter. Some examples
are: 

Formatting of the text that is displayed by the xlabel, ylabel, title,
and text commands can also be done by adding optional PropertyName and
PropertyValue arguments following the string inside the command. With this

Modifier Effect Modifier Effect

\bf bold font \fontname{fontname} specified font 
is used

\it italic style \fontsize{fontsize} specified font 
size is used

\rm normal font

Characters 
in the string

Greek
letter

Characters 
in the string

Greek
letter

\alpha α \Phi Φ

\beta β \Delta Δ

\gamma γ \Gamma Γ

\theta θ \Lambda Λ

\pi π \Omega Ω

\sigma σ \Sigma Σ
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option the text command, for example, has the form:

In the other three commands the PropertyName and PropertyValue argu-
ments are added in the same way. The PropertyName is typed as a string, and
the PropertyValue is typed as a number if the property value is a number and
as a string if the property value is a word or a letter character. Some of the Prop-
erty Names and corresponding possible Property Values are:

The axis command:
When the plot(x,y) command is executed, MATLAB creates axes with limits
that are based on the minimum and maximum values of the elements of x and y.
The axis command can be used to change the range and the appearance of the
axes. In many situations a graph looks better if the range of the axes extend
beyond the range of the data. The following are some of the possible forms of the
axis command:

Property name Description Possible property 
values

Rotation Specifies the orientation
of the text.

Scalar (degrees)
Default: 0

FontAngle Specifies italic or normal
style characters.

normal, italic
Default: normal

FontName Specifies the font for the
text.

Font name that is 
available in the system.

FontSize Specifies the size of the
font.

Scalar (points)
Default: 10

FontWeight Specifies the weight of
the characters.

light, normal, 
bold
Default: normal

Color Specifies the color of the
text.

Color specifiers (see
Section 5.1).

Background-
Color

Specifies the background
color (rectangular area).

Color specifiers (see
Section 5.1).

EdgeColor Specifies the color of the
edge of a rectangular box
around the text.

Color specifiers (see
Section 5.1).
Default: none.

LineWidth Specifies the width of the
edge of a rectangular box
around the text.

Scalar (points)
Default: 0.5

text(x,y,‘text as string’,PropertyName,PropertyValue)
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axis([xmin,xmax,ymin,ymax]) Sets the limits of both the x and y
axes (xmin, xmax, ymin, and
ymax are numbers).

axis equal     Sets the same scale for both axes.
axis square  Sets the axes region to be square.
axis tight  Sets the axis limits to the range of the data.
The grid command:

grid on    Adds grid lines to the plot.
grid off   Removes grid lines from the plot.

An example of formatting a plot by using commands is given in the following
script file which was used to generate the formatted plot in Figure 5-1.

5.4.2 Formatting a Plot Using the Plot Editor
A plot can be formatted interactively in the Figure Window by clicking on the plot
and/or using the menus. Figure 5-8 shows the Figure Window with the plot of Fig-
ure 5-1. The Plot Editor can be used to introduce new formatting items or to mod-
ify formatting that was initially introduced with the formatting commands. 

x=[10:0.1:22];

y=95000./x.^2;

xd=[10:2:22];

yd=[950  640  460  340  250  180  140];

plot(x,y,'-','LineWidth',1.0)

xlabel('DISTANCE (cm)')

ylabel('INTENSITY (lux)')

title('\fontname{Arial}Light Intensity as a Function of Distance','FontSize',14)

axis([8 24 0 1200])

text(14,700,'Comparison between theory and experiment.','EdgeColor','r','LineWidth',2)

hold on

plot(xd,yd,'ro--','linewidth',1.0,'markersize',10)

legend('Theory','Experiment',0)

hold off

Formatting text inside the 
title command. 

Formatting text 
inside the text 
command. 
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5.5 PLOTS WITH LOGARITHMIC AXES

Many science and engineering applications require plots in which one or both
axes have a logarithmic (log) scale. Log scales provide means for presenting data
over a wide range of values. It also provides a tool for identifying characteristics
of data and possible forms of mathematical relationships that can be appropriate
for modeling the data (see Section 8.2.2).

MATLAB commands for making plots with log axes are:
semilogy(x,y)  Plots y versus x with a log (base 10) scale for the y 

axis and linear scale for the x axis.
semilogx(x,y) Plots y versus x with a log (base 10) scale for the x 

axis and linear scale for the y axis.
loglog(x,y) Plots y versus x with a log (base 10) scale for both axes.
Line specifiers and Property Name and Property Value arguments can be added to
the commands (optional) just as in the plot command. As an example, Figure 5-
9 shows a plot of the function  for . The figure shows
four plots of the same function: one with linear axes, one with a log scale for the y
axis, one with a log scale for the x axis, and one with a log scale on both axes.

Figure 5-8: Formatting a plot using the Plot Editor.

Click the arrow button to start the plot edit mode. Then click
on an item. A window with formatting tool for the item opens. 

Use the Edit 
and Insert 
menus to add 
formatting 
objects, or to 
edit existing 
objects.

Change posi-
tion of a label, 
legend or 
other object by 
clicking on the 
object and 
dragging.

y 2 0.2x– 10+( )= 0.1 x 60≤ ≤
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Notes for plots with logarithmic axes:

• The number zero cannot be plotted on a log scale (since a log of zero is not
defined).

• Negative numbers cannot be plotted on log scales (since a log of a negative
number is not defined).

5.6 PLOTS WITH ERROR BARS

Experimental data that is measured and then displayed in plots frequently contains
error and scatter. Even data that is generated by computational models includes
error or uncertainty that depends on the accuracy of the input parameters and the
assumptions in the mathematical models that are used. One method of plotting
data that displays the error, or uncertainty, is by using error bars. An error bar is
typically a short vertical line that is attached to a data point in a plot. It shows the
magnitude of the error that is associated with the value that is displayed by the
data point. For example, Figure 5-10 shows a plot with error bars for the experi-
mental data from Figure 5-1.

Figure 5-9: Plots of  with linear, semilog, and log-log scales.

x=linspace(0.1,60,1000);
y=2.^(-0.2*x+10);
plot(x,y)

  

Linear

x=linspace(0.1,60,1000);
y=2.^(-0.2*x+10);
semilogx(x,y)

x=linspace(0.1,60,1000);
y=2.^(-0.2*x+10);
loglog(x,y)

x=linspace(0.1,60,1000);
y=2.^(-0.2*x+10);
semilogy(x,y)

Linear

Log

Li
ne

ar
Li

ne
ar

Lo
g
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Log

y 2 0.2x– 10+( )=
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Plots with error bars can be done in MATLAB with the errorbar com-
mand. Two forms of the command, one for making plots with symmetric error
bars (with respect to the value of the data point) and the other for nonsymmetric
error bars at each point, are presented. When the error is symmetric, the error bar
extends the same length above and below the data point and the command has the
form:

• The lengths of the three vectors x, y, and e must be the same.

• The length of the error bar is twice the value of e. At each point the error bar
extends from y(i)-e(i) to y(i)+e(i). 

The plot in Figure 5-10, which has symmetric error bars, was done by exe-
cuting the following code: 

The command for making a plot with error bars that are not symmetric is:  

Figure 5-10: A plot with error bars.

xd=[10:2:22];

yd=[950 640 460 340 250 180 140];

ydErr=[30 20 18 35 20 30 10]

errorbar(xd,yd,ydErr)

xlabel('DISTANCE (cm)')
ylabel('INTENSITY (lux)')
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errorbar(x,y,e)

Vector with the value of the
error at each point.

Vectors with horizontal and verti-
cal coordinates of each point.

errorbar(x,y,d,u)

Vector with the upper-
bound value of the 
error at each point.

Vectors with horizontal and 
vertical coordinates of each 
point.

Vector with the lower-
bound value of the 
error at each point.
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• The lengths of the four vectors x, y, d, and u must be the same.

• At each point the error bar extends from y(i)-d(i) to y(i)+u(i). 

5.7 PLOTS WITH SPECIAL GRAPHICS

All the plots that have been presented so far in this chapter are line plots in which
the data points are connected by lines. In many situations plots with different
graphics or geometry can present data more effectively. MATLAB has many
options for creating a wide variety of plots. These include bar, stairs, stem, and pie
plots and many more. Following are some of the special graphics plots that can be
created with MATLAB. A complete list of the plotting functions that MATLAB
offers and information on how to use them can be found in the Help Window. In
this window first choose “Functions by Category,” then select “Graphics” and
then select “Basic Plots and Graphs” or “Specialized Plotting.”

Bar (vertical and horizontal), stairs, and stem plots are presented in the fol-
lowing charts using the sales data from Section 5.1.1.

Vertical Bar 
Plot

Function
format:

bar(x,y)

yr=[1988:1994];

sle=[8 12 20 22 18 24 27];

bar(yr,sle,'r')

xlabel('Year')

ylabel('Sales (Mil-
lions)')

Horizontal Bar 
Plot

Function
format:

barh(x,y)

yr=[1988:1994];

sle=[8 12 20 22 18 24 27];

barh(yr,sle)

xlabel('Sales (Millions)')

ylabel('Year')
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Pie charts are useful for visualizing the relative sizes of different but related
quantities. For example, the table below shows the grades that were assigned to a
class. The data is used to create the pie chart that follows. 

5.8 HISTOGRAMS

Histograms are plots that show the distribution of data. The overall range of a
given set of data points is divided into subranges (bins), and the histogram shows
how many data points are in each bin. The histogram is a vertical bar plot in which
the width of each bar is equal to the range of the corresponding bin and the height

Stairs Plot

Function 
format:

stairs(x,y)

yr=[1988:1994];

sle=[8 12 20 22 18 24 27];

stairs(yr,sle)

Stem Plot

Function
Format

stem(x,y)

yr=[1988:1994];

sle=[8 12 20 22 18 24 27];

stem(yr,sle)

Grade A B C D E
Number of students 11 18 26 9 5

Pie Plot

Function
format:

pie(x)

grd=[11 18 26 9 5];

pie(grd)

title('Class Grades')
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MATLAB draws the 
sections in different col-
ors. The letters (grades) 
were added using the 
Plot Editor.
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of the bar corresponds to the number of data points in the bin. Histograms are cre-
ated in MATLAB with the hist command. The simplest form of the command
is:

y is a vector with the data points. MATLAB divides the range of the data
points into 10 equally spaced subranges (bins) and then plots the num-
ber of data points in each bin.

For example, the following data points are the daily maximum temperature
(in F) in Washington, DC, during the month of April 2002: 58 73 73 53 50 48 56
73 73 66 69 63 74 82 84 91 93 89 91 80 59 69 56 64 63 66 64 74 63 69 (data from
the U.S. National Oceanic and Atmospheric Administration). A histogram of this
data is obtained with the commands:

The plot that is generated is shown in Figure 5-11 (the axis titles were added using
the Plot Editor). The smallest value in the data set is 48 and the largest is 93,

which means that the range is 45 and the width of each bin is 4.5. The range of the
first bin is from 48 to 52.5 and contains two points. The range of the second bin is
from 52.5 to 57 and contains three points, and so on. Two of the bins (75 to 79.5
and 84 to 88.5) do not contain any points.

Since the division of the data range into 10 equally spaced bins might not be
the division that is preferred by the user, the number of bins can be defined to be
different than 10. This can be done either by specifying the number of bins, or by
specifying the center point of each bin as shown in the following two forms of the

>> y=[58 73 73 53 50 48 56 73 73 66 69 63 74 82 84 91 93 89 
91 80 59 69 56 64 63 66 64 74 63 69];

>> hist(y)

Figure 5-11: Histogram of temperature data.

hist(y)
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hist command:

nbins is a scalar that defines the number of bins. MATLAB divides the range
in equally spaced subranges.

x is a vector that specifies the location of the center of each bin (the dis-
tance between the centers does not have to be the same for all the bins).
The edges of the bins are at the middle point between the centers.

In the example above the user
might prefer to divide the temperature
range into three bins. This can be done
with the command:

As shown in the top graph, the histo-
gram that is generated has three equally
spaced bins.

The number and width of the bins
can also be specified by a vector x
whose elements define the centers of
the bins. For example, shown in the
lower graph is a histogram that displays
the temperature data from above in six
bins with an equal width of 10 degrees.
The elements of the vector x for this
plot are 45, 55, 65, 75, 85, and 95. The
plot was obtained with the following commands: 

The hist command can be used with options that provide numerical out-
put in addition to plotting a histogram. An output of the number of data points in
each bin can be obtained with one of the following commands:

The output n is a vector. The number of elements in n is equal to the number of
bins, and the value of each element of n is the number of data points (frequency
count) in the corresponding bin. For example, the histogram in Figure 5-11 can

>> hist(y,3)

>> x=[45:10:95]

x =
   45   55   65   75   85   95

>> hist(y,x)

hist(y,nbins) hist(y,x)or
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also be created with the following command:

The vector n shows that the first bin has two data points, the second bin has three
data points, and so on.

An additional, optional numerical output is the location of the bins. This
output can be obtained with one of the following commands:

xout is a vector in which the value of each element is the location of the center of
the corresponding bin. For example, for the histogram in Figure 5-11:

The vector xout shows that the center of the first bin is at 50.25, the center of the
second bin is at 54.75, and so on. 

5.9 POLAR PLOTS

Polar coordinates, in which the position of a point in a
plane is defined by the angle θ and the radius (distance) to
the point, are frequently used in the solution of science and
engineering problems. The polar command is used to
plot functions in polar coordinates. The command has the
form:

where theta and radius are vectors whose elements define the coordinates of
the points to be plotted. The polar command plots the points and draws the
polar grid. The line specifiers are the same as in the plot command. To plot a
function  in a certain domain, a vector for values of θ is created first, and
then a vector r with the corresponding values of  is created using element-by-

>> n = hist(y)

n =
   2   3   2   7   3   6   0   3   0   4

>> [n xout]=hist(y)

n =
   2   3   2   7   3   6   0   3   0   4

xout =
   50.2500  54.7500  59.2500  63.7500  68.2500  72.7500  
77.2500  81.7500  86.2500  90.7500

The vector n shows how many 
elements are in each bin. 

[n xout]=hist(y,nbins)[n xout]=hist(y)

x

y

r

θ

polar(theta,radius,‘line specifiers’)

(Optional) Specifiers that
define the type and color of
the line and markers.

Vector Vector

r f θ( )=

f θ( )
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element calculations. The two vectors are then used in the polar command.
For example, a plot of the function  for  is

shown below.

5.10 PUTTING MULTIPLE PLOTS ON THE SAME PAGE

Multiple plots can be created on the same page with the subplot command,
which has the form:

The command divides the Figure Window
(and the page when printed) into  rectangu-
lar subplots. The subplots are arranged like ele-
ments in an  matrix where each element is a
subplot. The subplots are numbered from 1
through . The upper left subplot is numbered
1 and the lower right subplot is numbered .
The numbers increase from left to right within a
row, from the first row to the last. The command
subplot(m,n,p) makes the subplot p current.
This means that the next plot command (and any
formatting commands) will create a plot (with the corresponding format) in this
subplot. For example, the command subplot(3,2,1) creates six areas
arranged in three rows and two columns as shown, and makes the upper left sub-
plot current. An example of using the subplot command is shown in the solu-
tion of Sample Problem 5-2.

5.11 MULTIPLE FIGURE WINDOWS

When plot or any other command that generates a plot is executed, the Figure
Window opens (if not already open) and displays the plot. MATLAB labels the
Figure Window as Figure 1 (see the top left corner of the Figure Window that is
displayed in Figure 5-4). If the Figure Window is already open when the plot or
any other command that generates a plot is executed, a new plot is displayed in the

r 3 0.5θ( )cos2 θ+= 0 θ 2π≤ ≤

t=linspace(0,2*pi,200);
r=3*cos(0.5*t).^2+t;
polar(t,r)

subplot(m,n,p)

(3,2,1) (3,2,2)

(3,2,3)

(3,2,5)

(3,2,4)

(3,2,6)

m n×

m n×

m n⋅
m n⋅
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Figure Window (replacing the existing plot). Commands that format plots are
applied to the plot in the Figure Window that is open.

It is possible, however, to open additional Figure Windows and have several
of them open (with plots) at the same time. This is done by typing the command
figure. Every time the command figure is entered, MATLAB opens a new
Figure Window. If a command that creates a plot is entered after a figure com-
mand, MATLAB generates and displays the new plot in the last Figure Window
that was opened, which is called the active or current window. MATLAB labels
the new Figure Windows successively; i.e., Figure 2, Figure 3, and so on. For
example, after the following three commands are entered, the two Figure Win-
dows that are shown in Figure 5-12 are displayed.   

The figure command can also have an input argument that is a number
(integer), of the form figure(n). The number corresponds to the number of the
corresponding Figure Window. When the command is executed, window number
n becomes the active Figure Window (if a Figure Window with this number does
not exist, a new window with this number opens). When commands that create
new plots are executed, the plots that they generate are displayed in the active Fig-
ure Window. In the same way, commands that format plots are applied to the plot
in the active window. The figure(n) command provides means for having a
program in a script file that opens and makes plots in a few defined Figure Win-
dows. (If several figure commands are used in a program instead, new Figure
Windows will open every time the script file is executed.) 

Figure Windows can be closed with the close command. Several forms of
the command are:
close  closes the active Figure Window.
close(n)  closes the nth Figure Window.
close all  closes all Figure Windows that are open.

>> fplot('x*cos(x)',[0,10])

>> figure

>> fplot('exp(-0.2*x)*cos(x)',[0,10])

Figure 5-12: Two open Figure Windows.

Plot displayed in Figure 1 window.
Figure 2 window opens.

Plot displayed in Figure 2 window.
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5.12 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 5-2: Piston-crank mechanism

The piston-rod-crank mechanism is used in many engineering applications. In the
mechanism shown in the following figure, the crank is rotating at a constant speed
of 500 rpm.

Calculate and plot the position, velocity, and acceleration of the piston for one
revolution of the crank. Make the three plots on the same page. Set  when
t = 0. 
Solution

The crank is rotating with a constant angular velocity . This means that if we set
θ = 0o when t = 0, then at time t the angle θ is given by , and that  at
all times.

The distances d1 and h are
given by:

   and   
With h known, the distance d2 can be
calculated using the Pythagorean
Theorem:

The position x of the piston is then given by:

The derivative of x with respect to time gives the velocity of the piston:

The second derivative of x with respect to time gives the acceleration of the pis-
ton:

θ 0°=

θ·

θ θ· t= θ·· 0=

θ
 cr

h

d1
x

d2

d1 r θcos= h r θsin=

d2 c2 h2–( )1 2/ c2 r2 θsin2–( )1 2/= =

x d1 d2 r θcos= c2 r2 θsin2–( )1 2/+ +=

x· rθ· θsin– r2θ· 2θsin
2 c2 r2 θsin2–( )1 2/
--------------------------------------------–=

x·· rθ· 2 θcos– 4r2θ· 2 2θcos c2 r2 θsin2–( ) r2θ· 2θsin( )2+
4 c2 r2 θsin2–( )3 2/

-----------------------------------------------------------------------------------------------------–=
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In the equation above,  was taken to be zero.
A MATLAB program (script file) that calculates and plots the position,

velocity, and acceleration of the piston for one revolution of the crank is shown
below.

When the script file runs it generates the three plots on the same page as
shown in Figure 5-13. The figure nicely shows that the velocity of the piston is
zero at the end points of the travel range where the piston changes the direction of
the motion. The acceleration is maximum (directed to the left) when the piston is
at the right end. 

THDrpm=500; r=0.12; c=0.25;

THD=THDrpm*2*pi/60;

tf=2*pi/THD;

t=linspace(0,tf,200);

TH=THD*t;

d2s=c^2-r^2*sin(TH).^2;

x=r*cos(TH)+sqrt(d2s);

xd=-r*THD*sin(TH)-(r^2*THD*sin(2*TH))./(2*sqrt(d2s));

xdd=-r*THD^2*cos(TH)-(4*r^2*THD^2*cos(2*TH).*d2s+ 
(r^2*sin(2*TH)*THD).^2)./(4*d2s.^(3/2));

subplot(3,1,1)

plot(t,x)

grid

xlabel('Time (s)')

ylabel('Position (m)')

subplot(3,1,2)

plot(t,xd)

grid

xlabel('Time (s)')

ylabel('Velocity (m/s)')

subplot(3,1,3)

plot(t,xdd)

grid

xlabel('Time (s)')

ylabel('Acceleration (m/s^2)')

θ··

Define , r, and c.θ·

Change the units of  from rpm to rad/s.θ·

Calculate the time for one revolution of the crank.
Create a vector for the time with 200 elements.

Calculate θ for each t.
Calculate d2 squared for each θ.

Calculate x for each θ.

Calculate  and  for each θ.x· x··

Plot x vs. t.
Format the first plot.

Plot  vs. t.x·

Format the second plot.

Plot  vs. t.x··

Format the third plot.
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Sample Problem 5-3: Electric Dipole

The electric field at a point due to a charge is a vector E
with magnitude E given by Coulomb’s law:

where  is the permittivity

constant, q is the magnitude of the charge, and r is the
distance between the charge and the point. The direction
of E is along the line that connects the charge with the
point. E points outward from q if q is positive, and toward q if q is negative. An
electric dipole is created when a positive charge and a negative charge of equal
magnitude are placed some distance apart. The electric field, E, at any point is
obtained by superposition of the electric field of each charge.

An electric dipole with
C is created, as shown in

the figure. Determine and plot the
magnitude of the electric field along
the x axis from cm to

cm.

Figure 5-13: Position, velocity, and acceleration of the piston vs. time.
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Solution
The electric field E at any point (x, 0)
along the x axis is obtained by adding
the electric field vectors due to each of
the charges.

E = E–+ E+
The magnitude of the electric field is
the length of the vector E.

The problem is solved by following these steps:
Step 1: Create a vector x for points along the x axis.
Step 2: Calculate the distance (and distance squared) from each charge to the

points on the x axis.

     

Step 3: Write unit vectors in the direction from each charge to the points on the
x axis.

     

Step 4: Calculate the magnitude of the vector E– and E+ at each point by using
Coulomb’s law.

        

Step 5: Create the vectors E– and E+ by multiplying the unit vectors by the
magnitudes.

Step 6: Create the vector E by adding the vectors E– and E+.
Step 7: Calculate E, the magnitude (length) of E.
Step 8: Plot E as a function of x.
A program in a script file that solves the problem is:

q=12e-9; 
epsilon0=8.8541878e-12;

x=[-0.05:0.001:0.05]’;

rminusS=(0.02-x).^2+0.02^2;

rminus=sqrt(rminusS);

rplusS=(x+0.02).^2+0.02^2;
rplus=sqrt(rplusS);

rminus 0.02 x–( )2 0.022+= rplus x 0.02x+( )2 0.022+=

EminusUV
1

rminus
------------- 0.02 x–( )i 0.02j–( )=

EplusUV
1

rplus
---------- x 0.02+( )i 0.02j+( )=

EminusMAG
1

4πε0
----------- q

rminus
2

--------------= EplusMAG
1

4πε0
----------- q

rplus
2

----------=

Create a column vector x.

Step 2. Each variable 
is a column vector.
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When this script file is executed in the Command Window the following figure is
created in the Figure Window:

5.13 PROBLEMS

1. Plot the function  for .

2. Plot the function  for .

3. Make two separate plots of the function ,
one plot for  and one for .

4. Use the fplot command to plot the function
 in the domain .

EminusUV=[((0.02-x)./rminus), (-0.02./rminus)];

EplusUV=[((x+0.02)./rplus), (0.02./rplus)];

EminusMAG=(q/(4*pi*epsilon0))./rminusS;

EplusMAG=(q/(4*pi*epsilon0))./rplusS;

Eminus=[EminusMAG.*EminusUV(:,1), EminusMAG.*EminusUV(:,2)];

Eplus=[EplusMAG.*EplusUV(:,1), EplusMAG.*EplusUV(:,2)];

E=Eminus+Eplus;

EMAG=sqrt(E(:,1).^2+E(:,2).^2);

plot(x,EMAG,'k','linewidth',1)

xlabel('Position along the x-axis (m)','FontSize',12)

ylabel('Magnitude of the electric field (N/C)','FontSize',12)

title('ELECTRIC FIELD DUE TO AN ELECTRIC DIPOLE','FontSize',12)

Steps 3 & 4. Each vari-
able is a two column 
matrix. Each row is the 
vector for the corre-
sponding x.

Step 5.
Step 6.
Step 7.
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ELECTRIC FIELD DUE TO AN ELECTRIC DIPOLE

f t( ) x 5+( )2

4 3x2+
-------------------= 3– x 5≤ ≤

f t( ) 5 x( )sin
x e 0.75x–+
----------------------- 3x

5
------–= 5– x 10≤ ≤

f x( ) x 1+( ) x 2–( ) 2x 0.25–( ) ex–=
0 x 3≤ ≤ 3– x 6≤ ≤

f x( ) 3x( )cos 4x( )sin2+= 2– x 2≤ ≤
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5. Use the fplot command to plot the function
 in the domain .

6. A parametric equation is given by
,  

Plot the function for . Format the plot such that the both axes will
range from –2 to 2.

7. Plot the function  for . Notice that the function

has a vertical asymptote at . Plot the function by creating two vectors
for the domain of x. The first vector (name it x1) includes elements from –4 to
–1.1, and the second vector (name it x2) includes elements from –0.9 to 3. For
each x vector create a y vector (mane them y1 and y2) with the corresponding
values of y according to the function. To plot the function make two curves in
the same plot (y1 vs. x1, and y2 vs. x2).

8. A parametric equation is given by

,  

(Note that the denominator approaches 0 when t approaches –1) Plot the func-
tion (the plot is called the Folium of Descartes) by plotting two curves in the
same plot—one for  and the other for .

9. Plot the function  for . Notice that the function

has two vertical asymptotes. Plot the function by dividing the domain of x into
three parts: one from –6 to near the left asymptote, one between the two
asymptotes, and one from near the right asymptote to 6. Set the range of the y
axis from –20 to 20. 

10. A cycloid is a curve (shown in the fig-
ure) traced by a point on a circle that
rolls along a line. The parametric equa-
tion of a cycloid is given by

  and  
Plot a cycloid with  and .

11. Plot the function  and its derivative, both on the same
plot, for . Plot the function with a solid line, and the derivative with
a dashed line. Add a legend and label the axes.

f x( ) e2 0.4x( )sin 5 4x( )cos= 20– x 30≤ ≤

x 1.5 5t( )sin= y 1.5 3t( )cos=

0 t 2π≤ ≤

f x( ) x2 3x 3+ +
0.8 x 1+( )
--------------------------= 4– x 3≤ ≤

x 1–=

x 3t
1 t3+
-------------= y 3t2

1 t3+
-------------=

30– t 1.6–≤ ≤ 0.6– t 40≤ ≤

f x( ) x2 4x– 7–

x2 x– 6–
--------------------------= 6– x 6≤ ≤

x

y

x r t tsin–( )= y r t tcos–( )=

r 1.5= 0 t 4π≤ ≤

f x( ) xcos 2x( )sin=
π x π≤ ≤
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12. The Gateway Arch in St. Louis is shaped according to the equation

 ft

Make a plot of the arch.

13. An electrical circuit that includes a voltage source
 with an internal resistance  and a load resis-

tance  is shown in the figure. The power P dissi-
pated in the load is given by

Plot the power P as a function of  for
Ω , given that V and Ω..

14. Two ship, A and B, travel at a speed of
mi/h and mi/h, respectively.

The directions they are moving and their loca-
tion at 8 A.M. are shown in the figure. Plot the
distance between the ships as a function of
time for the next 4 hours. The horizontal axis
should show the actual time of day starting at 8
A.M., while the vertical axis should show the
distance. Label the axes.

15. The plasma concentration  of orally delivered drugs is a function of the
rate of absorption, , and the rate of elimination, :

where A is a constant (associated with the specific drag) and t is time. Con-
sider a case where  mg/L, h–1, and h–1. Make a
plot that displays  vs. time for .

16. The position as a function of time of a squirrel
running on a grass field is given in polar coor-
dinates by:

m

(a) Plot the trajectory (position) of the squirrel for s.

(b) Create a (second) plot for the speed of the squirrel, given by , as
a function of time for s.

y 693.8 68.8 x
99.7
----------⎝ ⎠
⎛ ⎞cosh–=

rS

RL

vS BatteryvS rS
RL

P
vS

2RL

RL rS+( )2
------------------------=

RL
1 RL 10≤ ≤ vS 12= rS 2.5=

x

y
A 36 mi

12 mi

45 mi

18 mi

vA

vB

70o

30o

vA 27= vB 14=

CP
Kab Kel

CP A
Kab

Kab Kel–
---------------------- e Kelt– e Kabt––( )=

A 140= Kab 1.6= Kab 0.45=

CP 0 t 10≤ ≤

x

y

r(t)

θ(t)r t( ) 20 30 1 e 0.1t––( )+=

θ t( ) π 1 e 0.2 t––( )=
0 t 20≤ ≤

v rdθ
dt
------=

0 t 20≤ ≤
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17. In astronomy, the relationship between the relative luminosity 
(brightness relative to the sun), the relative radius , and the relative
temperature  of a star is modeled by:

The HR (Hertzsprung-Russell) diagram is a plot of  versus the temper-
ature. The following data is given:

To compare the data with the model, use MATLAB to plot an HR diagram.
The diagram should have two sets of points. One uses the values of 
from the table (use asterisk markers), and the other uses values of  that
are calculated from the equation by using  from the table (use circle
markers). In the HR diagram both axes are logarithmic. In addition, the values
of temperature on the horizontal axis are decreasing from left to right. This is
done with the command set(gca,'XDir','reverse'). Label the axes
and use a legend.

18. The position x as a function of time of a particle that moves along a straight
line is given by

ft
The velocity v(t) of the particle is determined by the derivative of x(t) with
respect to t, and the acceleration a(t) is determined by the derivative of v(t)
with respect to t.

Derive the expressions for the velocity and acceleration of the particle,
and make plots of the position, velocity, and acceleration as functions of time
for s. Use the subplot command to make the three plots on the
same page with the plot of the position on the top, the velocity in the middle,
and the acceleration at the bottom. Label the axes appropriately with the cor-
rect units.

Sun Spica Regulus Alioth Barnard’s 
Star

Epsilon 
Indi

Beta 
Crucis

Temp (K) 5,840 22,400 13,260 9,400 3,130 4,280 28,200

L/LSun 1 13,400 150 108 0.0004 0.15 34,000

R/RSun 1 7.8 3.5 3.7 0.18 0.76 8

L LSun⁄
R RSun⁄

T TSun⁄

L
LSun
---------- R

RSun
----------⎝ ⎠

⎛ ⎞ 2 T
TSun
----------⎝ ⎠

⎛ ⎞ 4
=

L LSun⁄

L LSun⁄
L LSun⁄

R RSun⁄

x t( ) 0.41t4 10.8t3– 64t2 8.2t– 4.4+ +=

0 t 8≤ ≤
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19. In a typical tension test a dog bone
shaped specimen is pulled in a
machine. During the test, the force F
needed to pull the specimen and the
length L of a gauge section are measured. This data is used for plotting a
stress-strain diagram of the material. Two definitions, engineering and true,
exist for stress and strain. The engineering stress  and strain  are defined
by

 and , where  and  are the initial gauge length and the

initial cross-sectional area of the specimen, respectively. The true stress 

and strain  are defined by  and .

The following are measurements of force and gauge length from a tension
test with an aluminum specimen. The specimen has a round cross section with
radius 6.4 mm (before the test). The initial gauge length is mm. Use
the data to calculate and generate the engineering and true stress-strain curves,
both on the same plot. Label the axes and label the curves.
Units: When the force is measured in newtons (N), and the area is calculated
in m2, the unit of the stress is pascals (Pa).

20. The area of the aortic valve,  in cm2, can be estimated by the equation
(Hakki Formula)

where  is the cardiac output in L/min, and PG is the difference between the
left ventricular systolic pressure and the aortic systolic pressure (in mm Hg).
Make one plot with two curves of  versus PG, for  mm Hg—
one curve for L/min and the other for L/min. Label the axes and
use a legend.

F (N) 0 13,345 26,689 40,479 42,703 43,592 44,482 44,927

L (mm) 25 25.037 25.073 25.113 25.122 25.125 25.132 25.144

F (N) 45,372 46,276 47,908 49,035 50,265 53,213 56,161

L (mm) 25.164 25.208 25.409 25.646 26.084 27.398 29.150

σe εe

σe
F
A0
-----= εe

L L0–

L0
---------------= L0 A0

σt

εt σt
F
A0
----- L

L0
-----= εt

L
L0
-----ln=

L0 25=

AV

AV
Q
PG

------------=

Q

AV 2 PG 60≤ ≤
Q 4= Q 5=
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21. A series RLC circuit with an AC voltage source
is shown. The amplitude of the current, I, in this
circuit is given by

where  in which  is the driving fre-
quency; R and C are the resistance of the resistor and capacitance of the
capacitor, respectively; and  is the amplitude of V. For the circuit in the fig-
ure Ω, F, H, and V.

Make a plot of I as a function of  for Hz. Use a linear
scale for I and a log scale for .

22. The speed distribution, , of gas molecules can be modeled by Maxwell’s
speed distribution law:

where m (kg) is the mass of each molecule, v (m/s) is the speed, T (K) is the
temperature, and J/K is Boltzmann’s constant. Make a plot of

 versus v for m/s for oxygen molecules ( kg).
Make two graphs in the same plot, one for K and the other for

K. Label the axes and display a legend.

23. A resistor, R = 4 Ω, and an inductor, L = 1.3 H, are connected in a circuit to a
voltage source as shown in Figure (a) (an RL circuit). When the voltage

source applies a rectangular voltage pulse with an amplitude of V = 12 V and a
duration of 0.5 s, as shown in Figure (b), the current i(t) in the circuit as a
function of time is given by:

  for   s

  for   s

Make a plot of the current as a function of time for  s.

C

L

R

V

I
vm

R2 ωdL 1 ωdC( )⁄–( )2+
--------------------------------------------------------------=

ωd 2πfd= fd

vm

R 80= C 18 10× 6–= L 260 10× 3–= vm 10=

fd 10 f 10000≤ ≤

fd

N v( )

N v( ) 4π m
2πkT
-------------⎝ ⎠

⎛ ⎞
3 2⁄

v2e
mv2–

2kT
-------------

=

k 1.38 10 23–×=

N v( ) 0 v 1200≤ ≤ m 5.3 10 26–×=

T 80=
T 300=

(a) (b)

i t( ) V
R
--- 1 e Rt–( ) L⁄–( )= 0 t 0.5≤ ≤

i t( ) e Rt( ) L⁄– V
R
--- e 0.5R( ) L⁄ 1–( )= 0.5 t≤

0 t 2≤ ≤
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24. The shape of a symmetrical four digit NACA airfoil is described by the equa-
tion

where c is the cord length and t is the max-
imum thickness as a fraction of the cord
length ( maximum thickness). Sym-
metrical four digit NACA airfoils are des-
ignated NACA 00XX, where XX is 
(i.e., NACA 0012 has ). Plot the
shape of a NACA 0020 airfoil with a cord
length of 1.5 m.

25. The dynamic storage modulus  and loss modulus  are measures of a
material mechanical response to harmonic loading. For many biological mate-
rials these moduli can be described by Fung’s model:

   and  

where  is the frequency of the harmonic loading, and , c, , and  are
material constants. Plot  and  versus  (two separate plots on the same
page) for ksi, , s, and s. Let  vary
between 0.0001 and 1000 s–1. Use a log scale for the  axis.

26. The vibrations of the body of a helicopter due
to the periodic force applied by the rotation of
the rotor can be modeled by a frictionless
spring-mass-damper system subjected to an
external periodic force. The position  of
the mass is given by the equation:

where , and , ω is the frequency of the applied
force, and  is the natural frequency of the helicopter. When the value of ω
is close to the value of , the vibration consists of fast oscillation with
slowly changing amplitude called beat. Use N/kg, rad/s,
and rad/s to plot  as a function of t for s.

y tc
0.2
------- 0.2969 x

c
-- 0.1260x

c
--– 0.3516 x

c
--⎝ ⎠

⎛ ⎞
2

– 0.2843 x
c
--⎝ ⎠

⎛ ⎞
3

0.1015 x
c
--⎝ ⎠

⎛ ⎞
4

–+±=

0 0.5 1 1.5
-0.2

-0.1

0

0.1

0.2

tc =

100t
t 0.12=

G′ G′′

G′ ω( ) G∞ 1 c
2
---

1 ωτ2( )2+

1 ωτ1( )2+
--------------------------ln+

⎩ ⎭
⎨ ⎬
⎧ ⎫

= G′′ ω( ) cG∞ ωτ2( )tan 1– ωτ1( )tan 1––[ ]=

ω G∞ τ1 τ2

G′ G′′ ω
G∞ 5= c 0.05= τ1 0.05= τ2 500= ω

ω

x

k
m

c
F(t)

x t( )

x t( )
2f0

ωn
2 ω2–

-------------------
ωn ω–

2
----------------t⎝ ⎠
⎛ ⎞sin

ωn ω–

2
----------------t⎝ ⎠
⎛ ⎞sin=

F t( ) F0 ωtsin= f0 F0 m⁄=
ωn

ωn

F0 m⁄ 12= ωn 10=

ω 12= x t( ) 0 t 10≤ ≤
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27. Consider the diode circuit shown in the fig-
ure. The current  and the voltage  can be
determined from the solution of the following
system of equations:

,   

The system can be solved numerically or
graphically. The graphical solution is found by plotting  as a function of 
from both equations. The solution is the intersection of the two curves. Make
the plots and estimate the solution for the case where A,

V, , and mV.

28. The ideal gas equation states that , where P is the pressure, V is the

volume, T is the temperature, (L atm)/(mol K) is the gas con-

stant, and n is the number of moles. For one mole ( ) the quantity  is

a constant equal to 1 at all pressures. Real gases, especially at high pressures,
deviate from this behavior. Their response can be modeled with the van der
Waals equation

where a and b are material constants. Consider 1 mole ( ) of nitrogen
gas at K. (For nitrogen gas (L2 atm)/mol2, and 
L/mol.) Use the van der Waals equation to calculate P as a function of V for

L, using increments of 0.02 L. At each value of V calculate the

value of  and make a plot of  versus P. Does the response of nitrogen

agree with the ideal gas equation? 

29. When monochromatic light passes through a
narrow slit it produces on a screen a diffraction
pattern consisting of bright and dark fringes.
The intensity of the bright fringes, I, as a func-
tion of  can be calculated by

,  where  

where  is the light wave length and a is the
width of the slit. Plot the relative intensity

 as a function of  for . Make one plot that contains three
graphs for the cases , , and . Label the axes, and dis-
play a legend.    

R

iD
vS

Diode

vD

iD vD

iD I0 e
qvD
kT

---------
1–⎝ ⎠

⎛ ⎞= iD
vS vD–

R
----------------=

iD vD

I0 10 14–=

vS 1.5= R 1200= Ω kT
q

------ 30=

PV
RT
------- n=

R 0.08206=

n 1=
PV
RT
-------

P nRT
V nb–
---------------- n2a

V2
--------–=

n 1=

T 300= a 1.39= b 0.0391=

0.08 V 6≤ ≤
PV
RT
------- PV

RT
-------

θ

Incident
light

θ

I Imax
αsin

α
-----------⎝ ⎠
⎛ ⎞

2
= α πa

λ
------ θsin=

λ

I Imax⁄ θ 20°– θ 20°≤ ≤

a 10λ= a 5λ= a λ=
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30. In order to supply fluid to point D, a new pipe
CD with diameter of  is connected to an
existing pipe with diameter of  at point C
between points A and B. The resistance, R, to
fluid flow along the path ACD is given by

where K is a constant. Determine the location of point C (the distance s) that
minimizes the flow resistance R. Define a vector  with elements ranging
from  to  with spacing of . Calculate  for each value of ,
and make a plot of  versus . Use MATLAB’s built-in function min to
find the minimum value of  and the corresponding , and then calculate
the value of s. Use in., in., ft, ft.

31. A simply supported beam is sub-
jected to a constant distributed load w
over half of its length and a moment
M, as shown in the figure. The deflec-
tion y, as a function of x, is given by
the equations

 for 

 for 

where E is the elastic modulus, I is the moment of inertia, and L is the length
of the beam. For the beam shown in the figure m, Pa
(steel), m4, N/m, and N m. Make
a plot of the deflection of the beam y as a function of x.

32 The ideal gas law relates the pressure P, volume V, and temperature T of an
ideal gas:

where n is the number of moles and J/(K mol). Plots of pressure
versus volume at constant temperature are called isotherms. Plot the isotherms
for one mole of an ideal gas for volume ranging from 1 to 10 m3, at tempera-
tures of K (four curves in one plot). Label the
axes and display a legend. The units for pressure are Pa.
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33. The voltage difference  between points A
and B of the Wheatstone bridge circuit is
given by:

Consider the case where V,
, and make the following plots:

(a)  versus  for , given .
(b)  versus  for , given .
Plot both plots on a single page (two plots in a column). 

34. The resonant frequency f (in Hz) for the circuit
shown is given by:

Given H, F, make the fol-
lowing plots:
(a) f versus  for , given

.
(b) f versus  for , given

.
Plot both plots on a single page (two plots in a column). 

35. The taylor series for sin(x) is:

 

Plot the figure on the right, which
shows, for , the graph
of the function sin(x) and graphs of
the Taylor series expansion of
sin(x) with one, two, and five
terms. Label the axes and display a
legend.   

R1

v vAB
A B

R4R2

R3

vAB

vAB v
R2

R1 R2+
------------------

R4

R3 R4+
------------------–⎝ ⎠

⎛ ⎞=

v 12=

R3 R4 250 Ω= =

vAB R1 0 R1 500 Ω≤ ≤ R2 120 Ω=

vAB R2 0 R2 500 Ω≤ ≤ R1 120 Ω=

C

R1

V

R2

L

f 1
2π
------ LC

R1
2C L–

R2
2C L–

-------------------=

L 0.2= C 2 10 6–×=

R2 500 R2 2000 Ω≤ ≤

R1 1500 Ω=

R1 500 R1 2000 Ω≤ ≤

R2 1500 Ω=

−8 −6 −4 −2 0 2 4 6 8
−2

−1

0

1

2

x

si
n(

x)

 

 

sin(x)

One term

Two terms

Three terms

x x3

3!
-----– x5

5!
----- x7

7!
-----– x9

9!
----- x11

11!
--------– …+ + +

2π– x 2π≤ ≤



173

Chapter 6       
Programming in 
MATLAB

A computer program is a sequence of computer commands. In a simple program
the commands are executed one after the other in the order they are typed. In this
book, for example, all the programs that have been presented so far in script files
are simple programs. Many situations, however, require more sophisticated pro-
grams in which commands are not necessarily executed in the order they are
typed, or different commands (or groups of commands) are executed when the
program runs with different input variables. For example, a computer program
that calculates the cost of mailing a package uses different mathematical expres-
sions to calculate the cost depending on the weight and size of the package, the
content (books are less expensive to mail), and the type of service (airmail,
ground, etc.). In other situations there might be a need to repeat a sequence of
commands several times within a program. For example, programs that solve
equations numerically repeat a sequence of calculations until the error in the
answer is smaller than some measure.

MATLAB provides several tools that can be used to control the flow of a
program. Conditional statements (Section 6.2) and the switch structure (Section
6.3) make it possible to skip commands or to execute specific groups of com-
mands in different situations. For loops and while loops (Section 6.4) make it
possible to repeat a sequence of commands several times.

It is obvious that changing the flow of a program requires some kind of
decision-making process within the program. The computer must decide whether
to execute the next command or to skip one or more commands and continue at a
different line in the program. The program makes these decisions by comparing
values of variables. This is done by using relational and logical operators, which
are explained in Section 6.1.
 It should also be noted that user-defined functions (introduced in Chapter 7)
can be used in programming. A user-defined function can be used as a subpro-
gram. When the main program reaches the command line that has the user-defined
function, it provides input to the function and “waits” for the results. The user-
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defined function carries out the calculations and transfers the results back to the
main program, which then continues to the next command.

6.1 RELATIONAL AND LOGICAL OPERATORS

A relational operator compares two numbers by determining whether a compari-
son statement (e.g., 5 < 8) is true or false. If the statement is true, it is assigned a
value of 1. If the statement is false, it is assigned a value of 0. A logical operator
examines true/false statements and produces a result that is true (1) or false (0)
according to the specific operator. For example, the logical AND operator gives 1
only if both statements are true. Relational and logical operators can be used in
mathematical expressions and, as will be shown in this chapter, are frequently
used in combination with other commands, to make decisions that control the
flow of a computer program.
Relational operators:
Relational operators in MATLAB are:

Note that the “equal to” relational operator consists of two = signs (with no space
between them), since one = sign is the assignment operator. In other relational
operators that consist of two characters there also is no space between the charac-
ters (<=, >=, ~=).

• Relational operators are used as arithmetic operators within a mathematical
expression. The result can be used in other mathematical operations, in
addressing arrays, and together with other MATLAB commands (e.g., if) to
control the flow of a program.

• When two numbers are compared, the result is 1 (logical true) if the compari-
son, according to the relational operator, is true, and 0 (logical false) if the
comparison is false.

• If two scalars are compared, the result is a scalar 1 or 0. If two arrays are com-
pared (only arrays of the same size can be compared), the comparison is done
element-by-element, and the result is a logical array of the same size with 1s
and 0s according to the outcome of the comparison at each address.

Relational operator Description

< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to
= = Equal to
~= Not Equal to
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• If a scalar is compared with an array, the scalar is compared with every element
of the array, and the result is a logical array with 1s and 0s according to the out-
come of the comparison of each element.

Some examples are:

>> 5>8

ans =
     0

>> a=5<10

a =
     1

>> y=(6<10)+(7>8)+(5*3= =60/4)

y =
     2

>> b=[15 6 9 4 11 7 14]; c=[8 20 9 2 19 7 10];

>> d=c>=b

d =
     0     1     1     0     1     1     0

>> b == c

ans =
     0     0     1     0     0     1     0

>> b~=c

ans =
     1     1     0     1     1     0     1

>> f=b-c>0

f =
     1     0     0     1     0     0     1

>> A=[2 9 4; -3 5 2; 6 7 -1]

A =
     2     9     4
    -3     5     2
     6     7    -1

>> B=A<=2

Checks if 5 is larger than 8.
Since the comparison is false (5 is
not larger than 8) the answer is 0.

Checks if 5 is smaller than 10, and assigns the answer to a.
Since the comparison is true (5 is smaller
than 10) the number 1 is assigned to a.

Using relational operators
in math expression.

Equal to 1 since
6 is smaller than 10. 

Equal to 0 since 7 is
not larger than 8. 

Equal to 1 since 5*3
is equal to 60/4. 

Define vec-
tors b and c.

Checks which c elements are larger than or equal to b elements.

Assigns 1 where an element of c is larger than or equal to an element of b.

Checks which b elements are equal to c elements.

Checks which b elements are not equal to c elements.

Subtracts c from b and then checks
which elements are larger than zero.

Define a  matrix A.3 3×

Checks which elements in A are smaller than
or equal to 2. Assigns the results to matrix B.
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• The results of a relational operation with vectors, which are vectors with 0s and
1s, are called logical vectors and can be used for addressing vectors. When a
logical vector is used for addressing another vector, it extracts from that vector
the elements in the positions where the logical vector has 1s. For example:

• Numerical vectors and arrays with the numbers 0s and 1s are not the same as
logical vectors and arrays with 0s and 1s. Numerical vectors and arrays can not
be used for addressing. Logical vectors and arrays, however, can be used in
arithmetic operations. The first time a logical vector or an array is used in arith-
metic operations it is changed to a numerical vector or array.

• Order of precedence: In a mathematical expression that includes relational and
arithmetic operations, the arithmetic operations (+, –, *, /, \) have precedence
over relational operations. The relational operators themselves have equal pre-
cedence and are evaluated from left to right. Parentheses can be used to alter
the order of precedence. Examples are:

B =
     1     0     0
     1     0     1
     0     0     1

>> r = [8 12 9 4 23 19 10]

r =
     8    12     9     4    23    19    10

>> s=r<=10

s =
     1     0     1     1     0     0     1

>> t=r(s)

t =
     8     9     4    10

>> w=r(r<=10)

w =
     8     9     4    10

>> 3+4<16/2

ans =
     1

>> 3+(4<16)/2

ans =
    3.5000

Define a vector r.

Checks which r elements are smaller than or equal to 10.

A logical vector s with 1s at positions where 
elements of r are smaller than or equal to 10.

Use s for addresses in vector r to create vector t.
Vector t consists of elements of
r in positions where s has 1s.

The same procedure can be done in one step.

+ and / are executed first.
The answer is 1 since 7 < 8 is true.

4 < 16 is executed first, and is equal to 1, since it is true.
3.5 is obtained from 3 + 1/2.
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Logical operators:
Logical operators in MATLAB are:

• Logical operators have numbers as operands. A nonzero number is true, and a
zero number is false.

• Logical operators (like relational operators) are used as arithmetic operators
within a mathematical expression. The result can be used in other mathemati-
cal operations, in addressing arrays, and together with other MATLAB com-
mands (e.g., if) to control the flow of a program. 

• Logical operators (like relational operators) can be used with scalars and
arrays.

• The logical operations AND and OR can have both operands as scalars, arrays,
or one array and one scalar. If both are scalars, the result is a scalar 0 or 1. If
both are arrays, they must be of the same size and the logical operation is done
element-by-element. The result is an array of the same size with 1s and 0s
according to the outcome of the operation at each position. If one operand is a
scalar and the other is an array, the logical operation is done between the scalar
and each of the elements in the array and the outcome is an array of the same
size with 1s and 0s.

• The logical operation NOT has one operand. When it is used with a scalar the
outcome is a scalar 0 or 1. When it is used with an array, the outcome is an
array of the same size with 1s in positions where the array has nonzero num-
bers and 0s in positions where the array has 0s.

Following are some examples:

Logical operator Name Description

&
Example: A&B

AND Operates on two operands (A and B). If both
are true, the result is true (1); otherwise the
result is false (0). 

|

Example: A|B

OR Operates on two operands (A and B). If
either one, or both, are true, the result is true
(1); otherwise (both are false) the result is
false (0).

~

Example: ~A

NOT Operates on one operand (A). Gives the
opposite of the operand; true (1) if the oper-
and is false, and false (0) if the operand is
true. 

>> 3&7 3 AND 7.
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Order of precedence:
Arithmetic, relational, and logical operators can be combined in mathematical
expressions. When an expression has such a combination, the result depends on
the order in which the operations are carried out. The following is the order used
by MATLAB:

ans =
     1

>> a=5|0

a =
     1

>> ~25

ans =
     0

>> t=25*((12&0)+(~0)+(0|5))

t =
    50

>> x=[9 3 0 11 0 15]; y=[2 0 13 -11 0 4];

>> x&y
ans =
     1     0     0     1     0     1

>> z=x|y
z =
     1     1     1     1     0     1

>> ~(x+y)
ans =
     0     0     0     1     1     0

Precedence Operation

1 (highest) Parentheses (if nested parentheses exist, inner ones have
precedence)

2 Exponentiation
3 Logical NOT (~)
4 Multiplication, division
5 Addition, subtraction
6 Relational operators (>, <, >=, <=, = =, ~=)
7 Logical AND (&)
8 (lowest) Logical OR ( | )

3 and 7 are both true (nonzero), so the outcome is 1.

5 OR 0 (assign to variable a).
1 is assigned to a since at least one number is true (nonzero).

NOT 25.
The outcome is 0 since 25 is true 
(nonzero) and the opposite is false.

Using logical operators in a math expression.

Define two vec-
tors x and y.

The outcome is a vector with 1 in every position where 
both x and y are true (nonzero elements), and 0s otherwise.

The outcome is a vector with 1 in every position where either 
or both x and y are true (nonzero elements), and 0s otherwise.

The outcome is a vector with 0 in every position where 
the vector x + y is true (nonzero elements), and 1 in 
every position where x + y is false (zero elements).
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If two or more operations have the same precedence, the expression is executed in
order from left to right.

It should be pointed out here that the order shown above is the one used
since MATLAB 6. Previous versions of MATLAB used a slightly different order
(& did not have precedence over |), so the user must be careful. Compatibility
problems between different versions of MATLAB can be avoided by using paren-
theses even when they are not required.

The following are examples of expressions that include arithmetic, rela-
tional, and logical operators:

Built-in logical functions:
MATLAB has built-in functions that are equivalent to the logical operators. These
functions are:

and(A,B) equivalent to A&B
or(A,B) equivalent to A|B
not(A) equivalent to ~A

>> x=-2; y=5;

>> -5<x<-1
ans =
     0

>> -5<x & x<-1
ans =
     1

>> ~(y<7)
ans =
     0

>> ~y<7
ans =
     1

>> ~((y>=8)|(x<-1))
ans =
     0

>> ~(y>=8)|(x<-1)
ans =
     1

Define variables x and y.
This inequality is correct mathematically. The answer, 
however, is false since MATLAB executes from left to 
right. –5 < x is true (=1) and then 1 < –1 is false (0).

The mathematically correct statement is obtained by 
using the logical operator &. The inequalities are exe-
cuted first. Since both are true (1), the answer is 1.

y < 7 is executed first, it is true (1), and ~1 is 0.

~y is executed first. y is true (1) (since y 
is nonzero), ~1 is 0, and 0 < 7 is true (1).

y >= 8 (false), and x < –1 (true) are exe-
cuted first. OR is executed next (true). ~ 
is executed last, and gives false (0).

y >= 8 (false), and x < –1 (true) are executed 
first. NOT of (y >= 8) is executed next (true). 
OR is executed last, and gives true (1).
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In addition, MATLAB has other logical built-in functions, some of which are
described in the following table:

Function Description Example

xor(a,b) Exclusive or. Returns true (1) if
one operand is true and the
other is false.

>> xor(7,0)

ans =

     1

>> xor(7,-5)

ans =

     0

all(A) Returns 1 (true) if all elements
in a vector A are true (nonzero).
Returns 0 (false) if one or more
elements are false (zero).
If A is a matrix, treats columns
of A as vectors, and returns a
vector with 1s and 0s.

>> A=[6 2 15 9 7 11];

>> all(A)

ans =

     1

>> B=[6 2 15 9 0 11];

>> all(B)

ans =

     0

any(A) Returns 1 (true) if any element
in a vector A is true (nonzero).
Returns 0 (false) if all elements
are false (zero). 
If A is a matrix, treats columns
of A as vectors, and returns a
vector with 1s and 0s.

>> A=[6 0 15 0 0 11];

>> any(A)

ans =

     1

>> B = [0 0 0 0 0 0];

>> any(B)

ans =

     0

find(A)

find(A>d)

If A is a vector, returns the indi-
ces of the nonzero elements.
If A is a vector, returns the
address of the elements that are
larger than d (any relational
operator can be used).

>> A=[0 9 4 3 7 0 0 1 
8];

>> find(A)

ans =

     2     3     4     
5     8     9

>> find(A>4)

ans =

     2     5     9
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The operations of the four logical operators, and, or, xor, and not can be
summarized in a truth table:

Sample Problem 6-1: Analysis of temperature data

The following were the daily maximum temperatures (in F) in Washington, DC,
during the month of April 2002:  58 73 73 53 50 48 56 73 73 66 69 63 74 82 84 91
93 89 91 80 59 69 56 64 63 66 64 74 63 69 (data from the U.S. National Oceanic
and Atmospheric Administration). Use relational and logical operations to deter-
mine the following:
(a) The number of days the temperature was above 75 .
(b) The number of days the temperature was between 65  and 80 .
(c) The days of the month when the temperature was between 50  and 60 .
Solution
In the script file below the temperatures are entered in a vector. Relational and
logical expressions are then used to analyze the data.

INPUT OUTPUT

A B AND
A&B

OR
A|B

XOR
(A,B)

NOT
~A

NOT
~B

false false false false false true true

false true false true true true false

true false false true true false true

true true true true false false false

T=[58 73 73 53 50 48 56 73 73 66 69 63 74 82 84 ...

   91 93 89 91 80 59 69 56 64 63 66 64 74 63 69];

Tabove75=T>=75;

NdaysTabove75=sum(Tabove75)

Tbetween65and80=(T>=65)&(T<=80);

NdaysTbetween65and80=sum(Tbetween65and80)

datesTbetween50and60=find((T>=50)&(T<=60))

°

°
° °

° °

A vector with 1s at addresses where T >= 75. 
Add all the 1s in the vector Tabove75.

A vector with 1s at addresses 
where T >= 65 and T <= 80. 

Add all the 1s in the vector Tbetween65and80.

The function find returns the address of the ele-
ments in T that have values between 50 and 60.
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The script file (saved as Exp6_1) is executed in the Command Window:

6.2 CONDITIONAL STATEMENTS

A conditional statement is a command that allows MATLAB to make a decision
of whether to execute a group of commands that follow the conditional statement,
or to skip these commands. In a conditional statement a conditional expression is
stated. If the expression is true, a group of commands that follow the statement are
executed. If the expression is false, the computer skips the group. The basic form
of a conditional statement is:

Examples:
if a < b
if c >= 5
if a == b
if a ~= 0
if (d<h)&(x>7)
if (x~=13)|(y<0)

• Conditional statements can be a part of a program written in a script file or a
user-defined function (Chapter 7).

• As shown below, for every if statement there is an end statement.

The if statement is commonly used in three structures, if-end,
if-else-end, and if-elseif-else-end, which are described next. 

6.2.1 The if-end Structure
The if-end conditional statement is shown schematically in Figure 6-1. The fig-
ure shows how the commands are typed in the program, and a flowchart that sym-
bolically shows the flow, or the sequence, in which the commands are executed.
As the program executes, it reaches the if statement. If the conditional expres-

>> Exp6_1

NdaysTabove75 =
     7

NdaysTbetween65and80 =
    12

datesTbetween50and60 =
     1     4     5     7    21    23

For 7 days the temp was above 75.

For 12 days the temp was between 65 and 80.

Dates of the month with 
temp between 50 and 60.

if conditional expression consisting of relational and/or logical operators.

All the variables must
have assigned values.
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sion in the if statement is true (1), the program continues to execute the com-
mands that follow the if statement all the way down to the end statement. If the
conditional expression is false (0), the program skips the group of commands
between the if and the end, and continues with the commands that follow the
end.

The words if and end appear on the screen in blue, and the commands
between the if statement and the end statement are automatically indented (they
don’t have to be), which makes the program easier to read. An example where the
if-end statement is used in a script file is shown in Sample Problem 6-2.

Sample Problem 6-2: Calculating worker’s pay

A worker is paid according to his hourly wage up to 40 hours, and 50% more for
overtime. Write a program in a script file that calculates the pay to a worker. The
program asks the user to enter the number of hours and the hourly wage. The pro-
gram then displays the pay.
Solution
The program in a script file is shown below. The program first calculates the pay
by multiplying the number of hours by the hourly wage. Then an if statement
checks whether the number of hours is greater than 40. If so, the next line is exe-
cuted and the extra pay for the hours above 40 is added. If not, the program skips
to the end. 

Figure 6-1: The structure of the if-end conditional statement.

t=input('Please enter the number of hours worked  ');

h=input('Please enter the hourly wage in $  ');

Pay=t*h;

if t>40

......

......

......
if conditional expression

........

........

........
end
......
......
......

A group of
MATLAB commands.

MATLAB program.

MATLAB program.

Flowchart
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Application of the program (in the Command Window) for two cases is shown
below (the file was saved as Workerpay):

6.2.2 The if-else-end Structure

The if-else-end structure provides a means for choosing one group of com-
mands, out of a possible two groups, for execution. The if-else-end struc-
ture is shown in Figure 6-2. The figure shows how the commands are typed in the
program, and a flowchart that illustrates the flow, or the sequence, in which the

    Pay=Pay+(t-40)*0.5*h;

end

fprintf('The worker''s pay is  $ %5.2f',Pay)

>> Workerpay

Please enter the number of hours worked  35

Please enter the hourly wage in $  8

The worker’s pay is  $ 280.00

>> Workerpay

Please enter the number of hours worked  50

Please enter the hourly wage in $  10

The worker’s pay is  $ 550.00

Figure 6-2: The structure of the if-else-end conditional statement.

if
statement

True

Commands
group 1

False

end

Commands
group 2

......

......

if conditional expression
........
........
........

else
........
........
........

end
......
......

Group 1 of
MATLAB commands.

MATLAB program.

MATLAB program.

Group 2 of
MATLAB commands.

Flowchart
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commands are executed. The first line is an if statement with a conditional
expression. If the conditional expression is true, the program executes group 1 of
commands between the if and the else statements and then skips to the end. If
the conditional expression is false, the program skips to the else and then exe-
cutes group 2 of commands between the else and the end.

6.2.3 The if-elseif-else-end Structure

The if-elseif-else-end structure is shown in Figure 6-3. The figure
shows how the commands are typed in the program, and gives a flowchart that
illustrates the flow, or the sequence, in which the commands are executed. This
structure includes two conditional statements (if and elseif) that make it
possible to select one out of three groups of commands for execution. The first
line is an if statement with a conditional expression. If the conditional expression
is true, the program executes group 1 of commands between the if and the

elseif statements and then skips to the end. If the conditional expression in the
if statement is false, the program skips to the elseif statement. If the condi-
tional expression in the elseif statement is true, the program executes group 2
of commands between the elseif and the else and then skips to the end. If
the conditional expression in the elseif statement is false, the program skips to
the else and executes group 3 of commands between the else and the end.

It should be pointed out here that several elseif statements and associ-

Figure 6-3: The structure of the if-elseif-else-end conditional statement.

if
statement

True

Commands
group 1

False

end

Commands
group 2

Commands
group 3

elseif
statement

True

False

......

......

if conditional expression
........
........
........

elseif conditional expression
........
........
........

else
........
........
........

end
......
......

Group 1 of
MATLAB commands.

MATLAB program.

MATLAB program.

Group 2 of
MATLAB commands.

Flowchart

Group 3 of
MATLAB commands.
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ated groups of commands can be added. In this way more conditions can be
included. Also, the else statement is optional. This means that in the case of sev-
eral elseif statements and no else statement, if any of the conditional state-
ments is true the associated commands are executed; otherwise nothing is
executed.

The following example uses the if-elseif-else-end structure in a
program.

Sample Problem 6-3: Water level in water tower

The tank in a water tower has the geometry
shown in the figure (the lower part is a cylinder
and the upper part is an inverted frustum of a
cone). Inside the tank there is a float that indi-
cates the level of the water. Write a MATLAB
program that determines the volume of the
water in the tank from the position (height h) of
the float. The program asks the user to enter a
value of h in m, and as output displays the vol-
ume of the water in m3.
Solution
For m the volume of the water is given by the volume of a cylinder with
height h:  .
For m the volume of the water is given by adding the volume of a cyl-
inder with m, and the volume of the water in the cone:

where   .

The program is:

% The program calculates the volume of the water in the 
water tower.

h=input('Please enter the height of the float in meter  ');

if h > 33

   disp('ERROR. The height cannot be larger than 33 m.')

elseif h < 0
   disp('ERROR. The height cannot be a negative number.')

elseif h <= 19
   v = pi*12.5^2*h;

   fprintf('The volume of the water is %7.3f cubic meter.\n',v)

0 h 19≤ ≤
V π12.52h=

19 h 33≤<
h 19=

V π12.52 19⋅ 1
3
---π h 19–( ) 12.52 12.5 rh⋅ rh

2+ +( )+=

rh 12.5 10.5
14

---------- h 19–( )+=
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The following is the display in the Command Window when the program is used
with three different values of water height.

6.3 THE switch-case STATEMENT

The switch-case statement is another method that can be used to direct the
flow of a program. It provides a means for choosing one group of commands for
execution out of several possible groups. The structure of the statement is shown
in Figure 6-4.
• The first line is the switch command, which has the form:

The switch expression can be a scalar or a string. Usually it is a variable that has
an assigned scalar or a string. It can also be, however, a mathematical expression
that includes pre-assigned variables and can be evaluated.
• Following the switch command are one or several case commands. Each

has a value (can be a scalar or a string) next to it (value1, value2, etc.) and an
associated group of commands below it.

• After the last case command there is an optional otherwise command fol-
lowed by a group of commands.

• The last line must be an end statement.

How does the switch-case statement work?
The value of the switch expression in the switch command is compared with the
values that are next to each of the case statements. If a match is found, the group
of commands that follow the case statement with the match are executed. (Only
one group of commands—the one between the case that matches and either the

else

   rh=12.5+10.5*(h-19)/14;
   v=pi*12.5^2*19+pi*(h-19)*(12.5^2+12.5*rh+rh^2)/3;

   fprintf('The volume of the water is %7.3f cubic meter.\n',v)
end

Please enter the height of the float in meter  8
The volume of the water is 3926.991 cubic meter.

Please enter the height of the float in meter  25.7
The volume of the water is 14114.742 cubic meter.

Please enter the height of the float in meter  35
ERROR. The height cannot be larger than 33 m.

switch  switch expression
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case, otherwise, or end statement that is next—is executed).
• If there is more than one match, only the first matching case is executed.

• If no match is found and the otherwise statement (which is optional) is
present, the group of commands between otherwise and end is executed.

• If no match is found and the otherwise statement is not present, none of the
command groups is executed.

• A case statement can have more than one value. This is done by typing the
values in the form: {value1, value2, value3, ...}. (This form,
which is not covered in this book, is called a cell array.) The case is executed if
at least one of the values matches the value of switch expression.

A Note: In MATLAB only the first matching case is executed. After the group of
commands associated with the first matching case are executed, the program skips
to the end statement. This is different from the C language, where break state-
ments are required.

Sample Problem 6-4: Converting units of energy

Write a program in a script file that converts a quantity of energy (work) given in
units of either joule, ft-lb, cal, or eV to the equivalent quantity in different units
specified by the user. The program asks the user to enter the quantity of energy, its

Figure 6-4: The structure of a switch-case statement.

......

......

switch switch expression
case value1
........
........
case value2
........
........
case value3
........
........
otherwise
........
........

end
......
......

Group 1 of commands.

MATLAB program.

MATLAB program.

Group 2 of commands.

Group 3 of commands.

Group 4 of commands.
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current units, and the desired new units. The output is the quantity of energy in the
new units.

The conversion factors are: 1 ft-lb cal eV.
Use the program to:
(a) Convert 150 J to ft-lb.
(b) Convert 2,800 cal to J.
(c) Convert 2.7 eV to cal.
Solution
The program includes two sets of switch-case statements and one if-
else-end statement. The first switch-case statement is used to convert the
input quantity from its initial units to units of joules. The second is used to
convert the quantity from joules to the specified new units. The if-else-end
statement is used to generate an error message if units are entered incorrectly.

Ein=input('Enter the value of the energy (work) to be converted: ');

EinUnits=input('Enter the current units (J, ft-lb, cal, or eV):  ','s');

EoutUnits=input('Enter the new units (J, ft-lb, cal, or eV):  ','s');

error=0;

switch EinUnits

case 'J'

    EJ=Ein;

case 'ft-lb'

    EJ=Ein/0.738;

case 'cal'

    EJ=Ein/0.239;

case 'eV'

    EJ=Ein/6.24e18;

otherwise

    error=1;

end

switch EoutUnits

case 'J'

    Eout=EJ;

case 'ft-lb'

    Eout=EJ*0.738;

case 'cal'

    Eout=EJ*0.239;

case 'eV'

    Eout=EJ*6.24e18;

J 0.738= 0.239= 6.24 1018×=

Assign 0 to variable error.
First switch statement. Switch expres-
sion is a string with initial units.

Each of the four case statements has
a value (string) that corresponds to
one of the initial units, and a com-
mand that converts Ein to units of J.
(Assign the value to EJ.)

Assign 1 to error if no match is found. Possi-
ble only if initial units were typed incorrectly.

Second switch statement. Switch
expression is a string with new units.

Each of the four case statements has
a value (string) that corresponds to
one of the new units, and a command
that converts EJ to the new units.
(Assign the value to Eout.)
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As an example, the script file (saved as EnergyConversion) is used next in the
Command Window to make the conversion in part (b) of the problem statement.

6.4 LOOPS

A loop is another method to alter the flow of a computer program. In a loop, the
execution of a command, or a group of commands, is repeated several times con-
secutively. Each round of execution is called a pass. In each pass at least one vari-
able, but usually more than one, or even all the variables that are defined within
the loop, are assigned new values. MATLAB has two kinds of loops. In for-end
loops (Section 6.4.1) the number of passes is specified when the loop starts. In
while-end loops (Section 6.4.2) the number of passes is not known ahead of
time, and the looping process continues until a specified condition is satisfied.
Both kinds of loops can be terminated at any time with the break command (see
Section 6.6).

6.4.1 for-end Loops
In for-end loops the execution of a command, or a group of commands, is
repeated a predetermined number of times. The form of a loop is shown in Figure
6-5.
• The loop index variable can have any variable name (usually i, j, k, m, and n

are used, however, i and j should not be used if MATLAB is used with com-
plex numbers).

otherwise
    error=1;

end

if error

    disp('ERROR current or new units are typed incorrectly.')

else

    fprintf('E = %g %s',Eout,EoutUnits)

end

>> EnergyConversion

Enter the value of the energy (work) to be converted: 2800

Enter the current units (J, ft-lb, cal, or eV):  cal

Enter the new units (J, ft-lb, cal, or eV):  J

E = 11715.5 J

Assign 1 to error if no match is found. Pos-
sible only if new units were typed incorrectly.

If-else-end statement.

If error is true (nonzero), 
display an error message.

If error is false (zero), display converted energy.
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• In the first pass k = f and the computer executes the commands between the
for and end commands. Then, the program goes back to the for command
for the second pass. k obtains a new value equal to k = f + s, and the com-
mands between the for and end commands are executed with the new value
of k. The process repeats itself until the last pass, where k = t. Then the pro-
gram does not go back to the for, but continues with the commands that fol-
low the end command. For example, if k = 1:2:9, there are five loops, and the
corresponding values of k are 1, 3, 5, 7, and 9.

• The increment s can be negative (i.e.; k = 25:–5:10 produces four passes with
k = 25, 20, 15, 10).

• If the increment value s is omitted, the value is 1 (default) (i.e.; k = 3:7 pro-
duces five passes with k = 3, 4, 5, 6, 7).

• If f = t, the loop is executed once.

• If f > t and s > 0, or if f < t and s < 0, the loop is not executed.

• If the values of k, s, and t are such that k cannot be equal to t, then if s is
positive, the last pass is the one where k has the largest value that is smaller
than t (i.e., k = 8:10:50 produces five passes with k = 8, 18, 28, 38, 48). If s is
negative, the last pass is the one where k has the smallest value that is larger
than t.

• In the for command k can also be assigned a specific value (typed as a vec-
tor). Example: for k = [7 9 –1 3 3 5].

• The value of k should not be redefined within the loop.

• Each for command in a program must have an end command.

• The value of the loop index variable (k) is not displayed automatically. It is
possible to display the value in each pass (which is sometimes useful for
debugging) by typing k as one of the commands in the loop.

Figure 6-5: The structure of a for-end loop.

for k = f:s:t
      ........
      ........
      ........
end

A group of
MATLAB commands.

Loop index 
variable.

The value of k
in the first pass.

The increment in k 
after each pass.

The value of k 
in the last pass.
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• When the loop ends, the loop index variable (k) has the value that was last
assigned to it.

A simple example of a for-end loop (in a script file) is:

When this program is executed, the loop is executed four times. The value of k in
the four passes is k = 1, 4, 7, and 10, which means that the values that are assigned
to x in the passes are x = 1, 16, 49, and 100, respectively. Since a semicolon is not
typed at the end of the second line, the value of x is displayed in the Command
Window at each pass. When the script file is executed, the display in the Com-
mand Window is: 

Sample Problem 6-5: Sum of a series

(a) Use a for-end loop in a script file to calculate the sum of the first n terms of

the series: . Execute the script file for n = 4 and n = 20.

(b) The function sin(x) can be written as a Taylor series by:

Write a user-defined function file that calculates sin(x) by using the Taylor series.
For the function name and arguments use y = Tsin(x,n). The input arguments
are the angle x in degrees and n the number of terms in the series. Use the func-
tion to calculate sin(150 ) using three and seven terms.
Solution
(a) A script file that calculates the sum of the first n terms of the series is shown
below. 
The summation is done with a loop. In each pass one term of the series is calcu-

for k=1:3:10

     x = k^2

end

>> x =
     1

x =
    16

x =
    49

x =
   100

1–( )kk
2k

----------------
k 1=

n

∑

xsin 1–( )kx2k 1+

2k 1+( )!
---------------------------

k 0=

∞

∑=

°
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lated (in the first pass the first term, in the second pass the second term, and so on)
and is added to the sum of the previous elements. The file is saved as Exp6_5a and
then executed twice in the Command Window:

(b) A user-defined function file that calculates sin(x) by adding n terms of a
Taylor series is shown below.

The first element corresponds to k = 0, which means that in order to add n terms of
the series, in the last loop k = n – 1. The function is used in the Command Window
to calculate sin(150 ) using three and seven terms:

n=input('Enter the number of terms ' );

S=0;

for k=1:n

    S=S+(-1)^k*k/2^k;

end

fprintf('The sum of the series is: %f',S)

>> Exp6_5a

Enter the number of terms 4

The sum of the series is: -0.125000

>> Exp7_5a

Enter the number of terms 20

The sum of the series is: -0.222216

function y = Tsin(x,n)

% Tsin calculates the sin using Taylor formula.

% Input arguments:

% x The angle in degrees, n number of terms.

xr=x*pi/180;

y=0;

for k=0:n-1

     y=y+(-1)^k*xr^(2*k+1)/factorial(2*k+1);

end

>> Tsin(150,3)

ans =
      0.6523

Setting the sum to zero.
In each pass one element of the 
series is calculated and is added 
to the sum of the elements from 
the previous passes.

for-end 
loop.

Converting the angle from degrees to radians.

for-end 
loop.

°

Calculating sin(150o) with three terms of Taylor series.
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A note about for-end loops and element-by-element operations:
In some situations the same end result can be obtained by either using for-end
loops or using element-by-element operations. Sample Problem 6-5 illustrates
how the for-end loop works, but the problem can also be solved by using ele-
ment-by-element operations (see Problems 7 and 8 in Section 3.9). Element-by-
element operations with arrays are one of the superior features of MATLAB that
provide the means for computing in circumstances that otherwise require loops. In
general, element-by-element operations are faster than loops and are recom-
mended when either method can be used.

Sample Problem 6-6: Modify vector elements

A vector is given by V = [5, 17, –3, 8, 0, –7, 12, 15, 20, –6, 6, 4, –7, 16]. Write a
program as a script file that doubles the elements that are positive and are divisible
by 3 or 5, and, raises to the power of 3 the elements that are negative but greater
than –5.
Solution
The problem is solved by using a for-end loop that has an if-elseif-end
conditional statement inside. The number of passes is equal to the number of ele-
ments in the vector. In each pass one element is checked by the conditional state-
ment. The element is changed if it satisfies the conditions in the problem
statement. A program in a script file that carries out the required operations is:

>> Tsin(150,7)
ans =
      0.5000

V=[5, 17, -3, 8, 0, -7, 12, 15, 20 -6, 6, 4, -2, 16];

n=length(V);

for k=1:n

   if V(k)>0 & (rem(V(k),3) = = 0 | rem(V(k),5) = = 0)

        V(k)=2*V(k);

   elseif V(k) < 0 & V(k) > -5

        V(k)=V(k)^3;

   end

end

V

Calculating sin(150 ) with seven terms of Taylor series.°

The exact value is 0.5.

Setting n to be equal to the number of elements in V.

if-
elseif-
end
statement.

for-end 
loop.
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The file is saved as Exp7_6 and then executed in the Command Window:

6.4.2 while-end Loops

while-end loops are used in situations when looping is needed but the number
of passes is not known in advance. In while-end loops the number of passes is
not specified when the looping process starts. Instead, the looping process contin-
ues until a stated condition is satisfied. The structure of a while-end loop is
shown in Figure 6-6.

The first line is a while statement that includes a conditional expression.
When the program reaches this line the conditional expression is checked. If it is
false (0), MATLAB skips to the end statement and continues with the program. If
the conditional expression is true (1), MATLAB executes the group of commands
that follow between the while and end commands. Then MATLAB jumps back
to the while command and checks the conditional expression. This looping pro-
cess continues until the conditional expression is false.
For a while-end loop to execute properly:

• The conditional expression in the while command must include at least one
variable.

• The variables in the conditional expression must have assigned values when
MATLAB executes the while command for the first time.

• At least one of the variables in the conditional expression must be assigned a
new value in the commands that are between the while and the end. Other-
wise, once the looping starts it will never stop since the conditional expression
will remain true.

An example of a simple while-end loop is shown in the following program. In

>> Exp7_6

V =
   10   17  -27    8    0   -7   24   30   40   -6   12   4
-8   16

Figure 6-6: The structure of a while-end loop.

while conditional expression
      ........
      ........
      ........
end

A group of
MATLAB commands.
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this program a variable x with an initial value of 1 is doubled in each pass as long
as its value is equal to or smaller than 15. 

When this program is executed the display in the Command Window is:

Important note: 
When writing a while-end loop, the programmer has to be sure that the variable
(or variables) that are in the conditional expression and are assigned new values
during the looping process will eventually be assigned values that make the condi-
tional expression in the while command false. Otherwise the looping will con-
tinue indefinitely (indefinite loop). In the example above if the conditional
expression is changed to x >= 0.5, the looping will continue indefinitely. Such a
situation can be avoided by counting the passes and stopping the looping if the
number of passes exceeds some large value. This can be done by adding the max-
imum number of passes to the conditional expression, or by using the break
command (Section 6.6).

Since no one is free from making mistakes, a situation of indefinite looping
can occur in spite of careful programming. If this happens, the user can stop the
execution of an indefinite loop by pressing the Ctrl + C or Ctrl + Break keys. 

Sample Problem 6-7:  Taylor series representation of a function

The function  can be represented in a Taylor series by  .

Write a program in a script file that determines  by using the Taylor series rep-
resentation. The program calculates  by adding terms of the series and stopping

x=1

while x<=15

    x=2*x

end

x =
     1

x =
     2

x =
     4

x =
     8

x =
    16

Initial value of x is 1.
The next command is executed only if x <= 15.

In each pass x doubles.

Initial value of x.

In each pass x doubles.

When x = 16, the conditional expression in the
while command is false and the looping stops.

f x( ) ex= ex xn

n!
-----

n 0=

∞

∑=

ex

ex

khalid
Highlight
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when the absolute value of the term that was added last is smaller than 0.0001.
Use a while-end loop, but limit the number of passes to 30. If in the 30th pass
the value of the term that is added is not smaller than 0.0001, the program stops
and displays a message that more than 30 terms are needed.

Use the program to calculate , , and .
Solution
The first few terms of the Taylor series are:

A program that uses the series to calculate the function is shown next. The
program asks the user to enter the value of x. Then the first term, an, is assigned
the number 1, and an is assigned to the sum S. Then, from the second term on, the
program uses a while loop to calculate the nth term of the series and add it to the
sum. The program also counts the number of terms n. The conditional expression
in the while command is true as long as the absolute value of the nth an term is
larger than 0.0001, and the number of passes n is smaller than 30. This means that
if the 30th term is not smaller than 0.0001, the looping stops. 

The program uses an if-else-end statement to display the results. If the loop-
ing stopped because the 30th term is not smaller than 0.0001, it displays a mes-
sage indicating this. If the value of the function is calculated successfully, it
displays the value of the function and the number of terms used. When the pro-
gram executes, the number of passes depends on the value of x. The program
(saved as expox) is used to calculate , , and : 

x=input('Enter x ' );

n=1; an=1; S=an;

while abs(an) >= 0.0001 & n <= 30

    an=x^n/factorial(n);

    S=S+an;

    n=n+1;

end

if n >= 30

    disp('More than 30 terms are needed')

else

fprintf('exp(%f) = %f',x,S)

fprintf('\nThe number of terms used is: %i',n)

end

>> expox

e2 e 4– e21

ex 1 x x2

2!
----- x3

3!
----- …+ + + +=

Start of the while loop.
Calculating the nth term.

Adding the nth term to the sum.
Counting the number of passes.

End of the while loop.
if-else-end loop.

e2 e 4– e21
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Highlight
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6.5 NESTED LOOPS AND NESTED CONDITIONAL STATEMENTS

Loops and conditional statements can be nested within other loops or conditional
statements. This means that a loop and/or a conditional statement can start (and
end) within another loop or conditional statement. There is no limit to the number
of loops and conditional statements that can be nested. It must be remembered,
however, that each if, case, for, and while statement must have a corre-
sponding end statement. Figure 6-7 shows the structure of a nested for-end

loop within another for-end loop. In the loops shown in this figure, if, for
example, n = 3 and m = 4, then first k = 1 and the nested loop executes four times
with h = 1, 2, 3, 4. Next k = 2 and the nested loop executes again four times with
h = 1, 2, 3, 4. Finally k = 3 and the nested loop executes again four times. Every
time a nested loop is typed, MATLAB automatically indents the new loop relative
to the outside loop. Nested loops and conditional statements are demonstrated in
the following sample problem.

Enter x 2

exp(2.000000) = 7.389046

The number of terms used is: 12

>> expox

Enter x -4

exp(-4.000000) = 0.018307

The number of terms used is: 18

>> expox

Enter x 21

More than 30 terms are needed

Figure 6-7: Structure of nested loops.

Calculating exp(2).

12 terms used.

Calculating exp(–4).

18 terms used.

Trying to calculate exp(21).

for k = 1:n
for h = 1:m

      ........
          ........
     ........

end
end

A group of
commands.

Nested
loop

Loop

Every time k 
increases by 1, the 
nested loop executes 
m times. Overall, the 
group of commands 
are executed  
times.

n m×
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Sample Problem 6-8: Creating a matrix with a loop

Write a program in a script file that creates an  matrix with elements that
have the following values. The value of each element in the first row is the num-
ber of the column. The value of each element in the first column is the number of
the row. The rest of the elements each has a value equal to the sum of the element
above it and the element to the left. When executed, the program asks the user to
enter values for n and m.
Solution
The program, shown below, has two loops (one nested) and a nested if-
elseif-else-end structure. The elements in the matrix are assigned values
row by row. The loop index variable of the first loop, k, is the address of the row,
and the loop index variable of the second loop, h, is the address of the column.

The program is executed in the Command Window to create a  matrix.

n=input('Enter the number of rows ');

m=input('Enter the number of columns ');

A=[];

for k=1:n

   for h=1:m

      if k==1

          A(k,h)=h;

      elseif h==1

          A(k,h)=k;

      else

          A(k,h)=A(k,h-1)+A(k-1,h);

      end

   end

end

A

>> Chap6_exp8

Enter the number of rows 4

Enter the number of columns 5

n m×

Define an empty matrix A
Start of the first for-end loop.

Start of the second for-end loop.
Start of the conditional statement.

Assign values to the elements of the first row.

Assign values to the elements of the first column.

Assign values to other elements.
end of the if statement.

end of the nested for-end loop.
end of the first for-end loop.

4 5×
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6.6 THE break AND continue COMMANDS

The break command:

• When inside a loop (for or while), the break command terminates the
execution of the loop (the whole loop, not just the last pass). When the break
command appears in a loop, MATLAB jumps to the end command of the loop
and continues with the next command (it does not go back to the for com-
mand of that loop).

• If the break command is inside a nested loop, only the nested loop is termi-
nated.

• When a break command appears outside a loop in a script or function file, it
terminates the execution of the file.

• The break command is usually used within a conditional statement. In loops
it provides a method to terminate the looping process if some condition is met
—for example, if the number of loops exceeds a predetermined value, or an
error in some numerical procedure is smaller than a predetermined value.
When typed outside a loop, the break command provides a means to termi-
nate the execution of a file, such as when data transferred into a function file is
not consistent with what is expected.

The continue command:

• The continue command can be used inside a loop (for or while) to stop
the present pass and start the next pass in the looping process.

• The continue command is usually a part of a conditional statement. When
MATLAB reaches the continue command, it does not execute the remain-
ing commands in the loop, but skips to the end command of the loop and then
starts a new pass.

A =
     1     2     3     4     5
     2     4     7    11    16
     3     7    14    25    41
     4    11    25    50    91
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6.7 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 6-9: Withdrawing from a retirement account.

A person in retirement is depositing $300,000 in a saving account that pays 5%
interest per year. The person plans to withdraw money from the account once a
year. He starts by withdrawing $25,000 after the first year, and in future years he
increases the amount he withdraws according to the inflation rate. For example, if
the inflation rate is 3%, he withdraws $25,750 after the second year. Calculate the
number of years the money in the account will last assuming a constant yearly
inflation rate of 2%. Make a plot that shows the yearly withdrawals and the bal-
ance of the account over the years.
Solution
The problem is solved by using a loop (a while loop since the number of passes
is not known before the loop starts). In each pass the amount to be withdrawn and
the account balance are calculated. The looping continues as long as the account
balance is larger than or equal to the amount to be withdrawn. The following is a
program in a script file that solves the problem. In the program, year is a vector
in which each element is a year number, W is a vector with the amount withdrawn
each year, and AB is a vector with the account balance each year.

rate=0.05; inf=0.02;

clear W AB year

year(1)=0;

W(1)=0;

AB(1)=300000;

Wnext=25000;

ABnext=300000*(1 + rate);

n=2;

    while ABnext >= Wnext

        year(n)=n-1;

        W(n)=Wnext;

        AB(n)=ABnext-W(n);

        ABnext=AB(n)*(1+rate);

        Wnext=W(n)*(1+inf);

        n=n+1;

    end

fprintf('The money will last for %f years',year(n-1))

bar(year,[AB' W'],2.0)

First element is year 0. 
Initial withdrawal amount.

Initial account balance.
The amount to be withdrawn after a year.

The account balance after a year.

while checks if the next balance
is larger than the next withdrawal.

Amount withdrawn in year n – 1.
Account balance in year n – 1 after withdrawal.

The account balance after additional year.

The amount to be withdrawn 
after an additional year.
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The program is executed in the following Command Window:

The program also generates the following figure (axis labels and legend were
added to the plot by using the Plot Editor).

Sample Problem 6-10: Creating a random list

Six singers—John, Mary, Tracy, Mike, Katie, and David—are performing in a
competition. Write a MATLAB program that generates a list of a random order in
which the singers will perform.
Solution
An integer (1 through 6) is assigned to each name (1 to John, 2 to Mary, 3 to
Tracy, 4 to Mike, 5 to Katie, and 6 to David). The program, shown below, first cre-
ates a list of the integers 1 through 6 in a random order. The integers are made the
elements of six-element vector. This is done by using MATLAB’s built-in func-
tion randi (see Section 3.7) for assigning integers to the elements of the vector.
To make sure that all the integers of the elements are different from each other, the
integers are assigned one by one. Each integer that is suggested by the randi
function is compared with all the integers that have been assigned to previous ele-
ments. If a match is found, the integer is not assigned, and randi is used for sug-
gesting a new integer. Since each singer name is associated with an integer, once
the integer list is complete the switch-case statement is used to create the cor-
responding name list. 

>> Chap6_exp9

The money will last for 15 years.

clear, clc

n=6;
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The while loop checks that every new integer (element) that is to be added to the
vector L is not equal any of the integers in elements already in the vector L. If a
match is found, it keeps generating new integers until the new integer is different
from all the integers that are already in x.

When the program is executed, the following is displayed in the Command
Window. Obviously, a list in a different order will be displayed every time the pro-
gram is executed.

L(1)=randi(n);

for p=2:n

    L(p)=randi(n);

    r=0;

    while r==0

      r=1;

      for k=1:p-1

         if L(k)==L(p)

           L(p)=randi(n);

           r=0;

           break

         end

      end

    end

end

for i=1:n
    switch L(i)
    case 1
        disp('John')
    case 2
        disp('Mary')
    case 3
        disp('Tracy')
    case 4
        disp('Mike')
    case 5
        disp('Katie')
    case 6
        disp('David')
    end
end

The performing order is:

Assign the first integer to L(1).

Assign the next integer to L(p).
Set r to zero. 

See explanation below. 
Set r to 1. 

for loop compares the integer assigned to L(p)to the 
integers that have been assigned to previous elements.   

If a match if found, a 
new integer is 
assigned to L(p) and 
r is set to zero.

The nested for loop is stopped. The pro-
gram goes back to the while loop. Since 
r = 0 the nested loop inside the while 
loop starts again and checks if the new 
integer that is assigned to L(p) is equal to 
an integer that is already in the vector L.

The switch-case state-
ment lists the names 
according to the values of 
the integers in the elements 
of L.
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Sample Problem 6-11: Flight of a model rocket

The flight of a model rocket can be modeled as follows.
During the first 0.15s the rocket is propelled upward by the
rocket engine with a force of 16 N. The rocket then flies up
while slowing down under the force of gravity. After it
reaches the apex, the rocket starts to fall back down. When
its downward velocity reaches 20 m/s a parachute opens
(assumed to open instantly), and the rocket continues to
drop at a constant speed of 20 m/s until it hits the ground.
Write a program that calculates and plots the speed and alti-
tude of the rocket as a function of time during the flight.
Solution
The rocket is assumed to be a particle that moves along a
straight line in the vertical plane. For motion with constant acceleration along a
straight line, the velocity and position as a function of time are given by:

   and   

where  and  are the initial velocity and position, respectively. In the computer
program the flight of the rocket is divided into three segments. Each segment is
calculated in a while loop. In every pass the time increases by an increment.
Segment 1: The first 0.15s when the rocket engine is on.
During this period, the rocket moves up with a constant
acceleration. The acceleration is determined by drawing a
free body and a mass acceleration diagram (shown on the
right). From Newton’s second law, the sum of the forces
in the vertical direction is equal to the mass times the
acceleration (equilibrium equation):

 +
Solving the equation for the acceleration gives:

Katie

Tracy

David

Mary

John

Mike

v t( ) v0 at+= s t( ) s0 v0t 1
2
---at2+ +=

v0 s0

ΣF FE mg– ma= =

a
FE mg–

m
--------------------=
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The velocity and height as a function of time are:

   and    
where the initial velocity and initial position are both zero. In the computer pro-
gram this segment starts at t = 0, and the looping continues as long as  s.
The time, velocity, and height at the end of this segment are , , and .
Segment 2: The motion from when the engine stops until the parachute opens. In
this segment the rocket moves with a constant deceleration g. The speed and
height of the rocket as functions of time are given by:
 

   and   

In this segment the looping continues until the velocity of the rocket is –20 m/s
(negative since the rocket moves down). The time and height at the end of this
segment are  and .
Segment 3: The motion from when the parachute opens until the rocket hits the
ground. In this segment the rocket moves with constant velocity (zero accelera-
tion). The height as a function of time is given by , where

 is the constant velocity after the parachute opens. In this segment the loop-
ing continues as long as the height is greater than zero.

A program in a script file that carries out the calculations is shown below.

m=0.05; g=9.81; tEngine=0.15; Force=16; vChute=-20; Dt=0.01;

clear t v h

n=1;

t(n)=0; v(n)=0; h(n)=0;

% Segment 1

a1=(Force-m*g)/m;

while t(n) < tEngine & n < 50000

    n=n+1;

    t(n)=t(n-1)+Dt;

    v(n)=a1*t(n);

    h(n)=0.5*a1*t(n)^2;

end

v1=v(n); h1=h(n); t1=t(n);

% Segment 2

while v(n) >= vChute & n < 50000

    n=n+1;

    t(n)=t(n-1)+Dt;

    v(n)=v1-g*(t(n)-t1);

v t( ) 0 at+= h t( ) 0 0 1
2
---at2+ +=

t 0.15<
t1 v1 h1

v t( ) v1 g t t1–( )–= h t( ) h1 v1 t t1–( ) 1
2
---g t t1–( )2–+=

t2 h2

h t( ) h2 vchute t t2–( )–=
vchute

The first while loop.

The second while loop.
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The accuracy of the results depends on the magnitude of the time increment
Dt. An increment of 0.01 s appears to give good results. The conditional expres-
sion in the while commands also includes a condition for n (if n is larger than
50,000 the loop stops). This is done as a precaution to avoid an infinite loop in
case there is an error in an of the statements inside the loop. The plots generated
by the program are shown below (axis labels and text were added to the plots
using the Plot Editor).

Note:  The problem can be solved and programmed in different ways. The solu-
tion shown here is one option. For example, instead of using while loops, the
times when the parachute opens and when the rocket hits the ground can be calcu-
lated first, and then for-end loops can be used instead of the while loop. If the
times are determined first, it is possible also to use element-by-element calcula-
tions instead of loops.

    h(n)=h1+v1*(t(n)-t1)-0.5*g*(t(n)-t1)^2;

end

v2=v(n); h2=h(n); t2=t(n);

% Segment 3

while h(n) > 0 & n < 50000

   n=n+1;

    t(n)=t(n-1)+Dt;

    v(n)=vChute;

    h(n)=h2+vChute*(t(n)-t2);

end

subplot(1,2,1)

plot(t,h,t2,h2,'o')

subplot(1,2,2)

plot(t,v,t2,v2,'o')

The third while loop.
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Sample Problem 6-12: AC to DC converter

A half-wave diode rectifier is an elec-
trical circuit that converts AC voltage
to DC voltage. A rectifier circuit that
consists of an AC voltage source, a
diode, a capacitor, and a load (resis-
tor) is shown in the figure. The volt-
age of the source is ,
where , in which f is the fre-
quency. The operation of the circuit is
illustrated in the lower diagram where
the dashed line shows the source volt-
age and the solid line shows the volt-
age across the resistor. In the first
cycle, the diode is on (conducting
current) from  until . At
this time the diode turns off and the
power to the resistor is supplied by the discharging capacitor. At  the diode
turns on again and continues to conduct current until . The cycle continues
as long as the voltage source is on. In this simplified analysis of this circuit, the
diode is assumed to be ideal and the capacitor is assumed to have no charge ini-
tially (at ). When the diode is on, the resistor’s voltage and current are given
by:

  and  
The current in the capacitor is:

When the diode is off, the voltage across the resistor is given by:

The times when the diode switches off ( , , and so on) are calculated from the
condition . The diode switches on again when the voltage of the source
reaches the voltage across the resistor (time  in the figure). 

Write a MATLAB program that plots the voltage across the resistor  and
the voltage of the source  as a function of time for  ms. The resistance
of the load is 1,800 Ω , the voltage source V, and Hz. To examine
the effect of capacitor size on the voltage across the load, execute the program
twice, once with  μF and once with  μF.

vR v0 ωt( )e
t tA–( )–( ) RC( )⁄

sin=
vs v0 ωt( )sin=

ω 2πf=

t 0= t tA=

t tB=
t tD=

t 0=

vR v0 ωt( )sin= iR v0 ωt( ) R⁄sin=

iC ωCv0 ωt( )cos=

vR v0 ωtA( )e
t tA–( )–( ) RC( )⁄

sin=

tA tD

iR iC–=

tB

vR

vs 0 t 70≤ ≤
v0 12= f 60=

C 45= C 10=
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Solution
A program that solves the problem is presented below. The program has two
parts—one that calculates the voltage  when the diode is on, and the other when
the diode is off. The switch command is used for switching between the two
parts. The calculations start with the diode on (the variable state=‘on’), and
when  the value of state is changed to ‘off’, and the program
switches to the commands that calculate  for this state. These calculations con-
tinue until , when the program switches back to the equations that are valid
when the diode is on.

V0=12; C=45e-6; R=1800; f=60;

Tf=70e-3; w=2*pi*f;

clear t VR Vs

t=0:0.05e-3:Tf;

n=length(t);

state='on'

for i=1:n

   Vs(i)=V0*sin(w*t(i));

   switch state

      case 'on'

      VR(i)=Vs(i);

      iR=Vs(i)/R;

      iC=w*C*V0*cos(w*t(i));

      sumI=iR+iC;

      if sumI <= 0

          state='off ';

          tA=t(i);

      end

      case 'off '

      VR(i)=V0*sin(w*tA)*exp(-(t(i)-tA)/(R*C));

      if Vs(i) >= VR(i)

         state='on';

      end

   end

end

plot(t,Vs,':',t,VR,'k','linewidth',1)

xlabel('Time (s)'); ylabel('Voltage (V)')

vR

iR iC– 0≤
vR

vs vR≥

Assign ‘on’ to the variable state.

Calculate the voltage of the source at time t.

Diode is on.

Check if .iR iC– 0≤

If true, assign ‘off’ to state.
Assign a value to .tA

Diode is off.

Check if .vs vR≥

If true, assign 
‘on’ to the 
variable state.
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The two plots generated by the program are shown below. One plot shows the
result with  μF and the other with  μF. It can be observed that with
a larger capacitor the DC voltage is smoother (smaller ripple in the wave).  

        

6.8 PROBLEMS

1. Evaluate the following expressions without using MATLAB. Check the
answer with MATLAB.
(a) (b)
(c) (d) =~ ~0

2. Given: , , . Evaluate the following expressions without
using MATLAB. Check the answer with MATLAB.
(a) (b)
(c) (d) = =~( ~ = )

3. Given: v = [4  –2  –1  5  0  1  –3  8  2] and w = [0  2  1  –1  0  –2  4  3  2]. Evaluate
the following expressions without using MATLAB. Check the answer with
MATLAB.
(a) ~(~v) (b) u = = v
(c) (d)

C 45= C 10=
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5 3+ 32 4⁄> y 2 3× 10 5⁄> 1 22>+=

y 2 3 10 5⁄>( )× 1 2>( )2+= 5 3 4 4 <×–× 2 4 2–× +

a 6= b 2= c 5–=

y a b+ a b– c<>= y 6– c 2–< <=

y b c >+= c= a b⁄> y a c+= c a+ a b⁄ b–

u v– u< u v u<( )–
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4. Use the vectors v and w from Problem 3. Use relational operators to create a
vector y that is made up of the elements of w that are larger than or equal to the
elements of v.

5. Evaluate the following expressions without using MATLAB. Check the
answer with MATLAB.
(a) 0&21 (b) ~–2>–1&11>=~0
(c) 4–7/2&6<5|-3 (d) 3|–1&~2*–3|0

6. The maximum daily temperature (in F) for Chicago and San Francisco dur-
ing the month of August 2009 are given in the vectors below (data from the
U.S. National Oceanic and Atmospheric Administration).
TCH = [75  79  86  86  79  81  73  89  91  86  81  82  86  88  89  90  82  84  81
79  73  69  73  79  82  72  66  71  69  66  66]
TSF = [69  68  70  73  72  71  69  76  85  87  74  84  76  68  79  75  68  68  73
72  79  68  68  69  71  70  89  95  90  66  69]
Write a program in a script file to answer the following:
(a) Calculate the average temperature for the month in each city.
(b) How many days was the temperature above the average in each city?
(c) How many days, and on which dates in the month, was the temperature in

San Francisco lower than the temperature in Chicago?
(d) How many days, and on which dates in the month, was the temperature

the same in both cities?

7. Fibonacci numbers are the numbers in a sequence in which the first two ele-
ments are 0 and 1, and the value of each subsequent element is the sum of the
previous two elements:

0, 1, 1, 2, 3, 5, 8, 13, ...
Write a MATLAB program in a script file that determines and displays the
first 20 Fibonacci numbers.

8. Use loops to create a  matrix in which the value of each element is the
sum of its row number and its column number divided by the square of its col-
umn number. For example, the value of element (2,3) is .

9. The elements of the symmetric Pascal matrix are obtained from:

Write a MATLAB program that creates an  symmetric Pascal matrix.
Use the program to create  and  Pascal matrices.

°

4 3×

2 3+( ) 32⁄ 0.5555=

Pij
i j 2–+( )!

i 1–( )! j 1–( )!
-----------------------------------=

n n×
4 4× 7 7×
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10. A Fibonacci sequence is a sequence of numbers beginning with 0 and 1,
where the value of each subsequent element is the sum of the previous two
elements:

,  i.e.  0, 1, 1, 2, 3, 5, 8, 13, ...
Related sequences can be constructed with other beginning numbers. Write a
MATLAB program in a script file that construct an  matrix such that the
first row contains the first n elements of a sequence, the second row contains
the  through th elements and so on. The first line of the script should
show the order n of the matrix followed by the values of the first two ele-
ments. These two elements can be any two integers, except they cannot both
be zero. A property of matrices thus constructed is that their determinants are
always zero. Run the program for  and  and for different values
of the first two elements. Verify that the determinant is zero in each case (use
MATLAB’s built-in function det).

11. Write a program in a script file that determines the real roots of a quadratic
equation . Name the file quadroots. When the file runs, it
asks the user to enter the values of the constants a, b, and c. To calculate the
roots of the equation the program calculates the discriminant D, given by:

 
If D > 0, the program displays message “The equation has two roots,” and the
roots are displayed in the next line.
If D = 0, the program displays message “The equation has one root,” and the
root is displayed in the next line.
If D < 0, the program displays message “The equation has no real roots.”
Run the script file in the Command Window three times to obtain solutions to
the following three equations:
(a)    
(b)  
(c)  

12. Write a program in a script file that finds the smallest odd integer that is divis-
ible by 11 and whose square root is greater than 132. Use a loop in the pro-
gram. The loop should start from 1 and stop when the number is found. The
program prints the message “The required number is:” and then prints the
number. 

13. Write a program (using a loop) that determines the expression:

 

Run the program with m = 5, m = 10, and m = 20. Compare the result with π.
(Use format long.)

ai 1+ ai ai 1–+=

n n×

n 1+ 2n

n 4= n 6=

ax2 bx c+ + 0=

D b2 4ac–=

2x2 8x 8+ + 0=

5x2– 3x 4–+ 0=
2x2– 7x 4+ + 0=

12 1 3⁄–( )n

2n 1+
--------------------

n 0=

m

∑
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14. Write a program (using a loop) that determines the expression:

 

Run the program with m = 100, m = 100,000, and m = 1,0000,000. Compare the
result with π. (Use format long.)

15. A vector is given by x = [–3.5  –5  6.2  11  0  8.1  –9  0  3  –1  3  2.5]. Using
conditional statements and loops, write a program that creates two vectors
from x—one (call it P) that contains the positive elements of x, and a second
(call it N) that contains the negative elements of x. In both P and N, the ele-
ments are in the same order as in x.

16. A vector is given by x = [–3.5  5  –6.2  11.1  0  7  –9.5  2  15  –1  3  2.5]. Using
conditional statements and loops, write a program that rearranges the ele-
ments of x in order from the smallest to the largest. Do not use MATLAB’s
built-in function sort.

17. The following is a list of 20 exam scores. Write a computer program that cal-
culates the average of the top 8 scores.
Exam scores: 73, 91, 37, 81, 63, 66, 50, 90, 75, 43, 88, 80, 79, 69, 26, 82, 89,
99, 71, 59 

18. The Taylor series expansion for  is

where x is in radians. Write a MATLAB program that determines  using
the Taylor series expansion. The program asks the user to type a value for an
angle in degrees. Then the program uses a loop for adding the terms of the
Taylor series. If  is the nth term in the series, then the sum  of the n terms
is . In each pass calculate the estimated error E given by

. Stop adding terms when . The program displays

the value of . Use the program for calculating:  
(a)      (b)   . 
Compare the values with those obtained by using a calculator.

19. Write a MATLAB program in a script file that finds a positive integer n such
that the sum of all the integers  is a number between 100 and
1000 whose three digits are identical. As output the program displays the inte-
ger n and the corresponding sum. 

2
2n( )2

2n( )2 1–
----------------------

n 1=

m

∏ 2 4
3
--- 16

15
------ 36

35
------ …⋅ ⋅ ⋅⎝ ⎠

⎛ ⎞=

x( )sin

x( )sin x x3

3!
-----– x5

5!
----- x7

7!
-----– …+ +

1–( )n

2n 1+( )!
----------------------x2n 1+

n 0=

∞

∑= =

x( )sin

an Sn
Sn Sn 1– an+=

E Sn Sn 1––

Sn 1–

----------------------= E 0.000001≤

x( )sin
45°( )sin 195°( )sin

1 2 3 … n+ + + +



6.8 Problems 213

20. The following are formulas for calculating the training heart rate (THR) for
men and women
For men (Karvonen formula):  
For women:   
where AGE is the person’s age, RHR the resting heart rate, and INTEN the fit-
ness level (0.55 for low, 0.65 for medium, and 0.8 for high fitness). Write a
program in a script file that determines the THR. The program asks users to
enter their gender (male or female), age (number), resting heart rate (number),
and fitness level (low, medium, or high). The program then displays the train-
ing heart rate. Use the program for determining the training heart rate for the
following two individuals:
(a) A 21-years-old male, resting heart rate of 62, and low fitness level.   
(b) A 19-years-old female, resting heart rate of 67, and high fitness level. 

21. Write a program that determines the center and the radius of a circle that
passes through three given points. The program asks the user to enter the
coordinates of the points one at a time. The program displays the coordinate
of the center and the radius, and makes a plot of the circle and the three points
displayed on the plot with asterisk markers. Execute the program to find the
circle that passes through the points (13, 15), (4, 18), and (19, 3). 

22. Body Mass Index (BMI) is a measure of obesity. In standard units it is calcu-
lated by the formula

where W is weight in pounds, and H is height in inches. The obesity classifica-
tion is:

  Write a program in a script file that calculates the BMI of a person. The pro-
gram asks the person to enter his or her weight (lb) and height (in.). The pro-
gram displays the result in a sentence that reads: “Your BMI value is XXX,
which classifies you as SSSS,” where XXX is the BMI value rounded to the
nearest tenth, and SSSS is the corresponding classification. Use the program
for determining the obesity of the following two individuals:
(a) A person 6 ft 2 in. tall with a weight of 180 lb.   
(b) A person 5 ft 1 in. tall with a weight of 150 lb.  

BMI Classification

Below 18.5 Underweight
18.5 to 24.9 Normal
25 to 29.9 Overweight

30 and above Obese

THR 220 AGE–( ) RHR–[ ] INTEN RHR+×=

THR 206 0.88 AGE×–( ) RHR–[ ] INTEN RHR+×=

BMI 703 W
H 2
-------=
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23. Write a program in a script file that calculates the cost of a telephone call
according to the following price schedule:

The program asks the user to enter the time the call is made (day, evening, or
night) and the duration of the call (a number that can have one digit to the
right of the decimal point). If the duration of the call is not an integer, the pro-
gram rounds up the duration to the next integer. The program then displays the
cost of the call. 

Run the program three times for the following calls:
(a) 8.3 min at 1:32 P.M.   (b) 34.5 min at 8:00 P.M. (c) 29.6 min at 1:00 A.M.

24. Write a program that determines the change given back to a customer in a
self-service checkout machine of a supermarket for purchases of up to $20.
The program generates a random number between 0.01 and 20.00 and dis-
plays the number as the amount to be paid. The program then asks the user to
enter payment, which can be one $1 bill, one $5 bill, one $10 bill, or one $20
bill. If the payment is less than the amount to be paid, an error message is dis-
played. If the payment is sufficient, the program calculates the change and
lists the bills and/or the coins that make up the change, which has to be com-
posed of the least number each of bills and coins. For example, if the amount
to be paid is $2.33 and a $10 bill is entered as payment, then the change is one
$5 bill, two $1 bills, two quarters, one dime, one nickel, and two pennies.

25. The concentration of a drug in the body  can be modeled by the equation

where  is the dosage administered (mg),  is the volume of distribution
(L),  is the absorption rate constant (h–1),  is the elimination rate con-
stant (h–1), and t is the time (h) since the drug was administered. For a cer-
tain drug, the following quantities are given: mg, L,

h–1, and h–1.
(a) A single dose is administered at . Calculate and plot  versus t
for 10 hours.

Time the call 
made

Duration of call
1–10 min 10–30 min More than 30 min

Day:
8 A.M. to 6 P.M.

$0.10/min $1.00 + $0.08/min for 
additional min above 10.

$2.60 + $0.06/min for 
additional min above 30.

Evening:
6 P.M. to 12 A.M.

$0.07/min $0.70 + $0.05/min for 
additional min above 10.

$1.70 + $0.04/min for 
additional min above 30.

Night:
12 A.M. to 8 A.M.

$0.04/min $0.40 + $0.03/min for 
additional min above 10.

$1.00 + $0.02/min for 
additional min above 13.

CP

Cp
DG

Vd
-------

ka

ka ke–( )
-------------------- e

ket–
e

kat–
–( )=

DG Vd

ka ke

DG 150= Vd 50=

ka 1.6= ke 0.4=

t 0= CP
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(b) A first dose is administered at , and subsequently four more doses
are administered at intervals of 4 hours (i.e., at ). Calculate
and plot  versus t for 24 hours.

26. One numerical method for calculating the square root of a number is the Babylo-
nian method. In this method  is calculated in iterations. The solution process
starts by choosing a value  as a first estimate of the solution. Using this value, a
second, more accurate solution  can be calculated with ,
which is then used for calculating a third, still more accurate solution , and so
on. The general equation for calculating the value of the solution  from the
solution  is . Write a MATLAB program that calculates
the square root of a number. In the program use  for the first estimate of the
solution. Then, by using the general equation in a loop, calculate new, more accu-
rate solutions. Stop the looping when the estimated relative error E defined by

 is smaller than 0.00001. Use the program to calculate:

(a) (b) (c)    

27. A twin primes is a pair of prime numbers such that the difference between them
is 2 (for example, 17 and 19). Write a computer program that finds all the twin
primes between 10 and 500. The program displays the results in a two-column
matrix in which each row is a twin prime.

28. Write a program in a script file that converts a measure of volume given in
units of either m3, L, ft3, or gat (U.S. gallons) to the equivalent quantity in
different units specified by the user. The program asks the user to enter the
amount of volume, its current units, and the desired new units. The output is
the specification of volume in the new units. Use the program to:
(a) Convert 3.5 m3 to gal.
(b) Convert 200 L to ft3.
(c) Convert 480 ft3 to m3.

29. In a one-dimensional random walk the position x of a walker is computed
by

where s is a random number. Write a program that calculates the number of
steps required for the walker to reach a boundary . Use MATLAB’s
built-in function randn(1,1) to calculate s. Run the program 100 times
(by using a loop) and calculate the average number of steps when .

t 0=

t 4 8 12 16, , ,=

CP

P
x1

x2 x2 x1 P x1⁄+( ) 2⁄=
x3

xi 1+

xi xi 1+ xi P xi⁄+( ) 2⁄=

x P=

E xi 1+ xi–

xi
--------------------=

110 93 443, 23.25

xj xj s+=

x B±=

B 10=
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30. The Sierpinski triangle can be implemented in MATLAB by plotting points
iteratively according to one of the following three rules which are selected
randomly with equal probability.
Rule 1:        ,    

Rule 2:        ,    

Rule 3:        ,    
Write a program in a script file that calculates the x and y vectors and then
plots y versus x as individual points (use plot(x,y,‘^’)). Start with

 and . Run the program four times with 10, 100, 1,000, and
10,000 iterations.

31. There are 12 teams in a league, numbered 1 through 12. Six games are
planned for the weekend. Write a MATLAB program that randomly assign the
teams for each game. Display the results in a two-column table where each
row contains the two teams that play each other.

32. The temperature dependence of the heat capacity  of many gases can be
described in terms of a cubic equation:

The following table gives the coefficients of the cubic equation for four gases.
 is in J/(g mol)( C) and T is in C.

Write a program that does the following:
• Prints the four gases on the screen and asks the user to select which gas to

find the heat capacity for.

• Asks the user for a temperature.

• Asks the user if another temperature is needed (enter yes or no). If the
answer is yes, the user is asked to enter another temperature. This process
continues until the user enters no.

• Display a table containing the temperatures entered and the corresponding
heat capacities.

Gas a b c d

SO2 38.91

SO3 48.50

O2 29.10

N2 29.00

xn 1+ 0.5xn= yn 1+ 0.5yn=

xn 1+ 0.5xn 0.25+= yn 1+ 0.5yn
3

4
-------+=

xn 1+ 0.5xn 0.5+= yn 1+ 0.5yn=

x1 0= y1 0=

Cp

Cp a bT cT 2 dT 3+ + +=

Cp ° °

3.904 10 2–× 3.105– 10 5–× 8.606 10 9–×

9.188 10 2–× 8.540– 10 5–× 32.40 10 9–×

1.158 10 2–× 0.6076– 10 5–× 1.311 10 9–×

0.2199 10 2–× 0.5723– 10 5–× 2.871– 10 9–×
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(a) Use the program for determining the heat capacity of SO3 at 100  and
180 .
(b) Use the program for finding the heat capacity of N2 at 220  and 300 .

33. The overall grade in a course is determined from the grades of 5 quizzes, 3
midterms, and a final, using the following scheme:
Quizzes: Quizzes are graded on a scale from 0 to 10. The grade of the lowest
quiz is dropped and the average of the 4 quizzes with the higher grades consti-
tutes 25% of the course grade.
Midterms: Midterms are graded on a scale from 0 to 100. If the average of the
midterm scores is higher than the score on the final, the average of the mid-
terms is 35% of the course grade. If the final grade is higher than the average
of the midterms, then the lowest midterm is dropped and the average of the
two midterms with the higher grades is 35% of the course grade.
Final: Finals are graded on a scale from 0 to 10. The final is 40% of the course
grade.

Write a computer program in a script file that determines the course
grade for a student. The program first asks the user to enter the five quiz
grades (in a vector), the three midterm grades (in a vector), and the grade of
the final. Then the program calculates a numerical course grade (a number
between 0 and 100). Finally, the program assigns a letter grade according to
the following key: A for , B for , C for

, D for , and E for a grade lower than 60. Exe-
cute the program for the following cases:
(a) Quiz grades: 7, 9, 4, 8 , 7. Midterm grades: 93, 83, 87. Final grade: 89.
(b) Quiz grades: 8, 6, 9, 6 , 9. Midterm grades: 81, 75, 79. Final grade: 72.

34. The handicap differential (HCD) for a round of golf is calculated from the for-
mula:

The course rating and the slope are measures of how difficult a particular
course is. A golfers handicap is calculated from a certain number N of their
best (lowest) handicap scores according to the following table.

# Rounds played N # Rounds played N
5-6 1 15-16 6
7-8 2 17 7

9-10 3 18 8
11-12 4 19 9
13-14 5 20 10

°

°

° °

Grade 90≥ 80 Grade 90≤ ≤
70 Grade 80≤ ≤ 60 Grade 70≤ ≤

HCD Score Course Rating–( )
Course Slope

------------------------------------------------------------------ 113×=
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For example, if 13 rounds have been played, only the best five handicaps are
used. A handicap cannot be computed for fewer than five rounds. If more than
20 rounds have been played, only the 20 most recent results are used.

Once the lowest N handicap differentials have been identified, they are
averaged and then rounded down to the nearest tenth. The result is the
player’s handicap. Write a program in a script file that calculates a persons
handicap. The program asks the user to enter the golfers record in a three col-
umns matrix where the first column is the course rating, the second is the
course slope, and the third is the players score. Each row corresponds to one
round. The program displays the person’s handicap. Execute the program for
players with the following records.
(a)

 (b)

Rating Slope Score
71.6 122 85
72.8 118 87
69.7 103 83
70.3 115 81
70.9 116 79
72.3 117 91
71.6 122 89
70.3 115 83
72.8 118 92
70.9 109 80
73.1 132 94
68.2 115 78
74.2 135 103
71.9 121 84

Rating Slope Score
72.2 119 71
71.6 122 73
74.0 139 78
68.2 125 69
70.2 130 74
69.6 109 69
66.6 111 74
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Chapter 7                        
User-Defined Functions 
and Function Files
A simple function in mathematics, , associates a unique number to each

value of x. The function can be expressed in the form , where  is usu-
ally a mathematical expression in terms of x. A value of y (output) is obtained
when a value of x (input) is substituted in the expression. Many functions are pro-
grammed inside MATLAB as built-in functions, and can be used in mathematical
expressions simply by typing their name with an argument (see Section 1.5);
examples are sin(x), cos(x), sqrt(x), and exp(x). Frequently, in computer
programs, there is a need to calculate the value of functions that are not built-in.
When a function expression is simple and needs to be calculated only once, it can
be typed as part of the program. However, when a function needs to be evaluated
many times for different values of arguments, it is convenient to create a “user-
defined” function. Once a user-defined function is created (saved) it can be used
just like the built-in functions.

A user-defined function is a MATLAB program that is created by the user,
saved as a function file, and then can be used like a built-in function. The function
can be a simple, single mathematical expression or a complicated and involved
series of calculations. In many cases it is actually a subprogram within a computer
program. The main feature of a function file is that it has an input and an output.
This means that the calculations in the function file are carried out using the input
data, and the results of the calculations are transferred out of the function file by
the output. The input and the output can be one or several variables, and each can
be a scalar, vector, or an array of any size. Schematically, a function file can be
illustrated by:

f x( )
y f x( )= f x( )

Function 
File

Input data Output data



220 Chapter 7: User-Defined Functions and Function Files

A very simple example of a user-defined function is a function that calcu-
lates the maximum height that a ball reaches when thrown upward with a certain

velocity. For a velocity , the maximum height  is given by ,

where g is the gravitational acceleration. In function form this can be written as

. In this case the input to the function is the velocity (a number),

and the output is the maximum height (a number). For example, in SI units (g =
9.81 m/s2) if the input is 15 m/s, the output is 11.47 m. 

In addition to being used as math functions, user-defined functions can be
used as subprograms in large programs. In this way large computer programs can
be made up of smaller “building blocks” that can be tested independently. Func-
tion files are similar to subroutines in Basic and Fortran, procedures in Pascal, and
functions in C.

The fundamentals of user-defined functions are explained in Sections 7.1
through 7.7. In addition to user-defined functions that are saved in separate func-
tion files and called for use in a computer program, MATLAB provides an option
to define and use a user-defined math function within a computer program (not in
a separate file). This can be done by using anonymous and/or inline functions,
which are presented in Section 7.8. There are built-in and user-defined functions
that have to be supplied with other functions when they are called. These func-
tions, which in MATLAB are called function functions, are introduced in Section
7.9. The last two sections cover subfunctions and nested functions. Both are meth-
ods for incorporating two or more user-defined functions in a single function file. 

7.1 CREATING A FUNCTION FILE

Function files are created and edited, like script files, in the Editor/Debugger Win-
dow. This window is opened from the Command Window. In the File menu, select
New, and then select Function. Once the Editor/Debugger Window opens, it
looks like that shown in Figure 7-1. The editor contains several pre-typed lines
that outline the structure of a function file. The first line is the function definition
line, which is followed by comments the describe the function. Next comes the
program (the empty lines 4 and 5 in Figure 7-1), and the last line is an end state-
ment, which is optional. The structure of a function file is described in detail in the
next section.

Note: The Editor/Debugger Window can also be opened (as was described
in Chapter 1) by selecting Script after New. The window that opens is empty,
without any pre-typed lines. The window can be used for writing a script file or a

v0 hmax hmax
v0

2

2g
------=

hmax v0( )
v0

2

2g
------=

Function File
15 m/s 11.47 m
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function file. If the Editor/Debugger Window is opened by selecting Function
after New, it can also be used for writing a script file or a function file.

7.2 STRUCTURE OF A FUNCTION FILE

The structure of a typical complete function file is shown in Figure 7-2. This par-
ticular function calculates the monthly payment and the total payment of a loan.
The inputs to the function are the amount of the loan, the annual interest rate, and
the duration of the loan (number of years). The output from the function is the
monthly payment and the total payment. 

Figure 7-1: The Editor/Debugger Window.

Figure 7-2: Structure of a typical function file.

The first line in a function file must
be the function definition line.

Function definition line.

The H1 line.

Help text.

Assignment of values to output arguments.

Function body
(computer program).



222 Chapter 7: User-Defined Functions and Function Files

The various parts of the function file are described in detail in the following sec-
tions.

7.2.1 Function Definition Line

The first executable line in a function file must be the function definition line.
Otherwise the file is considered a script file. The function definition line:

• Defines the file as a function file.

• Defines the name of the function.

• Defines the number and order of the input and output arguments.

The form of the function definition line is:

The word “function,” typed in lowercase letters, must be the first word in
the function definition line. On the screen the word function appears in blue. The
function name is typed following the equal sign. The name can be made up of let-
ters, digits, and the underscore character (the name cannot include a space). The
rules for the name are the same as the rules for naming variables described in Sec-
tion 1.6.2. It is good practice to avoid names of built-in functions and names of
variables already defined by the user or predefined by MATLAB.

7.2.2 Input and Output Arguments
The input and output arguments are used to transfer data into and out of the func-
tion. The input arguments are listed inside parentheses following the function
name. Usually, there is at least one input argument, although it is possible to have
a function that has no input arguments. If there are more than one, the input argu-
ments are separated with commas. The computer code that performs the calcula-
tions within the function file is written in terms of the input arguments and
assumes that the arguments have assigned numerical values. This means that the
mathematical expressions in the function file must be written according to the
dimensions of the arguments, since the arguments can be scalars, vectors, or
arrays. In the example shown in Figure 7-2 there are three input arguments
(amount,rate,years), and in the mathematical expressions they are
assumed to be scalars. The actual values of the input arguments are assigned when
the function is used (called). Similarly, if the input arguments are vectors or

function [output arguments] = function_name(input arguments)

The word “function” 
must be the first word, 
and must be typed in 
lowercase letters.

The name of 
the function.

A list of output 
arguments typed 
inside brackets.

A list of input 
arguments typed 
inside parentheses.
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arrays, the mathematical expressions in the function body must be written to fol-
low linear algebra or element-by-element calculations.

The output arguments, which are listed inside brackets on the left side of the
assignment operator in the function definition line, transfer the output from the
function file. Function files can have zero, one, or several output arguments. If
there are more than one, the output arguments are separated with commas. If there
is only one output argument, it can be typed without brackets. In order for the
function file to work, the output arguments must be assigned values in the
computer program that is in the function body. In the example in Figure 7-2
there are two output arguments, mpay and tpay. When a function does not have
an output argument, the assignment operator in the function definition line can be
omitted. A function without an output argument can, for example, generate a plot
or write data to a file.

It is also possible to transfer strings into a function file. This is done by typ-
ing the string as part of the input variables (text enclosed in single quotes). Strings
can be used to transfer names of other functions into the function file.

Usually, all the input to, and the output from, a function file transferred
through the input and output arguments. In addition, however, all the input and
output features of script files are valid and can be used in function files. This
means that any variable that is assigned a value in the code of the function file will
be displayed on the screen unless a semicolon is typed at the end of the command.
In addition, the input command can be used to input data interactively, and the
disp, fprintf, and plot commands can be used to display information on the
screen, save to a file, or plot figures just as in a script file. The following are
examples of function definition lines with different combinations of input and out-
put arguments.

Function definition line Comments

function [mpay,tpay] = loan(amount,rate,years) Three input arguments, two
output arguments.

function [A] = RectArea(a,b) Two input arguments, one out-
put argument.

function A = RectArea(a,b) Same as above; one output
argument can be typed without
the brackets.

function [V, S] = SphereVolArea(r) One input variable, two output
variables.

function trajectory(v,h,g) Three input arguments, no out-
put arguments.
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7.2.3 The H1 Line and Help Text Lines
The H1 line and help text lines are comment lines (lines that begin with the per-
cent, %, sign) following the function definition line. They are optional but are fre-
quently used to provide information about the function. The H1 line is the first
comment line and usually contains the name and a short definition of the function.
When a user types (in the Command Window) lookfor a_word, MATLAB
searches for a_word in the H1 lines of all the functions, and if a match is found,
the H1 line that contains the match is displayed.

 The help text lines are comment lines that follow the H1 line. These lines
contain an explanation of the function and any instructions related to the input and
output arguments. The comment lines that are typed between the function defini-
tion line and the first non-comment line (the H1 line and the help text) are
displayed when the user types help function_name in the Command Win-
dow. This is true for MATLAB built-in functions as well as the user-defined func-
tions. For example, for the function loan in Figure 7-2, if help loan is typed
in the Command Window (make sure the current directory or the search path
includes the directory where the file is saved), the display on the screen is: 

A function file can include additional comment lines in the function body. These
lines are ignored by the help command.

7.2.4 Function Body
The function body contains the computer program (code) that actually performs
the computations. The code can use all MATLAB programming features. This
includes calculations, assignments, any built-in or user-defined functions, flow
control (conditional statements and loops) as explained in Chapter 6, comments,
blank lines, and interactive input and output.

7.3 LOCAL AND GLOBAL VARIABLES

All the variables in a function file are local (the input and output arguments and
any variables that are assigned values within the function file). This means that
the variables are defined and recognized only inside the function file. When a

>> help loan

loan calculates monthly and total payment of loan.

Input arguments:

amount=loan amount in $.

rate=annual interest rate in percent.

years=number of years.

Output arguments:

mpay=monthly payment, tpay=total payment.
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function file is executed, MATLAB uses an area of memory that is separate from
the workspace (the memory space of the Command Window and the script files).
In a function file the input variables are assigned values each time the function is
called. These variables are then used in the calculations within the function file.
When the function file finishes its execution the values of the output arguments
are transferred to the variables that were used when the function was called. All of
this means that a function file can have variables with the same names as variables
in the Command Window or in script files. The function file does not recognize
variables with the same names as have been assigned values outside the function.
The assignment of values to these variables in the function file will not change
their assignment elsewhere.

Each function file has its own local variables, which are not shared with
other functions or with the workspace of the Command Window and the script
files. It is possible, however, to make a variable common (recognized) in several
different function files, and perhaps in the workspace too. This is done by declar-
ing the variable global with the global command, which has the form:

Several variables can be declared global by listing them, separated with spaces, in
the global command. For example:
global GRAVITY_CONST FrictionCoefficient

• The variable has to be declared global in every function file that the user wants
it to be recognized in. The variable is then common only to these files. 

• The global command must appear before the variable is used. It is recom-
mended to enter the global command at the top of the file.

• The global command has to be entered in the Command Window, or in a
script file, for the variable to be recognized in the workspace.

• The variable can be assigned, or reassigned, a value in any of the locations in
which it is declared common.

• The use of long descriptive names (or all capital letters) is recommended for
global variables in order to distinguish them from regular variables. 

7.4 SAVING A FUNCTION FILE

A function file must be saved before it can be used. This is done, as with a script
file, by choosing Save as . . . from the File menu, selecting a location (many stu-
dents save to a flash drive), and entering the file name. It is highly recommended
that the file be saved with a name that is identical to the function name in the func-
tion definition line. In this way the function is called (used) by using the function
name. (If a function file is saved with a different name, the name it is saved under
must be used when the function is called.) Function files are saved with the exten-

global variable_name 
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sion .m. Examples:

7.5 USING A USER-DEFINED FUNCTION

A user-defined function is used in the same way as a built-in function. The func-
tion can be called from the Command Window, from a script file, or from another
function. To use the function file, the folder where it is saved must either be in the
current folder or be in the search path (see Sections 1.8.3 and 1.8.4).

A function can be used by assigning its output to a variable (or variables), as
a part of a mathematical expression, as an argument in another function, or just by
typing its name in the Command Window or in a script file. In all cases the user
must know exactly what the input and output arguments are. An input argument
can be a number, a computable expression, or a variable that has an assigned
value. The arguments are assigned according to their position in the input and out-
put argument lists in the function definition line.

Two of the ways that a function can be used are illustrated below with the
user-defined loan function in Figure 7-2, which calculates the monthly and total
payments (two output arguments) of a loan. The input arguments are the loan
amount, annual interest rate, and the length (number of years) of the loan. In the
first illustration the loan function is used with numbers as input arguments:

In the second illustration the loan function is used with two pre-assigned
variables and a number as the input arguments:

Function definition line File name

function [mpay,tpay] = loan(amount,rate,years) loan.m
function [A] = RectArea(a,b) RectArea.m
function [V, S] = SphereVolArea(r) SphereVolArea.m
function trajectory(v,h,g) trajectory.m

>> [month total]=loan(25000,7.5,4)

month =
        600.72
total =
      28834.47

>> a=70000;  b=6.5;

>> [x y]=loan(a,b,30)

First argument is loan amount, second is 
interest rate, and third is number of years.

Define variables a and b.
Use a, b, and the number 30 for input
arguments and x (monthly pay) and y
(total pay) for output arguments.
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7.6 EXAMPLES OF SIMPLE USER-DEFINED FUNCTIONS

Sample Problem 7-1: User-defined function for a math function

Write a function file (name it chp7one) for the function . The

input to the function is x and the output is . Write the function such that x can
be a vector. Use the function to calculate:
(a)  for x = 6.
(b)  for x = 1, 3, 5, 7, 9, and 11.
Solution
The function file for the function  is:

Note that the mathematical expression in the function file is written for element-
by-element calculations. In this way if x is a vector, y will also be a vector. The
function is saved and then the search path is modified to include the directory
where the file was saved. As shown below, the function is used in the Command
Window.
(a) Calculating the function for  can be done by typing chp7one(6) in
the Command Window, or by assigning the value of the function to a new vari-
able:

(b) To calculate the function for several values of x, a vector with the values of x
is created and then used for the argument of the function.

x =
        440.06
y =
     158423.02

function y=chp7one(x)

y=(x.^4.*sqrt(3*x+5))./(x.^2+1).^2;

>> chp7one(6)

ans =
    4.5401

>> F=chp7one(6)

F =
    4.5401

>> x=1:2:11

x =
     1     3     5     7     9    11

f x( ) x4 3x 5+
x2 1+( )2

-------------------------=

f x( )

f x( )
f x( )

f x( )

Function definition line.
Assignment to output argument.

x 6=
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Another way is to type the vector x directly in the argument of the function.

Sample Problem 7-2: Converting temperature units

Write a user-defined function (name it FtoC) that converts temperature in degrees
F to temperature in degrees C. Use the function to solve the following problem.
The change in the length of an object, , due to a change in the temperature, ,
is given by:  , where α is the coefficient of thermal expansion. Deter-
mine the change in the area of a rectangular (4.5 m by 2.25 m) aluminum
(  1/ C) plate if the temperature changes from 40 F to 92 F. 
Solution
A user-defined function that converts degrees F to degrees C is:

A script file (named Chapter7Example2) that calculates the change of the area of
the plate due to the temperature is:

Executing the script file in the Command Window gives the solution:

>> chp7one(x)

ans =
    0.7071    3.0307    4.1347    4.8971    5.5197    6.0638

>> H=chp7one([1:2:11])

H =
    0.7071    3.0307    4.1347    4.8971    5.5197    6.0638

function C=FtoC(F)

%FtoC converts degrees F to degrees C

C=5*(F-32)./9;

a1=4.5; b1=2.25; T1=40; T2=92; alpha=23e-6;

deltaT=FtoC(T2)-FtoC(T1);

a2=a1+alpha*a1*deltaT;

b2=b1+alpha*b1*deltaT;

AreaChange=a2*b2-a1*b1;

fprintf('The change in the area is %6.5f meters 
square.',AreaChange)

>> Chapter7Example2
The change in the area is 0.01346 meters square.

ΔL ΔT
ΔL αLΔT=

α 23 10 6–⋅= ° ° °

Function definition line.

Assignment to output argument.

Using the FtoC function to calculate the
temperature difference in degrees C.

Calculating the new length.
Calculating the new width.

Calculating the change in the area.
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7.7 COMPARISON BETWEEN SCRIPT FILES AND FUNCTION FILES

Students who are studying MATLAB for the first time sometimes have difficulty
understanding exactly the differences between script and function files since, for
many of the problems that they are asked to solve using MATLAB, either type of
file can be used. The similarities and differences between script and function files
are summarized below.

• Both script and function files are saved with the extension .m (that is why they
are sometimes called M-files).

• The first executable line in a function file is (must be) the function definition
line.

• The variables in a function file are local. The variables in a script file are rec-
ognized in the Command Window.

• Script files can use variables that have been defined in the workspace.

• Script files contain a sequence of MATLAB commands (statements).

• Function files can accept data through input arguments and can return data
through output arguments.

• When a function file is saved, the name of the file should be the same as the
name of the function.

7.8 ANONYMOUS AND INLINE FUNCTIONS

User-defined functions written in function files can be used for simple mathemati-
cal functions, for large and complicated math functions that require extensive pro-
gramming, and as subprograms in large computer programs. In cases when the
value of a relatively simple mathematical expression has to be determined many
times within a program, MATLAB provides the option of using anonymous func-
tions. An anonymous function is a user-defined function that is defined and writ-
ten within the computer code (not in a separate function file) and is then used in
the code. Anonymous functions can be defined in any part of MATLAB (in the
Command Window, in script files, and inside regular user-defined functions).

Anonymous functions were introduced in MATLAB 7. They replace inline
functions that were used for the same purpose in previous versions of MATLAB.
Both anonymous and inline functions can be used in MATLAB R2010b). Anony-
mous functions, however, have several advantages over inline functions, and it is
expected that inline functions will gradually be phased out. Anonymous functions
are covered in detail in Section 7.8.1, and inline functions are described in the sec-
tion that follows.
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7.8.1 Anonymous Functions
An anonymous function is a simple (one-line) user-defined function that is
defined without creating a separate function file (M-file). Anonymous functions
can be constructed in the Command Window, within a script file, or inside a regu-
lar user-defined function. 

An anonymous function is created by typing the following command:

A simple example is:  cube = @ (x) x^3, which calculates the cube of the input
argument.
• The command creates the anonymous function and assigns a handle for the

function to the variable name on the left-hand side of the = sign. (Function
handles provide means for using the function and passing it to other functions;
see Section 7.9.1.) 

• The expr consists of a single valid mathematical MATLAB expression.

• The mathematical expression can have one or several independent variables.
The independent variable(s) is (are) entered in the (arglist). Multiple
independent variables are separated with commas. An example of an anony-
mous function that has two independent variables is: circle = @ (x,y)
16*x^2+9*y^2

• The mathematical expression can include any built-in or user-defined func-
tions.

• The expression must be written according to the dimensions of the arguments
(element-by-element or linear algebra calculations).

• The expression can include variables that are already defined when the anony-
mous function is defined. For example, if three variables a, b, and c are
defined (have assigned numerical values), then they can be used in the expres-
sion of the anonymous function parabola = @ (x) a*x^2+b*x+c.

Important note: MATLAB captures the values of the predefined variables
when the anonymous function is defined. This means that if new values are subse-
quently assigned to the predefined variables, the anonymous function is not
changed. The anonymous function has to be redefined in order for the new values
of the predefined variables to be used in the expression.

name = @ (arglist) expr

The name of the anony-
mous function. 

The @ 
symbol.

A list of input argu-
ments (independent 
variables).

Mathematical 
expression.
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Using an anonymous function:

• Once an anonymous function is defined, it can be used by typing its name and
a value for the argument (or arguments) in parentheses (see examples that fol-
low).

• Anonymous functions can also be used as arguments in other functions (see
Section 7.9.1).

Example of an anonymous function with one independent variable:

The function  can be defined (in the Command Window) as an

anonymous function for x as a scalar by:

If a semicolon is not typed at the end, MATLAB responds by displaying the func-
tion. The function can then be used for different values of x, as shown below.

If x is expected to be an array, with the function calculated for each element, then
the function must be modified for element-by-element calculations.

Example of an anonymous function with several independent variables:

The function  can be defined as an anonymous function
by:

>> FA = @ (x) exp(x^2)/sqrt(x^2+5)

FA = 
    @(x)exp(x^2)/sqrt(x^2+5)

>> FA(2)

ans =
   18.1994

>> z = FA(3)

z =
  2.1656e+003

>> FA = @ (x) exp(x.^2)./sqrt(x.^2+5)

FA = 
    @(x)exp(x.^2)./sqrt(x.^2+5)

>> FA([1 0.5 2])
ans =
    1.1097    0.5604   18.1994

>> HA = @ (x,y) 2*x^2 - 4*x*y + y^2

HA = 
    @(x,y)2*x^2-4*x*y+y^2

f x( ) ex2

x2 5+
------------------=

Using a vector as input argument. 

f x y,( ) 2x2 4xy– y2+=
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Then the anonymous function can be used for different values of x and y. For
example, typing HA(2,3) gives:

Another example of using an anonymous function with several arguments is
shown in Sample Problem 6-3.

Sample Problem 7-3: Distance between points in polar coordinates

Write an anonymous function that calculates the
distance between two points in a plane when the
position of the points is given in polar coordinates.
Use the anonymous function to calculate the dis-
tance between point A (2, π/6) and point B (5, 3π/4).
Solution
The distance between two points in polar coordi-
nates can be calculated by using the Law of
Cosines:

The formula for the distance is entered as an anonymous function with four input
arguments . Then the function is used for calculating the distance
between points A and B.

>> HA(2,3)
ans =
    -7

>> d= @ (rA,thetA,rB,thetB) sqrt(rA^2+rB^2-2*rA*rB*cos(thetB-thetA))

d = 
    @(rA,thetA,rB,thetB)sqrt(rA^2+rB^2-2*rA*rB*cos(thetB-
thetA))

>> DistAtoB = d(2,pi/6,5,3*pi/4)
DistAtoB =
    5.8461

A(rA ,θA)

θA

θB

d

rA

rB

B(rB ,θB)

d rA
2 rB

2 2rArB θA θB–( )cos–+=

rA θA rB θB, , ,( )

List of input arguments.

The arguments are typed in the order defined in the function.
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7.8.2 Inline Functions
Similar to an anonymous function, an inline function is a simple user-defined
function that is defined without creating a separate function file (M-file). As
already mentioned, anonymous functions replace the inline functions used in ear-
lier versions of MATLAB. Inline functions are created with the inline com-
mand according to the following format:

A simple example is  cube = inline(‘x^3’), which calculates the cube of
the input argument.
• The mathematical expression can have one or several independent variables.

• Any letter except i and j can be used for the independent variables in the
expression.

• The mathematical expression can include any built-in or user-defined func-
tions.

• The expression must be written according to the dimension of the argument
(element-by-element or linear algebra calculations).

• The expression cannot include pre assigned variables.

• Once the function is defined it can be used by typing its name and a value for
the argument (or arguments) in parentheses (see example below).

• The inline function can be used as an argument in other functions.

For example, the function:  can be defined as an inline function for

x by:

>> FA=inline('exp(x.^2)./sqrt(x.^2+5)')

FA =
     Inline function:
     FA(x) = exp(x.^2)./sqrt(x.^2+5)

>> FA(2)

ans =
   18.1994

>> FA([1 0.5 2])
ans =
    1.1097    0.5604   18.1994

name = inline(‘math expression typed as a string’)

f x( ) ex2

x2 5+
------------------=

Expression written 
with element-by-
element operations. 

Using a scalar as the argument. 

Using a vector as the argument. 
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An inline function that has two or more independent variables can be writ-
ten by using the following format:

In the format shown here the order of the arguments to be used when calling the
function is defined. If the independent variables are not listed in the command,
MATLAB arranges the arguments in alphabetical order. For example, the function

 can be defined as an inline function by:

Once defined, the function can be used with any values of x and y. For example,
HA(2,3) gives:

7.9 FUNCTION FUNCTIONS

There are many situations where a function (Function A) works on (uses) another
function (Function B). This means that when Function A is executed it has to be
provided with Function B. A function that accepts another function is called in
MATLAB a function function. For example, MATLAB has a built-in function
called fzero (Function A) that finds the zero of a math function  (Function
B), i.e., the value of x where . The program in the function fzero is
written such that it can find the zero of any . When fzero is called, the spe-
cific function to be solved is passed into fzero, which finds the zero of the .
(The function fzero is described in detail in Chapter 9.)

A function function, which accepts another function (imported function),
includes in its input arguments a name that represents the imported function. The
imported function name is used for the operations in the program (code) of the
function function. When the function function is used (called), the specific func-
tion that is imported is listed in its input argument. In this way different functions
can be imported (passed) into the function function. There are two methods for
listing the name of an imported function in the argument list of a function func-
tion. One is by using a function handle (Section 7.9.1), and the other is by typing
the name of the function that is being passed in as a string expression (Section
7.9.2). The method that is used affects the way that the operations in the function

>> HA=inline('2*x^2-4*x*y+y^2')

HA =
     Inline function:
     HA(x,y) = 2*x^2-4*x*y+y^2

>> HA(2,3)
ans =
    -7

name = inline(‘mathematical expression’,‘arg1’,
                                      ‘arg2’,‘arg3’)

f x y,( ) 2x2 4xy– y2+=

f x( )
f x( ) 0=

f x( )
f x( )
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function are written (this is explained in more detail in the next two sections).
Using function handles is easier and more efficient, and should be the preferred
method.

7.9.1 Using Function Handles for Passing a Function into a Function 
Function

Function handles are used for passing (importing) user-defined functions, built-in
functions, and anonymous functions into function functions that can accept them.
This section first explains what a function handle is, then shows how to write a
user-defined function function that accepts function handles, and finally shows
how to use function handles for passing functions into function functions.
Function handle:

A function handle is a MATLAB value that is associated with a function. It is a
MATLAB data type and can be passed as an argument into another function. Once
passed, the function handle provides means for calling (using) the function it is
associated with. Function handles can be used with any kind of MATLAB func-
tion. This includes built-in functions, user-defined functions (written in function
files), and anonymous functions.
• For built-in and user-defined functions, a function handle is created by typing

the symbol @ in front of the function name. For example, @cos is the function
handle of the built-in function cos, and @FtoC is the function handle of the
user-defined function FtoC that was created in Sample Problem 7-2.

• The function handle can also be assigned to a variable name. For example,
cosHandle=@cos assigns the handle @cos to cosHandle. Then the name
cosHandle can be used for passing the handle.

• As anonymous functions (see Section 7.8.1), their name is already a function
handle. 

Writing a function function that accepts a function handle as an input argument:

As already mentioned, the input arguments of a function function (which accepts
another function) includes a name (dummy function name) that represents the
imported function. This dummy function (including a list of input arguments
enclosed in parentheses) is used for the operations of the program inside the func-
tion function.
• The function that is actually being imported must be in a form consistent with

the way that the dummy function is being used in the program. This means that
both must have the same number and type of input and output arguments. 

The following is an example of a user-defined function function, named
funplot, that makes a plot of a function (any function  that is imported into
it) between the points  and . The input arguments are (Fun,a,b),

f x( )
x a= x b=
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where Fun is a dummy name that represents the imported function, and a and b
are the end points of the domain. The function funplot also has a numerical
output xyout, which is a  matrix with the values of x and  at the three
points , , and . Note that in the program, the dummy
function Fun has one input argument (x) and one output argument y, which are
both vectors. 

As an example, the function  over the
domain  is passed into the user-defined function funplot. This is done in
two ways: first, by writing a user-defined function for , and then by writing

 as an anonymous function.

Passing a user-defined function into a function function:

First, a user-defined function is written for . The function, named Fdemo,
calculates  for a given value of x and is written using element-by-element
operations.

Next, the function Fdemo is passed into the user-defined function function

function xyout=funplot(Fun,a,b)

% funplot makes a plot of the function Fun which is passed in
% when funplot is called in the domain [a, b].

% Input arguments are:
% Fun:  Function handle of the function to be plotted.

% a:  The first point of the domain.
% b:  The last point of the domain.

% Output argument is:
% xyout: The values of x and y at x=a, x=(a+b)/2, and x=b
% listed in a 3 by 2 matrix.

x=linspace(a,b,100);

y=Fun(x);

xyout(1,1)=a; xyout(2,1)=(a+b)/2; xyout(3,1)=b;

xyout(1,2)=y(1);

xyout(2,2)=Fun((a+b)/2);

xyout(3,2)=y(100);

plot(x,y)

xlabel('x'), ylabel('y')

function y=Fdemo(x)
y=exp(-0.17*x).*x.^3-2*x.^2+0.8*x-3;

3 2× f x( )
x a= x a b+( ) 2⁄= x b=

A name for the function that is passed in. 

Using the imported function to calculate f(x) at 100 points. 

Using the imported function to 
calculate f(x) at the midpoint. 

f x( ) e 0.17x– x3 2x2– 0.8x 3–+=

0.5 4,[ ]
f x( )

f x( )

f x( )
f x( )
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funplot, which is called in the Command Window. Note that a handle of the
user-defined function Fdemo is entered (the handle is @Fdemo) for the input
argument Fun in the user-defined function funplot.

In addition to the display of the numerical output, when the command is
executed, the plot shown in Figure 7-3 is displayed in the Figure Window.

Passing an anonymous function into a function function:

To use an anonymous function, the function  first
has to be written as an anonymous function, and then passed into the user-defined
function funplot. The following shows how both of these steps are done in the
Command Window. Note that the name of the anonymous function
FdemoAnony is entered without the @ sign for the input argument Fun in the
user-defined function funplot (since the name is already the handle of the
anonymous function).   

>> ydemo=funplot(@Fdemo,0.5,4)
ydemo =
    0.5000   -2.9852
    2.2500   -3.5548
    4.0000    0.6235

Figure 7-3: A plot of the function .

>> FdemoAnony=@(x) exp(-0.17*x).*x.^3-2*x.^2+0.8*x-3
FdemoAnony = 
    @(x) exp(-0.17*x).*x.^3-2*x.^2+0.8*x-3

>> ydemo=funplot(FdemoAnony,0.5,4)

ydemo =
    0.5000   -2.9852
    2.2500   -3.5548
    4.0000    0.6235

Enter a handle of the user-defined 
function Fdemo. 

0.5 1 1.5 2 2.5 3 3.5 4
-4

-3

-2

-1

0

1

x

f(
x)

f x( ) e 0.17x– x3 2x2– 0.8x 3–+=

f x( ) e 0.17x– x3 2x2– 0.8x 3–+=

Create an anonymous 
function for .f x( )

Enter the name of the anonymous 
function (FdemoAnony).
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In addition to the display of the numerical output in the Command Window, the
plot shown in Figure 7-3 is displayed in the Figure Window.

7.9.2 Using a Function Name for Passing a Function into a Function 
Function

A second method for passing a function into a function function is by typing the
name of the function that is being imported as a string in the input argument of the
function function. The method which was used before the introduction of function
handles, can be used for importing user-defined functions. As mentioned, function
handles are easier to use and more efficient and should be the preferred method.
Importing user-defined functions by using their name is covered in the present
edition of the book for the benefit of readers who need to understand programs
written before MATLAB 7. New programs should use function handles.

When a user-defined function is imported by using its name, the value of
the imported function inside the function function has to be calculated with the
feval command. This is different from the case where a function handle is used,
which means that there is a difference in the way that the code in the function
function is written that depends on how the imported function is passed in.
The feval command:

The feval (short for “function evaluate”) command evaluates the value of a
function for a given value (or values) of the function’s argument (or arguments).
The format of the command is:

The value that is determined by feval can be assigned to a variable, or if the
command is typed without an assignment, MATLAB displays ans =  and the
value of the function.

• The function name is typed as string.

• The function can be a built-in or a user-defined function.

• If there is more than one input argument, the arguments are separated with
commas.

• If there is more than one output argument, the variables on the left-hand side of
the assignment operator are typed inside brackets and separated with commas.

Two examples using the feval command with built-in functions follow.

>> feval('sqrt',64)

ans =
     8

>> x=feval('sin',pi/6)

variable = feval(‘function name’, argument value)
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The following shows the use of the feval command with the user-defined
function loan which was created earlier in the chapter (Figure 7-2). This func-
tion has three input arguments and two output arguments.

Writing a function function that accepts a function by typing its name as an
input argument:

As already mentioned, when a user-defined function is imported by using its
name, the value of the function inside the function function has to be calculated
with the feval command. This is demonstrated in the following user-defined
function function that is called funplotS. The function is the same as the func-
tion funplot from Section 7.9.1, except that the command feval is used for
the calculations with the imported function. 

x =
    0.5000

>> [M,T]=feval('loan',50000,3.9,10)

M =
        502.22

T =
      60266.47

function xyout=funplotS(Fun,a,b)

% funplotS makes a plot of the function Fun which is passed in
% when funplotS is called in the domain [a, b].

% Input arguments are:
% Fun: The function to be plotted. Its name is entered as 
string expression.

% a:  The first point of the domain.
% b:  The last point of the domain.

% Output argument is:
% xyout: The values of x and y at x=a, x=(a+b)/2, and x=b
% listed in a 3 by 2 matrix.

x=linspace(a,b,100);

y=feval(Fun,x);

xyout(1,1)=a; xyout(2,1)=(a+b)/2; xyout(3,1)=b;

xyout(1,2)=y(1);

xyout(2,2)=feval(Fun,(a+b)/2);

xyout(3,2)=y(100);

A $50,000 loan, 3.9% interest, 10 years.

Monthly payment.

Total payment.

A name for the function that is passed in. 

Using the imported function to calculate f(x) at 100 points. 

Using the imported function to 
calculate f(x) at the midpoint. 
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Passing a user-defined function into another function by using a string expression:

The following demonstrates how to pass a user-defined function into a function
function by typing the name of the imported function as a string in the input argu-
ment. The function  from Section 7.9.1, created as
a user-defined function named Fdemo, is passed into the user-defined function
funplotS. Note that the name Fdemo is typed in a string for the input argument
Fun in the user-defined function funplotS.

In addition to the display of the numerical output in the Command Window, the
plot shown in Figure 7-3 is displayed in the Figure Window.

7.10 SUBFUNCTIONS

A function file can contain more than one user-defined function. The functions are
typed one after the other. Each function begins with a function definition line. The
first function is called the primary function and the rest of the functions are called
subfunctions. The subfunctions can be typed in any order. The name of the func-
tion file that is saved should correspond to the name of the primary function. Each
of the functions in the file can call any of the other functions in the file. Outside
functions, or programs (script files), can call only the primary function. Each of
the functions in the file has its own workspace, which means that in each the vari-
ables are local. In other words, the primary function and the subfunctions cannot
access each other’s variables (unless variables are declared to be global). 

Subfunctions can help in writing user-defined functions in an organized
manner. The program in the primary function can be divided into smaller tasks,
each of which is carried out in a subfunction. This is demonstrated in Sample
Problem 7-4.

Sample Problem 7-4: Average and standard deviation

Write a user-defined function that calculates the average and the standard devia-
tion of a list of numbers. Use the function to calculate the average and the stan-
dard deviation of the following list of grades:
80  75  91  60  79  89  65  80  95  50  81

plot(x,y)

xlabel('x'), ylabel('y')

>> ydemoS=funplotS('Fdemo',0.5,4)

ydemoS =
    0.5000   -2.9852
    2.2500   -3.5548
    4.0000    0.6235

f x( ) e 0.17x– x3 2x2– 0.8x 3–+=

The name of the imported 
function is typed as a string. 
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Solution

The average  (mean) of a given set of n numbers  is given by:

The standard deviation is given by:

A user-defined function, named stat, is written for solving the problem. To
demonstrate the use of subfunctions, the function file includes stat as a primary
function, and two subfunctions called AVG and StandDiv. The function AVG
calculates , and the function StandDiv calculates σ. The subfunctions are
called by the primary function.The following listing is saved as one function file
called stat. 

The user-defined function stat is then used in the Command Window for calcu-
lating the average and the standard deviation of the grades:

function [me SD] = stat(v)

n=length(v);

me=AVG(v,n);

SD=StandDiv(v,me,n);

function av=AVG(x,num)

av=sum(x)/num;

function Sdiv=StandDiv(x,xAve,num)

xdif=x-xAve;

xdif2=xdif.^2;

Sdiv= sqrt(sum(xdif2)/(num-1));

>> Grades=[80 75 91 60 79 89 65 80 95 50 81];

>> [AveGrade StanDeviation] = stat(Grades)

AveGrade =
   76.8182

StanDeviation =
   13.6661

xave x1 x2 … xn, , ,
xave x1 x2 … xn+ + +( ) n⁄=

σ

xi xave–( )2

i 1=

i n=

∑
n 1–

------------------------------------=

xave

The primary function. 

Subfunction. 

Subfunction. 
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7.11 NESTED FUNCTIONS

A nested function is a user-defined function that is written inside another user-
defined function. The portion of the code that corresponds to the nested function
starts with a function definition line and ends with an end statement. An end
statement must also be entered at the end of the function that contains the nested
function. (Normally, a user-defined function does not require a terminating end
statement. However, an end statement is required if the function contains one or
more nested functions.) Nested functions can also contain nested functions. Obvi-
ously, having many levels of nested functions can be confusing. This section con-
siders only two levels of nested functions.
One nested function:
The format of a user-defined function A (called the primary function) that contains
one nested function B is:

function y=A(a1,a2)
.......

function z=B(b1,b2)
.......
end

.......
end
• Note the end statements at the ends of functions B and A.

• The nested function B can access the workspace of the primary function A, and
the primary function A can access the workspace of the function B. This means
that a variable defined in the primary function A can be read and redefined in
nested function B and vice versa.

• Function A can call function B, and function B can call function A.

Two (or more) nested functions at the same level:
The format of a user-defined function A (called the primary function) that contains
two nested functions B and C at the same level is:

function y=A(a1,a2)
.......

function z=B(b1,b2)
.......
end

.......
function w=C(c1,c2)
.......
end

.......
end
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• The three functions can access the workspace of each other.

• The three functions can call each other.

As an example, the following user-defined function (named statNest),
with two nested functions at the same level, solves Sample Problem 7-4. Note that
the nested functions are using variables (n and me) that are defined in the primary
function. 

Using the user-defined function statNest in the Command Window for calcu-
lating the average of the grade data gives:

function [me SD]=statNest(v)

n=length(v);

me=AVG(v);

    function av=AVG(x)

    av=sum(x)/n;

    end

    function Sdiv=StandDiv(x)

    xdif=x-me;

    xdif2=xdif.^2;

    Sdiv= sqrt(sum(xdif2)/(n-1));

    end

SD=StandDiv(v);

end

>> Grades=[80 75 91 60 79 89 65 80 95 50 81];

>> [AveGrade StanDeviation] = statNest(Grades)

AveGrade =
   76.8182

StanDeviation =
   13.6661

The primary function. 

Nested function. 

Nested function. 
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Two levels of nested functions:

Two levels of nested functions are created when nested functions are written
inside nested functions. The following shows an example for the format of a user-
defined function with four nested functions in two levels. 

function y=A(a1,a2) (Primary function A.)
.......

function z=B(b1,b2) (B is nested function in A.)
.......

function w=C(c1,c2) (C is nested function in B.)
.......
end

end
function u=D(d1,d2) (D is nested function in A.)
.......

function h=E(e1,e2) (E is nested function in D.)
.......
end

end
.......
end

The following rules apply to nested functions:
• A nested function can be called from a level above it. (In the preceding exam-

ple, function A can call B or D, but not C or E.)

• A nested function can be called from a nested function at the same level within
the primary function. (In the preceding example, function B can call D, and D
can call B.)

• A nested function can be called from a nested function at any lower level.

• A variable defined in the primary function is recognized and can be redefined
by a function that is nested at any level within the primary function.

• A variable defined in a nested function is recognized and can be redefined by
any of the functions that contain the nested function. 
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7.12 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 7-5: Exponential growth and decay

A model for exponential growth or decay of a quantity is given by

where  and  are the quantity at time t and time 0, respectively, and k is a
constant unique to the specific application.

Write a user-defined function that uses this model to predict the quantity
 at time t from knowledge of  and  at some other time . For function

name and arguments use At = expGD(A0,At1,t1,t), where the output argu-
ment At corresponds to , and for input arguments use A0,At1,t1,t, cor-
responding to , , , and t, respectively.

Use the function file in the Command Window for the following two cases:
(a) The population of Mexico was 67 million in the year 1980 and 79 million in

1986. Estimate the population in 2000.
(b) The half-life of a radioactive material is 5.8 years. How much of a 7-gram

sample will be left after 30 years?
Solution
To use the exponential growth model, the value of the constant k has to be deter-
mined first by solving for k in terms of , , and :

Once k is known, the model can be used to estimate the population at any time.
The user-defined function that solves the problem is: 

function At=expGD(A0,At1,t1,t)

% expGD calculates exponential growth and decay

% Input arguments are:

% A0: Quantity at time zero.

% At1: Quantity at time t1.

% t1: The time t1.

% t: time t.

% Output argument is:

% At: Quantity at time t.

k=log(At1/A0)/t1;

At=A0*exp(k*t);

A t( ) A0ekt=

A t( ) A0

A t( ) A0 A t1( ) t1

A t( )
A0 A t1( ) t1

A0 A t1( ) t1

k 1
t1
--- A t1( )

A0
------------ln=

Function definition line.

Determination of k.
Determination of A(t).
(Assignment of value to output variable.)
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Once the function is saved, it is used in the Command Window to solve the two
cases. For case a) , , , and :

For case b) ,  (since  corresponds to the half-life, which is
the time required for the material to decay to half of its initial quantity), ,
and .

Sample Problem 7-6: Motion of a projectile

Create a function file that calculates the tra-
jectory of a projectile. The inputs to the
function are the initial velocity and the angle
at which the projectile is fired. The outputs
from the function are the maximum height
and distance. In addition, the function gener-
ates a plot of the trajectory. Use the function
to calculate the trajectory of a projectile that is fired at a velocity of 230 m/s at an
angle of 39 .
Solution
The motion of a projectile can be analyzed by considering the horizontal and ver-
tical components. The initial velocity  can be resolved into horizontal and verti-
cal components

    and    

In the vertical direction the velocity and position of the projectile are given by:

  and  

The time it takes the projectile to reach the highest point  and the corre-
sponding height are given by:

  and  

The total flying time is twice the time it takes the projectile to reach the highest
point, . In the horizontal direction the velocity is constant, and the
position of the projectile is given by:

>> expGD(67,79,6,20)
ans =
        116.03

>> expGD(7,3.5,5.8,30)
ans =
          0.19

A0 67= A t1( ) 79= t1 6= t 20=

Estimation of the population in the year 2000.

A0 7= A t1( ) 3.5= t1
t1 5.8=

t 30=

The amount of material after 30 years. 

°

v0

v0x v0 θ( )cos= v0y v0 θ( )sin=

vy v0y gt–= y v0yt 1
2
---gt2–=

vy 0=( )

thmax
v0y
g

-------= hmax
v0y

2

2g
-------=

ttot 2thmax=

x v0xt=
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In MATLAB notation the function name and arguments are entered as
[hmax,dmax] = trajectory(v0,theta). The function file is:

After the function is saved, it is used in the Command Window for a projec-
tile that is fired at a velocity of 230 m/s and an angle of 39o.

function [hmax,dmax]=trajectory(v0,theta)

% trajectory calculates the max height and distance of a 
projectile, and makes a plot of the trajectory.

% Input arguments are:

% v0: initial velocity in (m/s).

% theta: angle in degrees.

% Output arguments are:

% hmax: maximum height in (m).

% dmax: maximum distance in (m).

% The function creates also a plot of the trajectory.

g=9.81;

v0x=v0*cos(theta*pi/180);

v0y=v0*sin(theta*pi/180);

thmax=v0y/g;

hmax=v0y^2/(2*g);

ttot=2*thmax;

dmax=v0x*ttot;

% Creating a trajectory plot

tplot=linspace(0,ttot,200);

x=v0x*tplot;

y=v0y*tplot-0.5*g*tplot.^2;

plot(x,y)

xlabel('DISTANCE (m)')

ylabel('HEIGHT (m)')

title('PROJECTILE''S TRAJECTORY')

>> [h d]=trajectory(230,39)

h =
  1.0678e+003

d =
  5.2746e+003

Function definition line.

Creating a time vector with 200 elements.
Calculating the x and y coordi-
nates of the projectile at each time.

Note the element-by-element multiplication.
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In addition, the following figure is created in the Figure Window:

7.13 PROBLEMS

1. The fuel efficiency of an automobile is measured in mi/gal (miles per U.S.
gallon) or in km/L (kilometers per liter). Write a MATLAB user-defined func-
tion that converts fuel efficiency values from km/L to mi/gal. For the function
name and arguments use mpg=kmlTOmpg(kml). The input argument kml
is the efficiency in km/L, and the output argument mpg is the efficiency in mi/
gal. Use the function in the Command Window to:
(a) Determine the fuel efficiency in mi/gal of a car that consumes 9 km/L.
(b) Determine the fuel efficiency in mi/gal of a car that consumes 14 km/L.   

2. Write a user-defined MATLAB function for the following math function:

The input to the function is x and the output is y. Write the function such that x
can be a vector (use element-by-element operations).
(a) Use the function to calculate y(–2.5), and y(3).
(b) Use the function to make a plot of the function  for .

3. Write a user-defined MATLAB function, with two input and two output argu-
ments, that determines the height in centimeters and mass in kilograms of a
person from his height in inches and weight in pounds. For the function name
and arguments use [cm,kg] = STtoSI(in,lb). The input arguments are
the height in inches and weight in pounds, and the output arguments are the
height in centimeters and mass in kilograms. Use the function in the Com-
mand Window to:
(a) Determine in SI units the height and mass of a 5 ft 8 in. person who

weighs 175 lb.
(b) Determine your own height and weight in SI units.
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4. Write a user-defined MATLAB function that converts speed given in units of
miles per hour to speed in units of meters per second. For the function name
and arguments use mps = mphTOmets(mph). The input argument is the
speed in mi/h, and the output argument is the speed in m/s. Use the function to
convert 55 mi/h to units of m/s.

5. Write a user-defined MATLAB function for the following math function:

The input to the function is θ (in radians) and the output is r. Write the func-
tion such that θ can be a vector.
(a) Use the function to calculate r(3π/4) and r(7π/4).
(b) Use the function to plot (polar plot)  for .

6. Write a user-defined MATLAB function that determines the area of a triangle
when the lengths of the sides are given. For the function name and arguments
use [Area] = triangle(a,b,c). Use the function to determine the areas
of triangles with the following sides:
(a) a = 3, b = 8, c = 10. (b) a = 7, b = 7, c = 5.

7. A cylindrical vertical fuel tank has hemispheric end caps
as shown. The radius of the cylinder and the caps is

in., and the height of the cylindrical middle sec-
tion is 40 in.

Write a user-defined function (for the function
name and arguments use V = Volfuel(h)) that gives
the volume of fuel in the tank (in gallons) as a function of
the height h (measured from the bottom). Use the func-
tion to make a plot of the volume as a function of h for

 in.

8. The surface area S of a ring in shape of a torus with an
inner radius r and a diameter d is given by:

The ring is to be plated with a thin layer of coating. The
weight of the coating W can be calculated approxi-
mately as , where γ is the specific weight of
the coating material and t is its thickness. Write an
anonymous function that calculates the weight of the coating. The function
should have four input arguments, r, d, t, and γ. Use the anonymous function
to calculate the weight of a gold coating ( lb/in.3) of a ring with

in., in., and in.

r θ( ) 2 θ θ θ 4⁄( )sinsincos=

r θ( ) 0 θ 2π≤ ≤

h r

r 15=

0 h 70≤ ≤
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S π2 2r d+( )d=

W γ S t=

γ 0.696=
r 0.35= d 0.12= t 0.002=
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9. The monthly deposit into a savings account S needed to reach an investment
goal B can be calculated by the formula

where M is the monthly deposit, S is the saving goal, N is the number of years,
and r is the annual interest rate (%). Write a MATLAB user-defined function
that calculates the monthly deposit into a savings account. For the function
name and arguments use M = invest(S,r,N). The input arguments are S
(the investment goal), r (the annual interest rate, %), and N (duration of the
savings in years). The output M is the amount of the monthly deposit. Use the
function to calculate the monthly deposit for a 10-year investment if the
investment goal is $25,000 and the annual interest rate is 4.25%.

10. The heat index, HI (in degrees F), is an apparent temperature. For tempera-
tures higher than 80 F and humidity higher than 40% it is calculated by:

where T is temperature in degrees F, R is the relative humidity in percent,
, , , ,

, , ,
, and . Write a user-defined function for

calculating HI for given T and R. For the function name and arguments use
HI=HeatIn(T,R). The input arguments are T in F and, R in %, and the
output argument is HI in F (rounded to the nearest integer). Use the function
to determine the heat index for the following conditions:
(a) F, %.
(b) F, % (condition in a sauna).

11. The body fat percentage (BFP) of a person can be estimated by the formula

where BMI is the body mass index, given by , in which W is

the weight in pounds and H is the height in inches, Age is the person’s age, and
 for a male and  for a female.

Write a MATLAB user-defined function that calculates the body fat per-
centage. For the function name and arguments use BFP = Body-
Fat(w,h,age,gen). The input arguments are the weight, height, age, and
gender (1 for male, 0 for female), respectively. The output argument is the
BEF value. Use the function to calculate the body fat percentage of:
a) A 35-years-old, 6 ft 2 in. tall, 220 lb male.
b) A 22-years-old, 5 ft 7 in. tall, 135 lb female.

M S

r
1200
------------

1 r
1200
------------+( )

12N 1–
--------------------------------------------=
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12. Write a user-defined function that calculates grade point average (GPA) on a
scale of 0 to 4, where , , , , and . For the
function name and arguments use av = GPA(g,h). The input argument g is a
vector whose elements are letter grades A, B, C, D, or E entered as strings. The
input argument h is a vector with the corresponding credit hours. The output
argument av is the calculated GPA. Use the function to calculate the GPA for
a student with the following record:

For this case the input arguments are: 
g=[‘BACEABDB’] and h=[3 4 3 4 3 4 3 2].

13. The factorial n! of a positive number (integer) is defined by
, where . Write a user-defined

function that calculates the factorial n! of a number. For function name and
arguments use y=fact(x), where the input argument x is the number
whose factorial is to be calculated, and the output argument y is the value .
The function displays an error message if a negative or non-integer number is
entered when the function is called. Use fact with the following numbers:
(a)   12!    (b)  0!    (c)  –7!    (d)  6.7!

14. Write a user-defined MATLAB function that determines the vector connecting
two points (A and B). For the function name and arguments use V=vec-
tor(A,B). The input arguments to the function are vectors A and B, each
with the Cartesian coordinates of points A and B. The output V is the vector
from point A to point B. If points A and B have two coordinates each (they are
in the x y plane), then V is a two-element vector. If points A and B have three
coordinates each (general points in space), then V is a three-element vector.
Use the function vector for determining the following vectors. 
(a) The vector from point (0.5, 1.8) to point (–3, 16).
(b) The vector from point (–8.4, 3.5, –2.2) to point (5, –4.6, 15).

15. Write a user-defined MATLAB function that determines the dot product of
two vectors. For the function name and arguments use D=dotpro(u,v).
The input arguments to the function are two vectors, which can be two- or
three-dimensional. The output D is the result (a scalar). Use the function
dotpro for determining the dot product of:
(a) Vectors  and .
(b) Vectors  and .

Grade B A C E A B D B

Credit Hours 3 4 3 4 3 4 3 2

A 4= B 3= C 3= D 1= E 0=

n! n n 1–( ) n 2–( ) … 3 2 1⋅ ⋅ ⋅ ⋅ ⋅ ⋅= 0! 1=

x!

a 3i 11j+= b 14i 7.3j–=

c 6i– 14.2j 3k+ += d 6.3i 8j– 5.6k–=



252 Chapter 7: User-Defined Functions and Function Files

16. Write a user-defined MATLAB function that determines the unit vector in the
direction of the line that connects two points (A and B) in space. For the func-
tion name and arguments use n = unitvec(A,B). The input to the function
are two vectors A and B, each with the Cartesian coordinates of the corre-
sponding point. The output is a vector with the components of the unit vector
in the direction from A to B. If points A and B have two coordinates each (they
are in the x y plane), then n is a two-element vector. If points A and B have
three coordinate each (general points in space), then n is a three-element vec-
tor. Use the function to determine the following unit vectors:
(a) In the direction from point (1.2, 3.5) to point (12, 15).
(b) In the direction from point (–10, –4, 2.5) to point (–13, 6, –5).

17. Write a user-defined MATLAB function that determines the cross product of
two vectors. For the function name and arguments use w=crosspro(u,v).
The input arguments to the function are the two vectors, which can be two- or
three-dimensional. The output w is the result (a vector). Use the function
crisper for determining the cross product of:
(a) Vectors  and .
(b) Vectors  and .

18. The area of a triangle ABC can be calculated by:

where AB is the vector from point A to point B and AC is the vector from point
A to point C. Write a user-defined MATLAB function that determines the area
of a triangle given its vertices’ coordinates. For the function name and argu-
ments use [Area] = TriArea(A,B,C). The input arguments A, B, and C,
are vectors, each with the coordinates of the corresponding vertex. Write the code
of TriArea such that it has two subfunctions—one that determines the vec-
tors AB and AC and an other that executes the cross product. (If available, use
the user-defined functions from Problems 15 and 17. The function should
work for a triangle in the x y plane (each vertex is defined by two coordinates)
or for a triangle in space (each vertex is defined by three coordinates). Use the
function to determine the areas of triangles with the following vertices:
(a) , , .
(b) , , .

19. Write a user-defined function that plots a circle given the coordinates of the
center and the radius. For the function name and arguments use
circleplot(x,y,R). The input arguments are the x and y coordinates of
the center and the radius. This function has no output arguments. Use the
function to plot the following circles:
(a) , , .        (b) , , .

a 3i 11j+= b 14i 7.3j–=

c 6i– 14.2j 3k+ += d 6.3i 8j– 5.6k–=

A 1
2
--- AB AC×=

A 1 2,( )= B 10 3,( )= C 6 11,( )=

A 1.5– 4.2– 3–, ,( )= B 5.1– 6.3 2, ,( )= C 12.1 0 0.5–, ,( )=

x 3.5= y 2.0= R 8.5= x 4.0–= y 1.5–= R 10=
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20. Write a user-defined function that plots a circle that passes through three
given points. For the function name and arguments use cirpnts(P). The
input arguments is a  matrix in which the two elements of a row are the x
and y coordinates of one point. This function has no output arguments. The
figure that is created by the function displays the circle and the three points
marked with asterisks. Use the function to plot a circle that passes through the
points (6, 1.5), (2, 4), (–3, –1.8).

21. In polar coordinates a two-dimensional vector is
given by its radius and angle . Write a user-
defined MATLAB function that adds two vectors
that are given in polar coordinates. For the func-
tion name and arguments use
[r th]= AddVecPol(r1,th1,r2,th2),

 where the input arguments are  and
, and the output arguments are the radius and angle of the result. Use

the function to carry out the following additions: 
(a) , .       (b) , .

22. Write a user-defined function that plots an
ellipse with axes that are parallel to the x and y
axes, given the coordinates of its center and the
length of the axes. For the function name and
arguments use ellipse-
plot(xc,yc,a,b). The input arguments xc
and yc are the coordinates of the center, and a
and b are half the lengths of the horizontal and vertical axes (see figure),
respectively. This function has no output arguments. Use the function to plot
the following ellipses:
(a) , , , .
(b) , , , .

23. Write a user-defined function that finds all the prime numbers between two
numbers m and n. Name the function pr=prime(m,n), where the input
arguments m and n are positive integers, and the output argument pr is a vec-
tor with the prime numbers. If  is entered when the function is called,
the error message “The value of n must be larger than the value of m.” is dis-
played. If a negative number or a number that is not an integer is entered when
the function is called, the error message “The input argument must be a posi-
tive integer.” is displayed. Use the function with:
(a) prime(12,80) (b) prime(21,63.5)
(c) prime(100,200) (d) prime(90,50)
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24. The geometric mean GM of a set of n positive numbers  is defined
by:

Write a user-defined function that calculates the geometric mean of a set of
numbers. For function name and arguments use GM=Geomean(x), where
the input argument x is a vector of numbers (any length) and the output argu-
ment GM is their geometric mean. The geometric mean is useful for calculat-
ing the average return of a stock. The following table gives the returns for
IBM stock over the last ten years (a return of 16% means 1.16). Use the user-
defined function Geomean to calculate the average return of the stock. 

25. Write a user-defined function that determines the polar
coordinates of a point from the Cartesian coordinates in
a two-dimensional plane. For the function name and
arguments use [th rad]=CartToPolar(x,y).
The input arguments are the x and y coordinates of the
point, and the output arguments are the angle θ and the
radial distance to the point. The angle θ is in degrees
and is measured relative to the positive x axis, such that
it is a positive number in quadrants I and II, and a negative number in quadrant III
and IV. Use the function to determine the polar coordinates of points (14, 9), (–11,
–20), (–15, 4), and (13.5, –23.5).

26. Write a user-defined function that sorts the elements of a vector from the
largest to the smallest. For the function name and arguments use
y=downsort(x). The input to the function is a vector x of any length, and
the output y is a vector in which the elements of x are arranged in a
descending order. Do not use the MATLAB built-in function sort, max, or
min. Test your function on a vector with 14 numbers (integers) randomly
distributed between –30 and 30. Use the MATLAB randi function to
generate the initial vector.

27. Write a user-defined function that sorts the elements of a matrix. For the func-
tion name and arguments use B = matrixsort(A), where A is any size
matrix and B is a matrix of the same size with the elements of A rearranged in
descending order row after row with the (1,1) element the largest and the
(m,n) element the smallest. If available, use the user-defined function down-
sort from Problem 26 as a subfunction within matrixsort.

Year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Return 1.38 1.76 1.17 0.79 1.42 0.64 1.2 1.06 0.83 1.18

x1 x2 … xn, , ,

GM x1 x2 … xn⋅ ⋅ ⋅( )1 n⁄=
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Test your function on a  matrix with elements (integers) randomly
distributed between –30 and 30. Use MATLAB’s randi function to generate
the initial matrix.

28. Write a user-defined MATLAB function that calculates the determinant of a
 matrix by using the formula:

For the function name and arguments use d3 = det3by3(A), where the
input argument A is the matrix and the output argument d3 is the value of the
determinant. Write the code of det3by3 such that it has a subfunction that
calculates the  determinant. Use det3by3 for calculating the determi-
nants of: 

(a)             (b)  

29. A two-dimensional state of stress at a point in a
loaded material is defined by three components of
stress , , and . The maximum and mini-
mum normal stresses (principal stresses) at the point,

 and , are calculated from the stress compo-
nents by:

Write a user-defined MATLAB function that determines the principal stresses
from the stress components. For the function name and arguments use
[Smax,Smin] = princstress(Sxx,Syy,Sxy). The input arguments
are the three stress components, and the output arguments are the maximum
and minimum stresses.

Use the function to determine the principal stresses for the following
states of stress:
(a) MPa, MPa, and MPa.
(b) ksi, ksi, and ksi.

30. The dew point temperature  and the relative humidity RH can be calculated
(approximately) from the dry-bulb  and wet-bulb  temperatures by
(http://www.wikipedia.org)
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where the temperatures are in degrees Celsius, RH is in %, and  is the
barometric pressure in units of millibars.

Write a user-defined MATLAB function that calculates the dew point
temperature and relative humidity for given dry-bulb and wet-bulb tempera-
tures and barometric pressure. For the function name and arguments use
[Td,RH] = DewptRhum(T,Tw,BP), where the input arguments are , 
and , and the output arguments are  and RH. The values of the output
arguments should be rounded to the nearest tenth. Use the user-defined func-
tion dewpoint for calculating the dew point temperature and relative
humidity for the following cases:
(a) C, C, mbar. 
(b) C, C, mbar. 

31. Write a user-defined MATLAB function that calculates a student’s final grade
in a course using the scores from three midterm exams, a final exam, and six
homework assignments. The midterms are graded on a scale from 0 to 100
and each accounts for 15% of the course grade. The final exam is graded on a
scale from 0 to 100 and accounts for 40% of the course grade. The six home-
work assignments are each graded on a scale from 0 to 10. The homework
assignment with the lowest grade is dropped, and the average of the remaining
assignments accounts for 15% of the course grade. In addition, the following
adjustment is made when the grade is calculated. If the average grade for the
three midterms is higher than the grade for the final exam, then the grade of
the final exam is not used and the average grade of the three midterms
accounts for 85% of the course grade. The program calculates a course grade
that is a number between 0 and 100.

For the function name and arguments use g = fgrade(R). The input
argument R is a matrix in which the elements in each row are the grades of
one student. The first six columns are the homework grades (numbers
between 0 and 10), the next three columns are the midterm grades (numbers
between 0 and 100), and the last column is the final exam grade (a number
between 0 and 100). The output from the function, g, is a column vector with
the student grades for the course. Each row has the course grade of the student
with the grades in the corresponding row of the matrix R. 

The function can be used to calculate the grades of any number of stu-
dents. For one student the matrix R has one row. Use the function for the fol-
lowing cases:
(a) Use the Command Window to calculate the course grade of one student
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with the following grades: 8, 9, 6, 10, 9, 7, 76, 86, 91, 80.
(b) Write a program in a script file. The program asks the user to enter the

students’ grades in an array (one student per row). The program then cal-
culates the course grades by using the function fgrade. Run the script
file in the Command Window to calculate the grades of the following four
students:
Student A:   7, 10, 6, 9, 10, 9, 91, 71, 81, 88.
Student B:   5, 5, 6, 1, 8, 6, 59, 72, 66, 59.
Student C:   6, 8, 10, 4, 5, 9, 72, 78, 84 78.
Student D:   7, 7, 8, 8, 9, 8, 83, 82, 81 84.

32. In a lottery the player has to select several numbers out of a list. Write a
MATLAB program that generates a list of n integers that are uniformly
distributed between the numbers a and b. All the selected numbers on the list
must be different.
(a) Use the function to generate a list of seven numbers from the numbers 1

through 59.
(b) Use the function to generate a list of eight numbers from the numbers 50

through 65.
(c) Use the function to generate a list of nine numbers from the numbers –25

through –2.

33. The solution of the nonlinear equation  gives the fifth root of the num-
ber P. A numerical solution of the equation can be calculated with Newton’s
method. The solution process starts by choosing a value  as a first estimate of
the solution. Using this value, a second, more accurate solution  can be calcu-

lated with , which is then used for calculating a third, still more

accurate solution , and so on. The general equation for calculating the value of

the solution  from the solution  is . Write a user-

defined function that calculates the fifth root of a number. For function name and
arguments use y=fifthroot(P), where the input argument P is the number
whose fifth root is to be determined, and the output argument y is the value .
In the program use  for the first estimate of the solution. Then, by using the
general equation in a loop, calculate new, more accurate solutions. Stop the loop-

ing when the estimated relative error E defined by  is smaller than

0.00001. Use the function cubic to calculate:
(a) (b) (c)
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34. Write a user-defined function that determines the
coordinate  of the centroid of the T-shaped
cross-sectional area shown in the figure. For the
function name and arguments use yc = cen-
troidT(w,h,t,d), where the input argu-
ments w, h, t and d, are the dimensions shown in
the figure, and the output argument yc is the
coordinate .

Use the function to determine  for an area
with w = 240 mm, h = 380 mm, d = 42 mm, and t =
60 mm.

35. The area moment of inertia  of a rectangle about the

axis  passing through its centroid is . The

moment of inertia about an axis x that is parallel to  is
given by , where A is the area of the rect-
angle, and  is the distance between the two axes.

Write a MATLAB user-defined function
that determines the area moment of inertia 
of a “ T ” beam about the axis that passes
through its centroid (see drawing). For the func-
tion name and arguments use Ixc = IxcT-
Beam(w,h,t,d), where the input arguments
w, h, t, and d are the dimensions shown in the
figure, and the output argument Ixc is . For
finding the coordinate  of the of the centroid
use the user-defined function centroidT
from Problem 34 as a subfunction inside IxcTBeam.   
(The moment of inertia of a composite area is obtained by dividing the area
into parts and adding the moments of inertia of the parts.)

Use the function to determine the moment of inertia of a “ T ” beam with w
= 240 mm, h = 380 mm, d = 42 mm, and t = 60 mm.

36. In a low-pass RC filter (a filter that passes
signals with low frequencies), the ratio of
the magnitudes of the voltages is given by: 

 

where ω is the frequency of the input signal.
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Write a user-defined MATLAB function that calculates the magnitude
ratio. For the function name and arguments use RV = lowpass(R,C,w).
The input arguments are R, the size of the resistor in Ω (ohms); C, the size of
the capacitor in F (farads); and w, the frequency of the input signal in rad/s.
Write the function such that w can be a vector.

Write a program in a script file that uses the lowpass function to gener-
ate a plot of RV as a function of ω for  rad/s. The plot has a log-
arithmic scale on the horizontal axis (ω). When the script file is executed, it
asks the user to enter the values of R and C. Label the axes of the plot. 

Run the script file with Ω , and μF.

37. A bandpass filter passes signals with fre-
quencies that are within a certain range. In
this filter the ratio of the magnitudes of the
voltages is given by

 

where ω is the frequency of the input signal.
Write a user-defined MATLAB function that calculates the magnitude

ratio. For the function name and arguments use RV = band-
pass(R,C,L,w). The input arguments are R the size of the resistor in Ω
(ohms); C, the size of the capacitor in F (farads); L, the inductance of the coil
in H (henrys); and w, the frequency of the input signal in rad/s. Write the func-
tion such that w can be a vector.

Write a program in a script file that uses the bandpass function to gen-
erate a plot of RV as a function of ω for  rad/s. The plot has a
logarithmic scale on the horizontal axis (ω). When the script file is executed,
it asks the user to enter the values of R, L, and C. Label the axes of the plot.

Run the script file for the following two cases:
(a) Ω, μF, mH.
(b) Ω, μF, mH.

38. The first derivative  of a function  at  can be approximated

with the four-point central difference formula

where h is a small number relative to . Write a user-defined function func-
tion (see Section 7.9) that calculates the derivative of a math function  by
using the four-point central difference formula. For the user-defined function
name use dfdx=Funder(Fun,x0), where Fun is a name for the function
that is passed into Funder, and x0 is the point where the derivative is calcu-
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lated. Use  in the four-point central difference formula. Use the
user-defined function Funder to calculate the following:
(a) The derivative of  at .

(b) The derivative of  at .
In both cases compare the answer obtained from Funder with the analytical
solution (use format long). 

39. The new coordinates  of a point in the x y plane that is rotated about
the z axis at an angle  (positive is clockwise) are given by

where  are the coordinates of the point before the rotation. Write a
user-defined function that calculates  given  and . For func-
tion name and arguments use [xr,yr]=rotation(x,y,q), where the
input arguments are the initial coordinates and the rotation angle in degrees,
and the output arguments are the new coordinates.
(a) Use rotation to determine the new coordinates of a point originally at

 that is rotated about the z-axis by .
(b) Consider the function  for . Write a program in
a script file that makes a plot of the function. Then use rotation to rotate
all the points that make up the first plot and make a plot of the rotated func-
tion. Make both plots in the same figure and set the range of both axes at 0 to
10. 

h x0 10⁄=

f x( ) x2ex= x0 0.25=

f x( ) 2x

x
-----= x0 2=

Xr Yr,( )
θ

Xr X0 θcos Y0 θsin–=

Yr X0 θsin Y0 θcos+=

X0 Y0,( )
Xr Yr,( ) X0 Y0,( ) θ

6.5 2.1,( ) 25°

y x 7–( )2 1.5+= 5 x 9≤ ≤
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Chapter 8            
Polynomials,            
Curve Fitting, and 
Interpolation

Polynomials are mathematical expressions that are frequently used for problem
solving and modeling in science and engineering. In many cases an equation that
is written in the process of solving a problem is a polynomial, and the solution of
the problem is the zero of the polynomial. MATLAB has a wide selection of func-
tions that are specifically designed for handling polynomials. How to use polyno-
mials in MATLAB is described in Section 8.1.

Curve fitting is a process of finding a function that can be used to model
data. The function does not necessarily pass through any of the points, but models
the data with the smallest possible error. There are no limitations to the type of the
equations that can be used for curve fitting. Often, however, polynomial, exponen-
tial, and power functions are used. In MATLAB curve fitting can be done by writ-
ing a program, or by interactively analyzing data that is displayed in the Figure
Window. Section 8.2 describes how to use MATLAB programming for curve fit-
ting with polynomials and other functions. Section 8.4 describes the basic fitting
interface that is used for interactive curve fitting and interpolation. 

Interpolation is the process of estimating values between data points. The
simplest kind of interpolation is done by drawing a straight line between the
points. In a more sophisticated interpolation, data from additional points is used.
How to interpolate with MATLAB is discussed in Sections 8.3 and 8.4.

8.1 POLYNOMIALS

Polynomials are functions that have the form:

The coefficients  are real numbers, and n, which is a nonnega-
f x( ) anxn an 1– xn 1– … a1x a0+ + + +=

an an 1– … a1 a0, , , ,
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tive integer, is the degree, or order, of the polynomial.
Examples of polynomials are:

  polynomial of degree 5.
  polynomial of degree 2.

  polynomial of degree 1.
A constant (e.g., ) is a polynomial of degree 0.

In MATLAB, polynomials are represented by a row vector in which the ele-
ments are the coefficients . The first element is the coefficient of
the x with the highest power. The vector has to include all the coefficients, includ-
ing the ones that are equal to 0. For example:

8.1.1 Value of a Polynomial
The value of a polynomial at a point x can be calculated with the function
polyval which has the form:

x can also be a vector or a matrix. In such a case the polynomial is calculated for
each element (element-by-element), and the answer is a vector, or a matrix, with
the corresponding values of the polynomial.

Sample Problem 8-1: Calculating polynomials with MATLAB

For the polynomial  :
(a) Calculate .
(b) Plot the polynomial for .
Solution
The problem is solved in the Command Window.
(a) The coefficients of the polynomials are assigned to vector p. The function

Polynomial MATLAB representation

p = [8  5]

d = [2  –4  10]

,  MATLAB form:  h = [6  0  –150]

,  MATLAB form:
                       

c = [5  0  0  6  –7  0]

f x( ) 5x5 6x2 7x 3+ + +=

f x( ) 2x2 4x– 10+=

f x( ) 11x 5–=

f x( ) 6=

an an 1– … a1 a0, , , ,

8x 5+

2x2 4x– 10+

6x2 150– 6x2 0x 150–+

5x5 6x2 7x–+

5x5 0x4 0x3 6x2 7x– 0+ + + +

polyval(p,x)

p is a vector with the coef-
ficients of the polynomial.

x is a number, or a variable that
has an assigned value, or a com-
putable expression. 

f x( ) x5 12.1x4– 40.59x3 17.015x2– 71.95x– 35.88+ +=

f 9( )
1.5– x 6.7≤ ≤
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polyval is then used to calculate the value at x = 9.

(b) To plot the polynomial, a vector x is first defined with elements ranging
from –1.5 to 6.7. Then a vector y is created with the values of the polynomial for
every element of x. Finally, a plot of y vs. x is made.

The plot created by MATLAB is presented below (axis labels were added with the
Plot Editor).

8.1.2 Roots of a Polynomial
The roots of a polynomial are the values of the argument for which the value of
the polynomial is equal to zero. For example, the roots of the polynomial

 are the values of x for which , which are 
and x = 3.

MATLAB has a function, called roots, that determines the root, or roots,
of a polynomial. The form of the function is:

For example, the roots of the polynomial in Sample Problem 8-1 can be deter-
mined by:

>> p = [1 -12.1 40.59 -17.015 -71.95 35.88];

>> polyval(p,9)

ans =
  7.2611e+003

>> x=-1.5:0.1:6.7;

>> y=polyval(p,x);

>> plot(x,y)

Calculating the value of the polyno-
mial for each element of the vector x.

-2 -1 0 1 2 3 4 5 6 7
-200

-150

-100

-50

0

50

100

150

x

y

f x( ) x2 2x– 3–= x2 2x– 3– 0= x 1–=

r = roots(p)

p is a row vector with the coef-
ficients of the polynomial.

r is a column vector with
the roots of the polynomial. 
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The roots command is very useful for finding the roots of a quadratic equation.
For example, to find the roots of , type:

When the roots of a polynomial are known, the poly command can be used
for determining the coefficients of the polynomial. The form of the poly com-
mand is:

For example, the coefficients of the polynomial in Sample Problem 8-1 can be
obtained from the roots of the polynomial (see above) by:

8.1.3 Addition, Multiplication, and Division of Polynomials
Addition:
Two polynomials can be added (or subtracted) by adding (subtracting) the vectors
of the coefficients. If the polynomials are not of the same order (which means that
the vectors of the coefficients are not of the same length), the shorter vector has to
be modified to be of the same length as the longer vector by adding zeros (called
padding) in front. For example, the polynomials
  and  can be added
by:

>> p= 1 -12.1 40.59 -17.015 -71.95 35.88];

>> r=roots(p)

r =
    6.5000
    4.0000
    2.3000
   -1.2000
    0.5000

>> roots([4 10 -8])

ans =
   -3.1375
    0.6375

>> r=6.5 4 2.3 -1.2 0.5];

>> p=poly(r)

p =
    1.0000  -12.1000   40.5900  -17.0150  -71.9500   35.8800

When the roots are known, the polynomial can
actually be written as:
f x( ) x 1.2+( ) x 0.5–( ) x 2.3–( ) x 4–( ) x 6.5–( )=

f x( ) 4x2 10x 8–+=

p = poly(r)

r is a vector (row or column) 
with the roots of the polynomial.

p is a row vector with the 
coefficients of the polynomial. 

f1 x( ) 3x6 15x5 10x3– 3x2– 15x 40–+ += f2 x( ) 3x3 2x– 6–=
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Multiplication:
Two polynomials can be multiplied using the MATLAB built-in function conv,
which has the form:

• The two polynomials do not have to be of the same order.

• Multiplication of three or more polynomials is done by using the conv func-
tion repeatedly.

For example, multiplication of the polynomials  and  above gives:

which means that the answer is:
 
Division:
A polynomial can be divided by another polynomial with the MATLAB built-in
function deconv, which has the form:

For example, dividing  by  is done by:

>> p1=[3 15 0 -10 -3 15 -40];

>> p2=[3 0 -2 -6];

>> p=p1+[0 0 0 p2]

p =
     3    15     0    -7    -3    13   -46

>> pm=conv(p1,p2)

pm =
     9    45    -6   -78   -99    65   -54   -12   -10   240

>> u=[2 9 7 -6];

>> v=[1 3];

Three 0s are added in front
of p2, since the order of p1
is 6 and the order of p2 is 3.

c = conv(a,b)

a and b are the vectors of the
coefficients of the polynomials
that are being multiplied.

c is a vector of the coefficients
of the polynomial that is the
product of the multiplication. 

f1 x( ) f2 x( )

9x9 45x8 6x7– 78x6– 99x5– 65x4 54x3– 12x2– 10x– 240+ + +

[q,r] = deconv(u,v)

u is a vector with the coefficients of
the numerator polynomial.
v is a vector with the coefficients of
the denominator polynomial.

q is a vector with the coefficients
of the quotient polynomial.
r is a vector with the coefficients
of the remainder polynomial.

2x3 9x2 7x 6–+ + x 3+
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An example of division that gives a remainder is 
divided by : 

The answer is:  .

8.1.4 Derivatives of Polynomials
The built-in function polyder can be used to calculate the derivative of a single
polynomial, a product of two polynomials, or a quotient of two polynomials, as
shown in the following three commands.
k = polyder(p) Derivative of a single polynomial. p is a vector with

the coefficients of the polynomial. k is a vector with
the coefficients of the polynomial that is the derivative.

k = polyder(a,b) Derivative of a product of two polynomials. a and b
are vectors with the coefficients of the polynomials that
are multiplied. k is a vector with the coefficients of the
polynomial that is the derivative of the product.

[n d] = polyder(u,v) Derivative of a quotient of two polynomials. u and v
are vectors with the coefficients of the numerator and
denominator polynomials. n and d are vectors with the
coefficients of the numerator and denominator polyno-
mials in the quotient that is the derivative.

The only difference between the last two commands is the number of output argu-
ments. With two output arguments MATLAB calculates the derivative of the quo-
tient of two polynomials. With one output argument the derivative is of the
product.

>> [a b]=deconv(u,v)

a =
     2     3    -2

b =
     0     0     0     0

>> w=[2 -13 0 75 2 0 -60];

>> z=[1 0 -5];

>> [g h]=deconv(w,z)

g =
    2  -13   10   10   52

h =
    0   0   0   0   0   50   200

The answer is: .2x2 3x 2–+

Remainder is zero.

2x6 13x5– 75x3 2x2 60–+ +

x2 5–

The quotient is: .2x4 13x3– 10x2 10x 52+ + +

The remainder is: .50x 200+

2x4 13x3– 10x2 10x 52 50x 200+
x2 5–

------------------------+ + + +
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For example, if , and , the derivatives of

, , and  can be determined by:

8.2 CURVE FITTING

Curve fitting, also called regression analysis, is a process of fitting a function to a
set of data points. The function can then be used as a mathematical model of the
data. Since there are many types of functions (linear, polynomial, power, expo-
nential, etc.), curve fitting can be a complicated process. Many times one has
some idea of the type of function that might fit the given data and will need only
to determine the coefficients of the function. In other situations, where nothing is
known about the data, it is possible to make different types of plots that provide
information about possible forms of functions that might fit the data well. This
section describes some of the basic techniques for curve fitting and the tools that
MATLAB has for this purpose.

8.2.1 Curve Fitting with Polynomials; The polyfit Function
Polynomials can be used to fit data points in two ways. In one the polynomial
passes through all the data points, and in the other the polynomial does not neces-
sarily pass through any of the points, but overall gives a good approximation of
the data. The two options are described below.
Polynomials that pass through all the points:
When n points (xi, yi) are given, it is possible to write a polynomial of degree 
that passes through all the points. For example, if two points are given it is possi-
ble to write a linear equation in the form of  that passes through the
points. With three points the equation has the form of . With n

>> f1= 3 -2 4];
>> f2=[1 0 5];

>> k=polyder(f1)

k =
     6    -2

>> d=polyder(f1,f2)

d =
    12    -6    38   -10

>> [n d]=polyder(f1,f2)

n =
     2    22   -10

d =
     1     0    10     0    25

f1 x( ) 3x2 2x– 4+= f2 x( ) x2 5+=

3x2 2x– 4+ 3x2 2x– 4+( ) x2 5+( ) 3x2 2x– 4+
x2 5+

-----------------------------

Creating the vectors of coefficients of f1 and f2.

The derivative of f1 is: .6x 2–

The derivative of f1*f2 is: .12x3 6x2– 38x 10–+

The derivative of   is: .3x2 2x– 4+
x2 5+

----------------------------- 2x2 22x 10–+
x4 10x2 25+ +
-----------------------------------

n 1–

y mx b+=

y ax2 bx c+ +=
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points the polynomial has the form . The coef-
ficients of the polynomial are determined by substituting each point in the polyno-
mial and then solving the n equations for the coefficients. As will be shown later
in this section, polynomials of high degree might give a large error if they are used
to estimate values between data points.
Polynomials that do not necessarily pass through any of the points:
When n points are given, it is possible to write a polynomial of degree less than

 that does not necessarily pass through any of the points, but overall approxi-
mates the data. The most common method of finding the best fit to data points is
the method of least squares. In this method the coefficients of the polynomial are
determined by minimizing the sum of the squares of the residuals at all the data
points. The residual at each point is defined as the difference between the value of
the polynomial and the value of the data. For example, consider the case of find-
ing the equation of a straight line that best fits four data points as shown in Figure
8-1. The points are , , , and , and the polynomial of the

first degree can be written as . The residual, , at each point is
the difference between the value of the function at  and , . An
equation for the sum of the squares of the residuals  of all the points is given by 

or, after substituting the equation of the polynomial at each point, by:

At this stage R is a function of  and . The minimum of R can be determined
by taking the partial derivative of R with respect to  and  (two equations) and
equating them to zero.

  and  

Figure 8-1: Least squares fitting of first-degree polynomial to four points.

an 1– xn 1– an 2– xn 2– … a1x a0+ + + +

n 1–

x1 y1,( ) x2 y2,( ) x3 y3,( ) x4 y4,( )

(x1, y1)

R2

R1

R3

x

y

R4

 f(x1)
 f(x2)

 f(x3)

 f(x4)
(x2, y2)

(x3, y3)

(x4, y4)

f(x) = a1x + a0

f x( ) a1x a0+= Ri

xi yi Ri f xi( ) yi–=

Ri

R f x1( ) y1–[ ]2 f x2( ) y2–[ ]2 f x3( ) y3–[ ]2 f x4( ) y4–[ ]2+ + +=

R a1x1 a0 y1–+[ ]2 a1x2 a0 y2–+[ ]2 a1x3 a0 y3–+[ ]2 a1x4 a0 y4–+[ ]2+ + +=

a1 a0
a1 a0

∂R
∂a1
-------- 0= ∂R

∂a0
-------- 0=
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This results in a system of two equations with two unknowns,  and . The
solution of these equations gives the values of the coefficients of the polynomial
that best fits the data. The same procedure can be followed with more points and
higher-order polynomials. More details on the least squares method can be found
in books on numerical analysis.

Curve fitting with polynomials is done in MATLAB with the polyfit
function, which uses the least squares method. The basic form of the polyfit
function is:

For the same set of m points, the polyfit function can be used to fit poly-
nomials of any order up to . If n = 1 the polynomial is a straight line, if n = 2
the polynomial is a parabola, and so on. The polynomial passes through all the
points if  (the order of the polynomial is one less than the number of
points). It should be pointed out here that a polynomial that passes through all the
points, or polynomials with higher order, do not necessarily give a better fit over-
all. High-order polynomials can deviate significantly between the data points.

Figure 8-2 shows how polynomials of different degrees fit the same set of
data points. A set of seven points is given by (0.9, 0.9), (1.5, 1.5), (3, 2.5), (4, 5.1),

Figure 8-2: Fitting data with polynomials of different order.

a1 a0

p = polyfit(x,y,n)

x is a vector with the horizontal coordinates
of the data points (independent variable).
y is a vector with the vertical coordinates of
the data points (dependent variable).
n is the degree of the polynomial.

p is the vector of the coeffi-
cients of the polynomial 
that fits the data. 
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n m 1–=
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(6, 4.5), (8, 4.9), and (9.5, 6.3). The points are fitted using the polyfit function
with polynomials of degrees 1 through 6. Each plot in Figure 8-2 shows the same
data points, marked with circles, and a curve-fitted line that corresponds to a poly-
nomial of the specified degree. It can be seen that the polynomial with n = 1 is a
straight line, and with n = 2 is a slightly curved line. As the degree of the polyno-
mial increases, the line develops more bends such that it passes closer to more
points. When n = 6, which is one less than the number of points, the line passes
through all the points. However, between some of the points, the line deviates sig-
nificantly from the trend of the data. 

The script file used to generate one of the plots in Figure 8-2 (the polyno-
mial with n = 3) is shown below. Note that in order to plot the polynomial (the
line) a new vector xp with small spacing is created. This vector is then used with

x=[0.9 1.5 3 4 6 8 9.5];

y=[0.9 1.5 2.5 5.1 4.5 4.9 6.3];

p=polyfit(x,y,3)

xp=0.9:0.1:9.5;

yp=polyval(p,xp);

plot(x,y,'o',xp,yp)

xlabel('x'); ylabel('y')

Figure 8-2: Fitting data with polynomials of different order. (Continued)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

x

y

n = 3

0 2 4 6 8 10
0

1

2

3

4

5

6

7

x

y

n = 4

0 2 4 6 8 10
0

1

2

3

4

5

6

7

x

y

n = 5

0 2 4 6 8 10
0

2

4

6

8

10

x

y

n = 6

Create vectors x and y with the
coordinates of the data points.

Create a vector p using the polyfit function.
Create a vector xp to be used for plotting the polynomial.
Create a vector yp with values of the polynomial at each xp.

A plot of the seven points and the polynomial.
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the function polyval to create a vector yp with the value of the polynomial for
each element of xp.

When the script file is executed, the following vector p is displayed in the
Command Window.

This means that the polynomial of the third degree in Figure 8-2 has the form
.

8.2.2 Curve Fitting with Functions Other than Polynomials
Many situations in science and engineering require fitting functions that are not
polynomials to given data. Theoretically, any function can be used to model data
within some range. For a particular data set, however, some functions provide a
better fit than others. In addition, determining the best-fitting coefficients can be
more difficult for some functions than for others. This section covers curve fitting
with power, exponential, logarithmic, and reciprocal functions, which are com-
monly used. The forms of these functions are:

     (power function)
  or  (exponential function)

  or     (logarithmic function)

  (reciprocal function)

All of these functions can easily be fitted to given data with the polyfit func-
tion. This is done by rewriting the functions in a form that can be fitted with a lin-
ear polynomial (n = 1), which is

The logarithmic function is already in this form, and the power, exponential and
reciprocal equations can be rewritten as:

(power function)
  or   (exponential function)

(reciprocal function)

These equations describe a linear relationship between  and  for the
power function, between  and x for the exponential function, between y and

 or  for the logarithmic function, and between 1/y and x for the recip-
rocal function. This means that the polyfit(x,y,1) function can be used to
determine the best-fit constants m and b for best fit if, instead of x and y, the

p =
    0.0220   -0.4005    2.6138   -1.4158

0.022x3 0.4005x2– 2.6138x 1.4148–+

y bxm=

y bemx= y b10mx=

y m x( )ln b+= y m x( )log b+=

y 1
mx b+
----------------=

y mx b+=

y( )ln m x( )ln bln+=

y( )ln mx b( )ln+= y( )log mx b( )log+=

1
y
--- mx b+=

y( )ln x( )ln
y( )ln

x( )ln x( )log
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following arguments are used.

The result of the polyfit function is assigned to p, which is a two-element vec-
tor. The first element, p(1), is the constant m, and the second element, p(2), is b
for the logarithmic and reciprocal functions,  or  for the exponential

function, and  for the power function (  or  for the expo-
nential function, and  for the power function).

For given data it is possible to estimate, to some extent, which of the func-
tions has the potential for providing a good fit. This is done by plotting the data
using different combinations of linear and logarithmic axes. If the data points in
one of the plots appear to fit a straight line, the corresponding function can pro-
vide a good fit according to the list below.

Other considerations in choosing a function:

• Exponential functions cannot pass through the origin.

• Exponential functions can fit only data with all positive y’s or all negative y’s.

• Logarithmic functions cannot model x = 0 or negative values of x.

• For the power function y = 0 when x = 0.

• The reciprocal equation cannot model y = 0.

Function polyfit function form

power             p=polyfit(log(x),log(y),1)

exponential       or
                      

p=polyfit(x,log(y),1)  or
p=polyfit(x,log10(y),1)

logarithmic        or
                      

p=polyfit(log(x),y,1) or
p=polyfit(log10(x),y,1)

reciprocal      p=polyfit(x,1./y,1)

x axis y axis Function

linear linear linear  
logarithmic logarithmic power  

linear logarithmic exponential    or  

logarithmic linear logarithmic   or  

linear linear
(plot 1/y)

reciprocal      

y bxm=

y bemx=

y b10mx=

y m x( )ln b+=

y m x( )log b+=

y 1
mx b+
----------------=

b( )ln b( )log

b( )ln b e p 2( )= b 10 p 2( )=

b e p 2( )=

y mx b+=

y bxm=

y bemx= y b10mx=

y m x( )ln b+= y m x( )log b+=

y 1
mx b+
----------------=
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The following example illustrates the process of fitting a function to a set of data
points.

Sample Problem 8-2: Fitting an equation to data points

The following data points are given. Determine a function  (t is the inde-
pendent variable, w is the dependent variable) with a form discussed in this sec-
tion that best fits the data.

Solution
The data is first plotted with linear scales
on both axes. The figure indicates that a
linear function will not give the best fit
since the points do not appear to line up
along a straight line. From the other possi-
ble functions, the logarithmic function is
excluded since for the first point ,
and the power function is excluded since at

, . To check if the other two
functions (exponential and reciprocal) might give a better fit, two additional plots,
shown below, are made. The plot on the left has a log scale on the vertical axis and
linear horizontal axis. In the plot on the right both axes have linear scales, and the
quantity 1/w is plotted on the vertical axis.

In the left figure the data points appear to line up along a straight line. This indi-
cates that an exponential function of the form  can give a good fit to the
data. A program in a script file that determines the constants b and m, and that
plots the data points and the function is given below.

t 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

w 6.00 4.83 3.70 3.15 2.41 1.83 1.49 1.21 0.96 0.73 0.64

t=0:0.5:5;

w=[6 4.83 3.7 3.15 2.41 1.83 1.49 1.21 0.96 0.73 0.64];

p=polyfit(t,log(w),1);

w f t( )=
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Create vectors t and w with the coordinates of the data points.

Use the polyfit function with t and log(w).
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When the program is executed, the values of the constants m and b are displayed
in the Command Window.

The plot generated by the program, which shows the data points and the function
(with axis labels added with the Plot Editor) is

It should be pointed out here that in addition to the power, exponential, log-
arithmic, and reciprocal functions that are discussed in this section, many other
functions can be written in a form suitable for curve fitting with the polyfit

function. One example where a function of the form  is fitted to
data points using the polyfit function with a third-order polynomial is
described in Sample Problem 8-7. 

8.3 INTERPOLATION

Interpolation is the estimation of values between data points. MATLAB has inter-
polation functions that are based on polynomials, which are described in this sec-
tion, and on Fourier transformation, which is outside the scope of this book. In
one-dimensional interpolation each point has one independent variable (x) and one
dependent variable (y). In two-dimensional interpolation each point has two inde-
pendent variables (x and y) and one dependent variable (z).

m=p(1)

b=exp(p(2))

tm=0:0.1:5;

wm=b*exp(m*tm);

plot(t,w,'o',tm,wm)

m =
   -0.4580

b =
    5.9889

Determine the coefficient b.
Create a vector tm to be used for plotting the polynomial.

Calculate the function value at each element of tm. 
Plot the data points and the function.

0 1 2 3 4 5
0

1
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6
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w

y e
a2x2 a1x a0+ +( )
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One-dimensional interpolation:
If only two data points exist, the points can be connected with a straight line is and
a linear equation (polynomial of first order) can be used to estimate values
between the points. As was discussed in the previous section, if three (or four)
data points exist, a second- (or a third-) order polynomial that passes through the
points can be determined and then be used to estimate values between the points.
As the number of points increases, a higher-order polynomial is required for the
polynomial to pass through all the points. Such a polynomial, however, will not
necessarily give a good approximation of the values between the points. This is
illustrated in Figure 8-2 with n = 6.

A more accurate interpolation can be obtained if instead of considering all
the points in the data set (by using one polynomial that passes through all the
points), only a few data points in the neighborhood where the interpolation is
needed are considered. In this method, called spline interpolation, many low-order
polynomials are used, where each is valid only in a small domain of the data set.   

The simplest method of spline interpola-
tion is called linear spline interpolation. In this
method, shown on the right, every two adjacent
points are connected with a straight line (a poly-
nomial of first degree). The equation of a
straight line that passes through two adjacent
points (xi, yj) and (xi+1, yj+1) and that can be used
to calculate the value of y for any x between the
points is given by:

In a linear interpolation the line between two data points has a constant
slope, and there is a change in the slope at every point. A smoother interpolation
curve can be obtained by using quadratic or cubic polynomials. In these methods,
called quadratic splines and cubic splines, a second-, or third-order polynomial is
used to interpolate between every two points. The coefficients of the polynomial
are determined by using data from points that are adjacent to the two data points.
The theoretical background for the determination of the constants of the polyno-
mials is beyond the scope of this book and can be found in books on numerical
analysis.

y
yi 1+ yi–

xi 1+ xi–
--------------------x

yixi 1+ yi 1+ xi–

xi 1+ xi–
------------------------------------+=
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One-dimensional interpolation in MATLAB is done with the interp1 (the
last character is the number one) function, which has the form:

• The vector x must be monotonic (with elements in ascending or descending
order).

• xi can be a scalar (interpolation of one point) or a vector (interpolation of
many points). yi is a scalar or a vector with the corresponding interpolated
values.

• MATLAB can do the interpolation using one of several methods that can be
specified. These methods include:

‘nearest’ returns the value of the data point that is nearest to the
interpolated point.

‘linear’ uses linear spline interpolation.
‘spline’ uses cubic spline interpolation.
‘pchip’ uses piecewise cubic Hermite interpolation, also called

‘cubic’ 
• When the ‘nearest’ and the ‘linear’ methods are used, the value(s) of

xi must be within the domain of x. If the ‘spline’ or the ‘pchip’ meth-
ods are used, xi can have values outside the domain of x and the function
interp1 performs extrapolation.

• The ‘spline’ method can give large errors if the input data points are
nonuniform such that some points are much closer together than others.

• Specification of the method is optional. If no method is specified, the default is
‘linear’.

Sample Problem 8-3: Interpolation

The following data points, which are points of the function ,
are given. Use linear, spline, and pchip interpolation methods to calculate the
value of y between the points. Make a figure for each of the interpolation methods.
In the figure show the points, a plot of the function, and a curve that corresponds

yi = interp1(x,y,xi,‘method’)

yi is the 
interpolated 
value. 

x is a vector with the horizontal coordinates of
the input data points (independent variable).
y is a vector with the vertical coordinates of
the input data points (dependent variable).
xi is the horizontal coordinate of the interpo-
lation point (independent variable).

Method of 
interpola-
tion, typed as 
a string 
(optional).

f x( ) 1.5x 2x( )cos=
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to the interpolation method.

Solution
The following is a program written in a script file that solves the problem:

The three figures generated by the program are shown below (axes labels were
added with the Plot Editor). The data points are marked with circles, the interpola-
tion curves are plotted with dashed lines, and the function is shown with a solid
line. The left figure shows the linear interpolation, the middle is the spline, and the
figure on the right shows the pchip interpolation.

x 0 1 2 3 4 5
y 1.0 –0.6242 –1.4707 3.2406 –0.7366 –6.3717

x=0:1.0:5;

y=[1.0 -0.6242 -1.4707 3.2406 -0.7366 -6.3717];

xi=0:0.1:5;

yilin=interp1(x,y,xi,'linear');

yispl=interp1(x,y,xi,'spline');

yipch=interp1(x,y,xi,'pchip');

yfun=1.5.^xi.*cos(2*xi);

subplot(1,3,1)

plot(x,y,'o',xi,yfun,xi,yilin,'--');

subplot(1,3,2)

plot(x,y,'o',xi,yfun,xi,yispl,'--');

subplot(1,3,3)

plot(x,y,'o',xi,yfun,xi,yipch,'--');

Create vectors x and y with coordinates of the data points.

Create vector xi with points for interpolation.
Calculate y points from linear interpolation.
Calculate y points from spline interpolation.
Calculate y points from pchip interpolation.

Calculate y points from the function.
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8.4 THE BASIC FITTING INTERFACE

The basic fitting interface is a tool that can be used to perform curve fitting and
interpolation interactively. By using the interface the user can:
• Curve-fit the data points with polynomials of various degrees up to 10, and

with spline and Hermite interpolation methods.

• Plot the various fits on the same graph so that they can be compared.

• Plot the residuals of the various polynomial fits and compare the norms of the
residuals.

• Calculate the values of specific points with the various fits.

• Add the equations of the polynomials to the plot.

To activate the basic fitting inter-
face, the user first has to make a plot of
the data points. Then the interface is
activated by selecting Basic Fitting in
the Tools menu, as shown on the right.
This opens the Basic Fitting Window,
shown in Figure 8-3. When the window
first opens, only one panel (the Plot fits
panel) is visible. The window can be
extended to show a second panel (the
Numerical results panel) by clicking
on the  button. One click adds the
first section of the panel, and a second
click makes the window look as shown in Figure 8-3. The window can be reduced
back by clicking on the  button. The first two items in the Basic Fitting Win-
dow are related to the selection of the data points:
Select data: Used to select a specific set of data points for curve fitting in a fig-

ure that has more than one set of data points. Only one set of data points can be
curve-fitted at a time, but multiple fits can be performed simultaneously on the
same set.

Center and scale x data:   When this box is checked, the data is centered at zero
mean and scaled to unit standard deviation. This might be needed in order to
improve the accuracy of numerical computation.

The next four items are in the Plot fits panel and are related to the display of the
fit.
Check to display fits on figure:   The user selects the fits to be displayed in the

figure. The selections include interpolation with spline interpolant (interpolation
method) that uses the spline function, interpolation with Hermite interpolant
that uses the pchip function, and polynomials of various degrees that use the
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polyfit function. Several fits can be selected and displayed simultaneously.
Show equations:   When this box is checked, the equations of the polynomials

that were selected for the fit are displayed in the figure. The equations are dis-
played with the number of significant digits selected in the adjacent sign menu.

Plot residuals:   When this box is checked, a plot that shows the residual at each
data point is created (residuals are defined in Section 8.2.1). Choices in the
menus include a bar plot, a scatter plot, and a line plot which can be displayed as
a subplot in the same Figure Window that has the plot of the data points, or as a
separate plot in a different Figure Window.

Show norm of residuals:   When this box is checked, the norm of the residuals is
displayed in the plot of the residuals. The norm of the residual is a measure of
the quality of the fit. A smaller norm corresponds to a better fit.

The next three items are in the Numerical results panel. They provide the numer-
ical information for one fit, independently of the fits that are displayed:
Fit:    The user selects the fit to be examined numerically. The fit is shown on the

plot only if it is selected in the Plot fit panel.
Coefficients and norm of residuals:   Displays the numerical results for the

polynomial fit that is selected in the Fit menu. It includes the coefficients of the
polynomial and the norm of the residuals. The results can be saved by clicking
on the Save to workspace button.

Figure 8-3: The Basic Fitting Window.
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Find y = f(x):   Provides a means for obtaining interpolated (or extrapolated)
numerical values for specified values of the independent variable. Enter the
value of the independent variable in the box, and click on the Evaluate button.
When the Plot evaluated results box is checked, the point is displayed on the
plot. 

As an example, the basic fitting interface is used for fitting the data points
from Sample Problem 8-3. The Basic Fitting Window is the one shown in Figure

8-3, and the corresponding Figure Window is shown in Figure 8-4. The Figure
Window includes a plot of the points, one interpolation fit (spline), two polyno-
mial fits (linear and cubic), a display of the equations of the polynomial fits, and a
mark of the point x = 1.5 that is entered in the Find y = f(x) box of the Basic Fitting
Window. The Figure Window also includes a plot of the residuals of the polyno-
mial fits and a display of their norm.

Figure 8-4: A Figure Window modified by the Basic Fitting Interface.
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8.5 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 8-4: Determining wall thickness of a box

The outside dimensions of a rectangular
box (bottom and four sides, no top), made
of aluminum, are 24 by 12 by 4 inches. The
wall thickness of the bottom and the sides
is x. Derive an expression that relates the
weight of the box and the wall thickness x.
Determine the thickness x for a box that
weighs 15 lb. The specific weight of alumi-
num is 0.101 lb/in.3.
Solution
The volume of the aluminum VAl is calculated from the weight W of the box by:

where γ is the specific weight. The volume of the aluminum based on the dimen-
sions of the box is given by

where the inside volume of the box is subtracted from the outside volume. This
equation can be rewritten as

which is a third-degree polynomial. A root of this polynomial is the required
thickness x. A program in a script file that determines the polynomial and solves
for the roots is:

Note in the second to last line that in order to add the quantity  to
the polynomial Vin it has to be written as a polynomial of the same order as Vin
(Vin is a polynomial of third order). When the program (saved as
Chap8SamPro4) is executed, the coefficients of the polynomial and the value of x
are displayed:

W=15; gamma=0.101;

VAlum=W/gamma;

a=[-2  24];

b=[-2  12];

c=[-1  4];

Vin=conv(c, conv(a,b));

polyeq=[0 0 0 (VAlum-24*12*4)]+Vin

x=roots(polyeq)

VAl
W
γ
-----=

VAl 24 12 4⋅ ⋅ 24 2x–( ) 12 2x–( ) 4 x–( )–=

24 2x–( ) 12 2x–( ) 4 x–( ) VAl 24 12 4⋅ ⋅( )–+ 0=

Assign W and gamma.
Calculate the volume of the aluminum.

Assign the polynomial 24 – 2x to a.
Assign the polynomial 12 – 2x to b.

Assign the polynomial 4 – x to c.
Multiply the three polynomials above.

Add VAl – 24*12*4 to Vin.
Determine the roots of the polynomial.

VAl 24 12 4⋅ ⋅( )–
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Sample Problem 8-5: Floating height of a buoy

An aluminum thin-walled sphere is used as a
marker buoy. The sphere has a radius of 60 cm
and a wall thickness of 12 mm. The density of
aluminum is  kg/m3. The buoy is
placed in the ocean, where the density of the
water is 1030 kg/m3. Determine the height h
between the top of the buoy and the surface of
the water.
Solution
According to Archimedes’ law, the buoyancy force applied to an object that is
placed in a fluid is equal to the weight of the fluid that is displaced by the object.
Accordingly, the aluminum sphere will be at a depth such that the weight of the
sphere is equal to the weight of the fluid displaced by the part of the sphere that is
submerged.

The weight of the sphere is given by

where  is the volume of the aluminum;  and  are the outside and inside
radii of the sphere, respectively; and g is the gravitational acceleration.

The weight of the water that is displaced by the spherical portion that is sub-
merged is given by:

Setting the two weights equal to each other gives the following equation:

The last equation is a third-degree polynomial for h. The root of the polynomial is
the answer.

A solution with MATLAB is obtained by writing the polynomials and using
the roots function to determine the value of h. This is done in the following
script file:

>> Chap8SamPro4

polyeq =
 -4.0000  88.0000 -576.0000  148.5149

x =
  10.8656 + 4.4831i
  10.8656 - 4.4831i
  0.2687

The polynomial is:
.4x3– 88x2 576x– 148.515+ +

The polynomial has one real root, x = 0.2687 in., 
which is the thickness of the aluminum wall.

ρAl 2690=

Wsph ρAlVAlg ρAl
4
3
---π ro

3 ri
3–( )g= =

VAl ro ri

Wwtr ρwtrVwtrg ρwtr
1
3
---π 2ro h–( )2 ro h+( )g= =

h3 3roh2– 4ro
3 4

ρAl

ρwtr
--------- ro

3 ri
3–( )–+ 0=
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When the script file is executed in the Command Window, as shown below, the
answer is three roots, since the polynomial is of the third degree. The only answer
that is physically possible is the second, where h = 0.9029 m.

Sample Problem 8-6: Determining the size of a capacitor

An electrical capacitor has an unknown
capacitance. In order to determine its capaci-
tance it is connected to the circuit shown.
The switch is first connected to B and the
capacitor is charged. Then, the switch is con-
nected to A and the capacitor discharges
through the resistor. As the capacitor is dis-
charging, the voltage across the capacitor is measured for 10 s in intervals of 1 s.
The recorded measurements are given in the table below. Plot the voltage as a
function of time and determine the capacitance of the capacitor by fitting an expo-
nential curve to the data points.

Solution
When a capacitor discharges through a resistor, the voltage of the capacitor as a
function of time is given by

where  is the initial voltage, R the resistance of the resistor, and C the capaci-
tance of the capacitor. As was explained in Section 8.2.2 the exponential function
can be written as a linear equation for ln(V) and t in the form:

rout=0.60; rin=0.588;

rhoalum=2690; rhowtr=1030;

a0=4*rout^3-4*rhoalum*(rout^3-rin^3)/rhowtr;

p = [1 -3*rout 0 a0];

h = roots(p)

>> Chap8SamPro5

h =
    1.4542
    0.9029
   -0.5570

t (s) 1 2 3 4 5 6 7 8 9 10
V (V) 9.4 7.31 5.15 3.55 2.81 2.04 1.26 0.97 0.74 0.58

Assign the radii to variables.
Assign the densities to variables.

Assign the coefficient a0.
Assign the coefficient vector of the polynomial.

Calculate the roots of the polynomial.

The polynomial has three roots. The only one that is
physically possible for the problem is 0.9029 m.

V V0e t–( ) RC( )⁄=

V0

V( )ln 1–
RC
--------t V0( )ln+=
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This equation, which has the form , can be fitted to the data points by
using the polyfit(x,y,1) function with t as the independent variable x and
ln(V) as the dependent variable y. The coefficients m and b determined by the
polyfit function are then used to determine C and  by:

  and  

The following program written in a script file determines the best-fit exponential
function to the data points, determines C and , and plots the points and the fit-
ted function.

When the script file is executed (saved as Chap8SamPro6) the values of C and 
are displayed in the Command Window as shown below:

The program creates also the following plot (axis labels were added to the plot
using the Plot Editor): 

R=2000;

t=1:10;

v=[9.4 7.31 5.15 3.55 2.81 2.04 1.26 0.97 0.74 0.58];

p=polyfit(t,log(v),1);

C=-1/(R*p(1))

V0=exp(p(2))

tplot=0:0.1:10;

vplot=V0*exp(-tplot./(R*C));

plot(t,v,'o',tplot,vplot)

>> Chap8SamPro6

C =
    0.0016

V0 =
   13.2796

y mx b+=

V0

C t–
Rm
--------= V0 eb=

V0

Define R.
Assign the data points to vectors t and v.

Use the polyfit function with t and log(v).
Calculate C from p(1), which is m in the equation.

Calculate V0 from p(2), which is b in the equation.
Create vector tplot of time for plotting the function.

Create vector vplot for plotting the function.

V0

The capacitance of the capacitor is 1,600 μF.
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Sample Problem 8-7: Temperature dependence of viscosity

Viscosity, μ, is a property of gases and fluids that characterizes their resistance to
flow. For most materials viscosity is highly sensitive to temperature. Below is a
table that gives the viscosity of SAE 10W oil at different temperatures (Data from
B.R. Munson, D.F. Young, and T.H. Okiishi, Fundamentals of Fluid Mechanics,
4th ed., John Wiley and Sons, 2002). Determine an equation that can be fitted to
the data.

Solution
To determine what type of equation
might provide a good fit to the data, μ
is plotted as a function of T (absolute
temperature) with a linear scale for T
and a logarithmic scale for μ. The
plot, shown on the right, indicates
that the data points do not appear to
line up along a straight line. This
means that a simple exponential
function of the form , which
models a straight line with these
axes, will not provide the best fit. Since the points in the figure appear to lie along
a curved line, a function that can possibly have a good fit to the data is:

This function can be fitted to the data by using MATLABs polyfit(x,y,2)
function (second-degree polynomial), where the independent variable is T and the
dependent variable is ln(μ). The equation above can be solved for μ to give the vis-
cosity as a function of temperature:

The following program determines the best fit to the function and creates a plot
that displays the data points and the function.

T   ( C) –20 0 20 40 60 80 100 120

μ (N s/m2)
( )

4 0.38 0.095 0.032 0.015 0.0078 0.0045 0.0032

T=[-20:20:120];

mu=[4 0.38 0.095 0.032 0.015 0.0078 0.0045 0.0032];

TK=T+273;

p=polyfit(TK,log(mu),2)

Tplot=273+[-20:120];

°
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μ e
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When the program executes (saved as Chap8SamPro7), the coefficients that are
determined by the polyfit function are displayed in the Command Window
(shown below) as three elements of the vector p.   

With these coefficients the viscosity of the oil as a function of temperature is:

The plot that is generated shows that the equation correlates well to the data points
(axis labels were added with the Plot Editor).

8.6 PROBLEMS

1. Plot the polynomial  in the domain .
First create a vector for x, next use the polyval function to calculate y, and
then use the plot function.

2. Plot the polynomial  in the
domain . First create a vector for x, next use the polyval function
to calculate y, and then use the plot function.

3. Use MATLAB to carry out the following multiplication of two polynomials:
 

muplot = exp(p(1)*Tplot.^2 + p(2)*Tplot + p(3));

semilogy(TK,mu,'o',Tplot,muplot)

>> Chap8SamPro7

p =
    0.0003   -0.2685   47.1673

μ e 0.0003T2 0.2685T– 47.1673+( ) e47.1673e 0.2685–( )Te0.0003T2

= =

250 300 350 400
10

-3

10
-2

10
-1

10
0

10
1

Temperature (K)

V
is

co
si

ty
 (

N
*s

/m
2 )

y 0.4x4– 7x2 20.5x– 28–+= 5– x 4≤ ≤

y 0.001x4– 0.051x3 0.76x2– 3.8x 1.4–+ +=
1 x 14≤ ≤

2x2 3+( ) x3 3.5x2 5x 16–+ +( )
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4. Use MATLAB to carry out the following multiplication of polynomials:
 

Plot the polynomial for .

5. Divide the polynomial  by the polynomial
.

6. Divide the polynomial  by the polynomial
.

7. The product of three consecutive integers is 1,716. Using MATLAB’s built-in
function for operations with polynomials, determine the three integers.

8. The product of four consecutive even integers is 13,440. Using MATLAB’s
built-in function for operations with polynomials, determine the four integers.

9. A cylindrical aluminum fuel tank has an outside diameter
of 30 in. and a height of 50 in. The the thickness of the
wall is t, and the bottom and top ends are 25% thicker.
Determine t if the weight of the tank is 152 lb. The spe-
cific weight of aluminum is 165 lb/ft3.

10. A cylindrical aluminum fuel tank has a flat bottom and a
semi-spherical top. The outside diameter is 25 cm, and
the height of the cylindrical section is 40 cm. The thick-
ness of the side and the semi-spherical top walls is t, and
the thickness of the flat bottom is 1.5t. Determine t if the
mass of the tank is 27.5 kg. The density of aluminum is
2.7 g/cm3.

11. A 24 ft–long rod is cut into 12 pieces, which are welded
together to form the frame of a rectangular box. The
length of the box’s base is three times its width. 
(a) Create a polynomial expression for the volume V in

terms of x.
(b) Make a plot of V versus x.
(c) Determine the x that maximizes the volume and

determine that volume.

x 1.4+( ) x 0.4–( )x x 0.6+( ) x 1.4–( )
1.5– x 1.5≤ ≤

0.6x5– 7.7x3 8x2– 24.6x– 48+ +

0.6x3– 4.1x 8–+

x4 6x3– 13x2 12x– 4+ +

x3 3x2– 2+

50 in.

30 in.

t

40 cm

12.5 cm

x3x

h
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12. A rectangular piece of cardboard, 40 inches
long by 22 inches wide, is used for making a
rectangular box (open top) by cutting out
squares of x by x from the corners and folding
up the sides.
(a) Create a polynomial expression for the vol-

ume V in terms of x.
(b) Make a plot of V versus x.
(c) Determine x if the volume of the box is

1,000 in.3.
(d) Determine the value of x that corresponds to the box with the largest pos-

sible volume, and determine that volume.

13. Write a user-defined function that adds or subtracts two polynomials of any
order. Name the function p=polyadd(p1,p2,operation). The first
two input arguments p1 and p2 are the vectors of the coefficients of the two
polynomials. (If the two polynomials are not of the same order, the function
adds the necessary zero elements to the shorter vector.) The third input argu-
ment operation is a string that can be either ‘add’ or ‘sub’, for adding
or subtracting the polynomials, respectively, and the output argument is the
resulting polynomial.

Use the function to add and subtract the following polynomials:
 and .

14. Write a user-defined function that multiplies two polynomials. Name the
function p=polymult(p1,p2). The two input arguments p1 and p2 are
vectors of the coefficients of the two polynomials. The output argument p is
the resulting polynomial.

Use the function to multiply the following polynomials:
 and .

Check the answer with MATLAB’s built-in function conv.

15. Write a user-defined function that calculates the maximum (or minimum) of a
quadratic equation of the form:

Name the function [x,y,w] = maxormin(a,b,c). The input arguments are
the coefficients a, b, and c. The output arguments are x, the coordinate of the
maximum (or minimum); y, the maximum (or minimum) value; and w, which
is equal to 1 if y is a maximum and equal to 2 if y is a minimum.

Use the function to determine the maximum or minimum of the following
functions:
(a)               (b)

40 in.

22 in.

x
x

L
W

H

f1 x( ) x5 7x4– 11x3 4x2– 5x– 2–+= f2 x( ) 9x2 10x– 6+=

f1 x( ) x5 7x4– 11x3 4x2– 5x– 2–+= f2 x( ) 9x2 10x– 6+=

f x( ) ax2 bx c+ +=

f x( ) 3x2 7x– 14+= f x( ) 5x2– 11x– 15+=
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16. A cylinder of radius r and height h is constructed
inside a cone with base radius in. and
height  in., as shown in the figure.
(a) Create a polynomial expression for the vol-

ume V of the cylinder in terms of r.
(b) Make a plot of V versus r.
(c) Determine r if the volume of the cylinder is

800 in.3.
(d) Determine the value of r that corresponds to

the cylinder with the largest possible volume,
and determine that volume.

17. Consider the parabola  and the
point .
(a) Create a polynomial expression for the distance

d from point P to an arbitrary point Q on the
parabola.

(b) Make a plot of d versus x for .
(c) Determine the coordinates of Q if .
(d) Determine the coordinates of Q that correspond

to the smallest d, and calculate the correspond-
ing value of d.

18. The boiling temperature of water  at various alti-
tudes h is given in the following table. Determine a linear equation in the form

 that best fits the data. Use the equation for calculating the
boiling temperature at 16,000 ft. Make a plot of the points and the equa-
tion. 

19. The number of bacteria  measured at different times t is given in the fol-
lowing table. Determine an exponential function in the form  that
best fits the data. Use the equation to estimate the number of bacteria after
60 min. Make a plot of the points and the equation. 

h (ft) 0 2000 5000 7500 10000 20000 26000

T ( F ) 212 210 203 198 194 178 168

t (min) 10 20 30 40 50
NB 15,000 215,000 335,000 480,000 770,000

r
R

H

R 10=
H 30=

2 4

2

4

6
d

P (3, 5.5)

Q

x

yy 1.5 x 5–( )2 1+=

P 3 5.5,( )

3 x 6≤ ≤
d 28=

TB

TB mh b+=

°

NB

NB Neα t=
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20. The van der Waals equation gives a relationship between the pressure p (in
atm), volume V (in L), and temperature T (in K) for a real gas:

where n is the number of moles, (L atm)/(mol K) is the gas con-
stant, and a (in L2 atm/mol2), and b (in L/mol) are material constants. The
equation can be easily used for calculating p (given T and V) or T (given p and
V). The equation is not as readily solved for V when p and T are given, since it
is nonlinear in V. One useful way to solve for V is by rewriting the equation as
a third-order polynomial

and calculating the root of the polynomial.
Write a user-defined function that calculates V for given p, T, n, a, and b.

For function name and arguments use V=waals(p,T,n,a,b). The func-
tion calculates V by using MATLAB’s built-in function roots. Note that the
solution of the polynomial can have non-real (complex) roots. The output
argument V in waals should be the physically realistic solution (positive and
real). (MATLAB’s built-in function imag(x) can be used for determining
which root is real.)

Use the user-defined function to calculate V for atm, K,
,  L2 atm/mol2,  L/mol.

21. The population of the world for selected years from 1750 to 2009 is given in
the following table: 

(a) Determine the exponential function that best fits the data. Use the func-
tion to estimate the population in 1980. Make a plot of the points and the
function.

(b) Curve-fit the data with a third-order polynomial. Use the polynomial to
estimate the population in 1980. Make a plot of the points and the polyno-
mial.

(c) Fit the data with linear and spline interpolations. Estimate the population
in 1975 with linear and spline interpolations. Make a plot of the data
points and curves made of the interpolated points.

In each part make a plot of the data points (circle markers) and the fit curve or
the interpolation curves. Note that part (c) has two interpolation curves.
The actual population of the world in 1980 was 4453.8 million.

Year 1750 1800 1850 1900 1950 1990 2000 2009

Population 
(millions)

791 980 1,260 1,650 2,520 5,270 6,060 6,800

p nRT
V nb–
---------------- n2a

V2
--------–=

R 0.08206=

V3 nb nRT
p

----------+⎝ ⎠
⎛ ⎞V2–

n2a
p

--------V n3ab
p

------------–+ 0=

p 30= T 300=

n 1.5= a 1.345= b 0.0322=
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22. The following points are given:

(a) Fit the data with a first-order polynomial. Make a plot of the points and
the polynomial.

(b) Fit the data with a second-order polynomial. Make a plot of the points and
the polynomial.

(c) Fit the data with a fourth-order polynomial. Make a plot of the points and
the polynomial.

(d) Fit the data with an eight-order polynomial. Make a plot of the points and
the polynomial.

23. The standard air density, D (average of measurements made), at different
heights, h, from sea level up to a height of 33 km is given below.

(a) Make the following four plots of the data points (density as a function of
height): (1) both axes with linear scale; (2) h with log axis, D with linear
axis; (3) h with linear axis, D with log axis; (4) both log axes. According
to the plots choose a function (linear, power, exponential, or logarithmic)
that best fits the data points and determine the coefficients of the function.

(b) Plot the function and the points using linear axes.

24. Write a user-defined function that fits data points to a power function of the
form . Name the function [b,m] = powerfit(x,y), where the
input arguments x and y are vectors with the coordinates of the data points,
and the output arguments b and m are the constants of the fitted exponential
equation. Use powerfit to fit the data below. Make a plot that shows the
data points and the function.

x –5 –3.4 –2.0 –0.8 0 1.2 2.5 4 5.0 7 8.5

y 4.4 4.5 4 3.6 3.9 3.8 3.5 2.5 1.2 0.5 -0.2

h (km) 0 3 6 9 12 15

D (kg/m3) 1.2 0.91 0.66 0.47 0.31 0.19

h (km) 18 21 24 27 30 33

D (kg/m3) 0.12 0.075 0.046 0.029 0.018 0.011

x 0.5 2.4 3.2 4.9 6.5 7.8

y 0.8 9.3 37.9 68.2 155 198

y bxm=
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25. The aerodynamic drag force  that is
applied to a car is given by:

where  kg/m3 is the air density,
 is the drag coefficient, A is the pro-

jected front area of the car, and v is the speed of the car (in units of m/s) rela-
tive to the wind. The product  characterizes the air resistance of a car. (At
speeds above 70 km/h the aerodynamic drag force is typically more than half
of the total resistance to motion.) Data obtained in a wind tunnel test is dis-
played in the table. Use the data to determine the product  for the tested
car using curve fitting. Make a plot of the data points and the curve-fitted
equation. 

26. Viscosity is a property of gases and fluids that characterizes their resistance to
flow. For most materials viscosity is highly sensitive to temperature. For
gases, the variation of viscosity with temperature is frequently modeled by an
equation of the form

where μ is the viscosity, T is the absolute temperature, and C and S are empiri-
cal constants. Below is a table that gives the viscosity of air at different tem-
peratures (data from B.R. Munson, D.F. Young, and T.H. Okiishi,
Fundamentals of Fluid Mechanics, 4th ed., John Wiley and Sons, 2002).

Determine the constants C and S by curve-fitting the equation to the data
points. Make a plot of viscosity versus temperature (in C). In the plot show
the data points with markers and the curve-fitted equation with a solid line.

The curve fitting can be done by rewriting the equation in the form

and using a first-order polynomial.

v  (km/h) 20 40 60 80 100 120 140 160

 (N) 10 50 109 180 300 420 565 771

T   ( C) –20 0 40 100 200 300 400 500 1,000

μ (N s/m2)
( )

1.63 1.71 1.87 2.17 2.53 2.98 3.32 3.64 5.04

FD

FD
1
2
---ρCDAv2=

ρ 1.2=

CD

CDA

CDA

FD

μ CT 3 2⁄

T S+
--------------=

°

5–×10

°

T 3 2⁄

μ
---------- 1

C
----T S

C
----+=
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 27. Measurements of the fuel efficiency of a car FE at various speeds v are shown
in the table.

(a) Curve-fit the data with a second-order polynomial. Use the polynomial to
estimate the fuel efficiency at 60 mi/h. Make a plot of the points and the poly-
nomial.
(b) Curve-fit the data with a third-order polynomial. Use the polynomial to
estimate the fuel efficiency at 60 mi/h. Make a plot of the points and the poly-
nomial.
(c) Fit the data with linear and spline interpolations. Estimate the fuel effi-
ciency at 60 mi/h with linear and spline interpolations. Make a plot that shows
the data points and curves made of interpolated points.

28. The relationship between two variables P and t is known to be:

The following data points are given 

Determine the constants m and b by curve-fitting the equation to the data
points. Make a plot of P versus t. In the plot show the data points with markers
and the curve-fitted equation with a solid line. (The curve fitting can be done
by writing the reciprocal of the equation and using a first-order polynomial.)

29. The yield strength, σy, of many metals depends on the size of the grains. For
these metals the relationship between the yield stress and the average grain
diameter d can be modeled by the Hall-Petch equation:

The following are results from measurements of average grain diameter
and yield stress.

(a) Using curve fitting, determine the constants σ0 and k in the Hall-Petch
equation for this material. Using the constants determine with the equa-
tion the yield stress of material with a grain size of 0.05 mm. Make a plot
that shows the data points with circle markers and the curve derived from
the Hall-Petch equation with a solid line.

v (mi/h) 5 15 25 35 45 55 65 75
FE (mpg) 11 22 28 29.5 30 30 27 23

t 1 3 4 7 8 10
P 2.1 4.6 5.4 6.1 6.4 6.6

d (mm) 0.005 0.009 0.016 0.025 0.040 0.062 0.085 0.110

σy (MPa) 205 150 135 97 89 80 70 67

P mt
b t+
-----------=

σy σ0 kd
1–

2
------⎝ ⎠
⎛ ⎞

+=
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(b) Use linear interpolation to determine the yield stress of material with a
grain size of 0.05 mm. Make a plot that shows the data points with circle
markers and the linear interpolation with a solid line.

(c) Use cubic interpolation to determine the yield stress of material with a
grain size of 0.05 mm. Make a plot that shows the data points with circle
markers and cubic interpolation with a solid line.

30. The stress concentration factor k is the
ratio between the maximum stress 
and the average stress ,

. For a stepped shaft
loaded in torsion, with dimensions as
shown in the figure, k is a function of  and the maximum stress is at the
rounded corner. The average stress is given by , where T
is the applied torque. The stress concentration factors measured in tests using
shafts with  and various ratios of  are given in the table.

(a) Use an power function  to model the relationship between k
and . Determine the values of b and m that best-fit the data.
(b) Plot the data points and the curve-fitted model.
(c) Use the model to predict the stress concentration factor for .

31. The ideal gas equation relates the volume, pressure, temperature, and the
quantity of a gas by:

where V is the volume in liters, P is the pressure in atm, T is the temperature in
kelvins, n is the number of moles, and R is the gas constant.

An experiment is conducted for determining the value of the gas constant
R. In the experiment 0.05 mol of gas is compressed to different volumes by
applying pressure to the gas. At each volume the pressure and temperature of
the gas are recorded. Using the data given below, determine R by plotting V
versus T/P and fitting the data points with a linear equation.

r/d 0.3 0.26 0.22 0.18 0.14 0.1 0.06 0.02
k 1.18 1.19 1.21 1.26 1.32 1.43 1.6 1.98

V  (L) 0.75 0.65 0.55 0.45 0.35

T  ( C) 25 37 45 56 65

P  (atm) 1.63 1.96 2.37 3.00 3.96

dD

r
T T

τmax
τave

k τmax τave⁄=

r d⁄
τave 16T( ) πd3( )⁄=

d D⁄ 2= r d⁄

k b r d⁄( )m=

r d⁄

r d⁄ 0.04=

V nRT
P

----------=

°
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Chapter 9          
Applications in 
Numerical Analysis

Numerical methods are commonly used for solving mathematical problems that
are formulated in science and engineering where it is difficult or impossible to
obtain exact solutions. MATLAB has a large library of functions for numerically
solving a wide variety of mathematical problems. This chapter explains a number
of the most frequently used of these functions. It should be pointed out here that
the purpose of this book is to show users how to use MATLAB. Some general
information on the numerical methods is given, but the details, which can be
found in books on numerical analysis, are not included.

The following topics are presented in this chapter: solving an equation with
one unknown, finding a minimum or a maximum of a function, numerical integra-
tion, and solving a first-order ordinary differential equation. 

9.1 SOLVING AN EQUATION WITH ONE VARIABLE

An equation with one variable can be written in the form . A solution to
the equation (also called a root) is a numerical value of x that satisfies the equa-
tion. Graphically, a solution is a point where the function  crosses or touches
the x axis. An exact solution is a value of x for which the value of the function is
exactly zero. If such a value does not exist or is difficult to determine, a numerical
solution can be determined by finding an x that is very close to the solution. This
is done by the iterative process, where in each iteration the computer determines a
value of x that is closer to the solution. The iterations stop when the difference in x
between two iterations is smaller than some measure. In general, a function can
have zero, one, several, or an infinite number of solutions.

f x( ) 0=

f x( )
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 In MATLAB a zero of a function can be determined with the command
(built-in function) fzero with the form:

The built-in function fzero is a MATLAB function function (see Section 7.9),
which means that it accepts another function (the function to be solved) as an
input argument.
Additional details on the arguments of fzero:

• x is the solution, which is a scalar.

• function is the function to be solved. It can be entered in several different
ways:
1. The simplest way is to enter the mathematical expression as a string.
2. The function is created as a user-defined function in a function file and
       then the function handle is entered (see Section 7.9.1). 
3. The function is created as an anonymous function (see Section 7.8.1)
       and then the name of the anonymous function (which is the name of the 
       handle) is entered (see Section 7.9.1).
 

(As explained in Section 7.9.2, it is also possible to pass a user-defined func-
tion and an inline function into a function function by using its name. How-
ever, function handles are more efficient and easier to use, and should be the
preferred method.)

• The function has to be written in a standard form. For example, if the function
to be solved is , it has to be written as . If this
function is entered into the fzero command as a string, it is typed as:
‘x*exp(-x)-0.2’.

• When a function is entered as an expression (string), it cannot include pre-
defined variables. For example, if the function to be entered is

, it is not possible to define b=0.2 and then enter
‘x*exp(-x)-b’.

• x0  can be a scalar or a two-element vector. If it is entered as a scalar, it has to
be a value of x near the point where the function crosses (or touches) the x axis.
If x0 is entered as a vector, the two elements have to be points on opposite
sides of the solution. If  crosses the x axis, then  has a different
sign than . When a function has more than one solution, each solution
can be determined separately by using the fzero function and entering values
for x0 that are near each of the solutions.

x = fzero(function,x0)

Solution The function to
be solved.

A value of x close to where
the function crosses the axis.

xe x– 0.2= f x( ) xe x– 0.2– 0= =

f x( ) xe x– 0.2–=

f x( ) f x0 1( )( )
f x0 2( )( )
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• A good way to find approximately where a function has a solution is to make a
plot of the function. In many applications in science and engineering the
domain of the solution can be estimated. Often when a function has more than
one solution only one of the solutions will have a physical meaning.

Sample Problem 9-1: Solving a nonlinear equation

Determine the solution of the equation  .

Solution
The equation is first written in the form of a
function: . A plot of the func-
tion, shown on the right, shows that the func-
tion has one solution between 0 and 1 and
another solution between 2 and 3. The plot is
obtained by typing

in the Command Window. The solutions of the function are found by using the
fzero command twice. First the equation is entered as a string expression, and a
value of x0 between 0 and 1 (x0 = 0.7) is used. Second, the equation to be solved
is written as an anonymous function, which is then used in fzero with x0
between 2 and 3 (x0 = 2.8). This is shown below:

Additional comments:

• The fzero command finds zeros of a function only where the function
crosses the x axis. The command does not find a zero at points where the func-
tion touches but does not cross the x axis.

• If a solution cannot be determined, NaN is assigned to x.

>> fplot('x*exp(-x)-0.2',[0 8])

>> x1=fzero('x*exp(-x)-0.2',0.7)

x1 =
    0.2592

>> F=@(x)x*exp(-x)-0.2
F = 
    @(x)x*exp(-x)-0.2

>> fzero(F,2.8)
ans =
    2.5426

xe x– 0.2=

0 1 2 3 4 5 6 7 8
-0.2

-0.1

0

0.1

0.2

x
y

f x( ) xe x– 0.2–=

The function is entered as a
string expression. 
The first solution is 0.2592.

Creating an anonymous function.

Using the name of the anonymous function in fzero. 

The second solution is 2.5426.
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• The fzero command has additional options (see the Help Window). Two of
the more important options are:
[x fval]=fzero(function, x0) assigns the value of the function at x to
the variable fval.
x=fzero(function, x0, optimset(‘display’,‘iter’)) displays the
output of each iteration during the process of finding the solution.

• When the function can be written in the form of a polynomial, the solution, or
the roots, can be found with the roots command, as explained in Chapter 8
(Section 8.1.2).

• The fzero command can also be used to find the value of x where the function
has a specific value. This is done by translating the function up or down. For
example, in the function of Sample Problem 9-1 the first value of x where the
function is equal to 0.1 can be determined by solving the equation

. This is shown below:

9.2 FINDING A MINIMUM OR A MAXIMUM OF A FUNCTION

In many applications there is a need to determine the local minimum or maximum
of a function of the form . In calculus the value of x that corresponds to a
local minimum or maximum is determined by finding the zero of the derivative of
the function. The value of y is determined by substituting the x into the function.
In MATLAB the value of x where a one-variable function  within the interval

 has a minimum can be determined with the fminbnd command which
has the form:

• The function can be entered as a string expression, or as a function handle, in
the same way as with the fzero command. See Section 9.1 for details.

• The value of the function at the minimum can be added to the output by using
the option
            [x fval]=fminbnd(function,x1,x2)

where the value of the function at x is assigned to the variable fval.

• Within a given interval, the minimum of a function can either be at one of the
end points of the interval or at a point within the interval where the slope of the

>> x=fzero('x*exp(-x)-0.3',0.5)

x =
    0.4894

xe x– 0.3– 0=

y f x( )=

f x( )
x1 x x2≤ ≤

x = fminbnd(function,x1,x2)

The value of x where the
function has a minimum.

The function. The interval of x.
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function is zero (local minimum). When the fminbnd command is executed,
MATLAB looks for a local minimum. If a local minimum is found, its value is
compared to the value of the function at the end points of the interval. MAT-
LAB returns the point with the actual minimum value for the interval.

For example, consider the function
, which is plot-

ted in the interval  in the figure on the
right. It can be observed that there is a local
minimum between 5 and 6, and that the abso-
lute minimum is at . Using the fminbnd
command with the interval  to find the
location of the local minimum and the value of
the function at this point gives:

Notice that the fminbnd command gives the local minimum. If the interval is
changed to , fminbnd gives:

For this interval the fminbnd command gives the absolute minimum which is at
the end point .
• The fminbnd command can also be used to find the maximum of a function.

This is done by multiplying the function by –1 and finding the minimum. For
example, the maximum of the function  (from Sample Prob-
lem 9-1) in the interval  can be determined by finding the minimum of
the function  as shown below:

>> [x fval]=fminbnd('x^3-12*x^2+40.25*x-36.5',3,8)

x =
    5.6073
fval =
  -11.8043

>> [x fval]=fminbnd('x^3-12*x^2+40.25*x-36.5',0,8)

x =
     0
fval =
  -36.5000

>> [x fval]=fminbnd('-x*exp(-x)+0.2',0,8)

x =
    1.0000
fval =
   -0.1679

0 1 2 3 4 5 6 7 8
-40

-30
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-10

0
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x

f(x
)

f x( ) x3 12x2– 40.25x 36.5–+=
0 x 8≤ ≤

x 0=
3 x 8≤ ≤

The local minimum is at . The
value of the function at this point is –11.8043.

x 5.6073=

0 x 8≤ ≤

The minimum is at . The value
of the function at this point is –36.5.

x 0=

x 0=

f x( ) xe x– 0.2–=
0 x 8≤ ≤

f x( ) xe x–– 0.2+=

The maximum is at x = 1.0. The value of
the function at this point is 0.1679.
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9.3 NUMERICAL INTEGRATION

Integration is a common mathematical operation in science and engineering. Cal-
culating area and volume, velocity from acceleration, and work from force and
displacement are just a few examples where integrals are used. Integration of sim-
ple functions can be done analytically, but more involved functions are frequently
difficult or impossible to integrate analytically. In calculus courses the integrand
(the quantity to be integrated) is usually a function. In applications of science and
engineering the integrand can be a function or a set of data points. For example,
data points from discrete measurements of flow velocity can be used to calculate
volume.

It is assumed in the presentation below that the reader has knowledge of
integrals and integration. A definite integral of a function  from a to b has the
form:

The function  is called the integrand, and the
numbers a and b are the limits of integration.
Graphically, the value of the integral q is the area
between the graph of the function, the x axis, and
the limits a and b (the shaded area in the figure).
When a definite integral is calculated analytically

 is always a function. When the integral is calculated numerically  can be
a function or a set of points. In numerical integration the total area is obtained by
dividing the area into small sections, calculating the area of each section, and add-
ing them up. Various numerical methods have been developed for this purpose.
The difference between the methods is in the way that the area is divided into sec-
tions and the method by which the area of each section is calculated. Books on
numerical analysis include details of the numerical techniques. 

The following discussion describes how to use the three MATLAB built-in
integration functions quad, quadl, and trapz. The quad and quadl com-
mands are used for integration when  is a function, and trapz is used when

 is given by data points.
The quad command:
The form of the quad command, which uses the adaptive Simpson method of
integration, is:

f x( )

q f x( ) xd
a

b

∫=

f x( )

f x( ) f x( )

f x( )
f x( )

q = quad(function,a,b)

The value of the integral. The function to
be integrated.

The integration limits.
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• The function can be entered as a string expression or as a function handle, in
the same way as with the fzero command. See Section 9.1 for details. The
first two methods are demonstrated in Sample Problem 9-2.

• The function  must be written for an argument x that is a vector (use
element-by-element operations) such that it calculates the value of the function
for each element of x.

• The user has to make sure that the function does not have a vertical asymptote
between a and b.

• quad calculates the integral with an absolute error that is smaller than 1.0e–6.
This number can be changed by adding an optional tol argument to the com-
mand:
      q = quad(‘function’,a,b,tol)
tol is a number that defines the maximum error. With larger tol the integral
is calculated less accurately but faster.

The quadl command:
The form of the quadl (the last letter is a lowercase L) command is exactly the
same as that of the quad command:

All of the comments that are listed for the quad command are valid for the
quadl command. The difference between the two commands is the numerical
method used for calculating the integration. The quadl command uses the adap-
tive Lobatto method, which can be more efficient for high accuracies and smooth
integrals.

Sample Problem 9-2: Numerical integration of a function

Use numerical integration to calculate the following integral:

f x( )

q = quadl(function,a,b)

The value of the integral. The function to
be integrated.

The integration limits.

xe x0.8– 0.2+( ) xd
0

8

∫
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Solution
For illustration, a plot of the function for the
interval  is shown on the right. The
solution uses the quad command and shows
how to enter the function in the command in
two ways. In the first, it is entered directly by
typing the expression as an argument. In the
second, an anonymous function is created and
its name is subsequently entered in the com-
mand.

The use of the quad command in the Command Window, with the function
to be integrated typed in as a string, is shown below. Note that the function is
typed with element-by-element operations.

The second method is to first create a user-defined function that calculates
the function to be integrated. The function file (named y=Chap9Sam2(x)) is:

Note again that the function is written with element-by-element operations such
that the argument x can be a vector. The integration is then done in the Command
Window by typing the handle @Chap9Sam2 for the argument function in the
quad command as shown below:

The trapz command:
The trapz command can be used for integrating a function that is given as data
points. It uses the numerical trapezoidal method of integration. The form of the
command is

where x and y are vectors with the x and y coordinates of the points, respectively.
The two vectors must be of the same length.

>> quad('x.*exp(-x.^0.8)+0.2',0,8)

ans =
    3.1604

function y=Chap9Sam2(x)

y=x.*exp(-x.^0.8)+0.2;

>> q=quad(@Chap9Sam2,0,8)

q =
    3.1604

0 x 8≤ ≤

q = trapz(x,y)
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9.4 ORDINARY DIFFERENTIAL EQUATIONS

Differential equations play a crucial role in science and engineering since they are
in the foundation of virtually every physical phenomenon that is involved in engi-
neering applications. Only a limited number of differential equations can be
solved analytically. Numerical methods, on the other hand, can result in an
approximate solution to almost any equation. Obtaining a numerical solution
might not be simple task however. This is because a numerical method that can
solve any equation does not exist. Instead, there are many methods that are suit-
able for solving different types of equations. MATLAB has a large library of tools
that can be used for solving differential equations. To fully utilize the power of
MATLAB, however, requires that the user have knowledge of differential equa-
tions and the various numerical methods that can be used for solving them.

This section describes in detail how to use MATLAB to solve a first-order
ordinary differential equation. The possible numerical methods that can be used
for solving such an equation are described in general terms, but are not explained
from a mathematical point of view. This section provides information for solving
simple, “nonproblematic” first-order equations. This solution provides the basis
for solving higher-order equations and systems of equations. 

An ordinary differential equation (ODE) is an equation that contains an
independent variable, a dependent variable, and derivatives of the dependent vari-
able. The equations that are considered here are of first order with the form

where x and y are the independent and dependent variables, respectively. A solu-
tion is a function  that satisfies the equation. In general, many functions
can satisfy a given ODE, and more information is required for determining the
solution of a specific problem. The additional information is the value of the func-
tion (the dependent variable) at some value of the independent variable. 
Steps for solving a single first-order ODE:
For the remainder of this section the independent variable is taken as t (time). This
is done because in many applications time is the independent variable, and also to
be consistent with the information in the Help menu of MATLAB. 
Step 1: Write the problem in a standard form.
Write the equation in the form:

     for  ,  with    at .

As shown above, three pieces of information are needed for solving a first order
ODE: An equation that gives an expression for the derivative of y with respect to t,
the interval of the independent variable, and the initial value of y. The solution is
the value of y as a function of t between  and .

dy
dx
------ f x y,( )=

y f x( )=

dy
dt
------ f t y,( )= t0 t tf≤ ≤ y y0= t t0=

t0 tf
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An example of a problem to solve is:

   for    with   at .

Step 2: Create a user-defined function (in a function file) or an anonymous
function.

The ODE to be solved has to be written as a user-defined function (in a function

file) or as an anonymous function. Both calculate  for given values of t and y.

For the example problem above, the user-defined function (which is saved as a
separate file) is:

When an anonymous function is used, it can be defined in the Command Window,
or be within a script file. For the example problem here the anonymous function
(named ode1) is:

Step 3: Select a method of solution.
Select the numerical method that you would like MATLAB to use in the solution.
Many numerical methods have been developed to solve first-order ODEs, and
several of the methods are available as built-in functions in MATLAB. In a typical
numerical method, the time interval is divided into small time steps. The solution
starts at the known point y0, and then by using one of the integration methods the
value of y is calculated at each time step. Table 9-1 lists seven ODE solver com-
mands, which are MATLAB built-in functions that can be used for solving a first-
order ODE. A short description of each solver is included in the table. 

function dydt=ODEexp1(t,y)

dydt=(t^3-2*y)/t;

>> ode1=@(t,y)(t^3-2*y)/t
ode1 = 
    @(t,y)(t^3-2*y)/t

Table 9-1: MATLAB ODE Solvers

ODE Solver Name Description

ode45 For nonstiff problems, one-step solver, best to apply
as a first try for most problems. Based on explicit
Runge-Kutta method. 

ode23 For nonstiff problems, one-step solver. Based on
explicit Runge-Kutta method. Often quicker but less
accurate than ode45.

ode113 For nonstiff problems, multistep solver.

dy
dt
------ t3 2y–

t
----------------= 1 t 3≤ ≤ y 4.2= t 1=

dy
dt
------
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In general, the solvers can be divided into two groups according to their
ability to solve stiff problems and according to whether they use on-step or multi-
step methods. Stiff problems are ones that include fast and slowly changing com-
ponents and require small time steps in their solution. One-step solvers use
information from one point to obtain a solution at the next point. Multistep solvers
use information from several previous points to find the solution at the next point.
The details of the different methods are beyond the scope of this book.

It is impossible to know ahead of time which solver is the most appropriate
for a specific problem. A suggestion is to first try ode45, which gives good
results for many problems. If a solution is not obtained because the problem is
stiff, trying the solver ode15s is suggested.
Step 4: Solve the ODE.
The form of the command that is used to solve an initial value ODE problem is the
same for all the solvers and for all the equations that are solved. The form is:

Additional information:
solver_name  Is the name of the solver (numerical method) that is used (e.g.

ode45 or ode23s)

ODEfun The function from Step 2 that calculates  for given values of

t and y. If it was written as a user-defined function, the function
handle is entered. If it was written as an anonymous function,
the name of the anonymous function is entered. (See the exam-
ple that follows.) 

tspan A vector that specifies the interval of the solution. The vector
must have at least two elements but can have more. If the vector
has only two elements, the elements must be [t0 tf], which
are the initial and final points of the solution interval. The

ode15s For stiff problems, multistep solver. Use if ode45
failed. Uses a variable order method.

ode23s For stiff problems, one-step solver. Can solve some
problems that ode15s cannot.

ode23t For moderately stiff problems.
ode23tb For stiff problems. Often more efficient than

ode15s.

Table 9-1: MATLAB ODE Solvers (Continued)

ODE Solver Name Description

[t,y] = solver_name(ODEfun,tspan,y0)

dy
dt
------
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vector tspan can have, however, additional points between the
first and last points. The number of elements in tspan affects
the output from the command. See [t,y] below.

y0 The initial value of y (the value of y at the first point of the
interval).

[t,y] The output, which is the solution of the ODE. t and y are col-
umn vectors. The first and the last points are the beginning and
end points of the interval. The spacing and number of points in
between depends on the input vector tspan. If tspan has two
elements (the beginning and end points), the vectors t and y
contain the solution at every integration step calculated by the
solver. If tspan has more than two points (additional points
between the first and the last), the vectors t and y contain the
solution only at these points. The number of points in tspan
does not affect the time steps used for the solution by the pro-
gram.

 

For example, consider the solution to the problem stated in Step 1:

   for    with   at ,

If the ODE function is written as a user-defined function (see Step 2), then the
solution with MATLAB’s built-in function ode45 is obtained by:

The solution is obtained with the solver ode45. The name of the user-defined
function from Step 2 is ODEexp1. The solution starts at  and ends at 
with increments of 0.5 (according to the vector tspan). To show the solution, the
problem is solved again below using tspan with smaller spacing, and the solution

>> [t y]=ode45(@ODEexp1,[1:0.5:3],4.2) 

t =
    1.0000

    1.5000

    2.0000

    2.5000

    3.0000

y =
    4.2000

    2.4528

    2.6000

    3.7650

    5.8444

dy
dt
------ t3 2y–

t
----------------= 1 t 3≤ ≤ y 4.2= t 1=

The handle of the user-defined function ODEexp1.

The initial value.

The vector tspan.

t 1= t 3=
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is plotted with the plot command.

If the ODE function is written as an anonymous function called ode1 (see Step
2), then the solution (same as shown above) is obtained by typing:
[t y]=ode45(ode1,[1:0.5:3],4.2).

9.5 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 9-3: The gas equation

The ideal gas equation relates the volume (V in L), temperature (T in K), pressure
(P in atm), and the amount of gas (number of moles n) by:

where R = 0.08206 (L atm)/(mol K) is the gas constant.
The van der Waals equation gives the relationship between these quantities

for a real gas by

where a and b are constants that are specific for each gas.
Use the fzero function to calculate the volume of 2 mol CO2 at temperature of
50 C, and pressure of 6 atm. For CO2, a = 3.59 (L2 atm)/mol2, and b = 0.0427 L/
mol.
Solution
The solution written in a script file is shown below.

>> [t y]=ode45(@ODEexp1,[1:0.01:3],4.2);

>> plot(t,y)

>> xlabel('t'), ylabel('y')

global P T n a b R

1 1.5 2 2.5 3
2

2.5

3

3.5

4

4.5

5

5.5

6

t

y

p nRT
V

----------=

P n2a
V2
--------+⎝ ⎠

⎛ ⎞ V nb–( ) nRT=

°



308 Chapter 9: Applications in Numerical Analysis

The program first calculates an estimated value of the volume using the ideal gas
equation. This value is then used in the fzero command for the estimate of the
solution. The van der Waals equation is written as a user-defined function named
Waals, which is shown below:

In order for the script and function files to work correctly, the variables P, T, n, a,
b, and R are declared global. When the script file (saved as Chap9SamPro3) is
executed in the Command Window, the value of V is displayed, as shown next:

Sample Problem 9-4: Maximum viewing angle

To get the best view of a movie, a person has to
sit at a distance x from the screen such that the
viewing angle θ is maximum. Determine the
distance x for which θ is maximum for the con-
figuration shown in the figure.

Solution
The problem is solved by writing a function
for the angle θ in terms of x, and then finding
the x for which the angle is maximum. In the
triangle that includes θ, one side is given (the
height of the screen), and the other two sides
can be written in terms of x, as shown in the
figure. One way in which θ can be written in terms of x is by using the Law of
Cosines:

R=0.08206;

P=6; T=323.2; n=2; a=3.59; b=0.047;

Vest=n*R*T/P;

V=fzero(@Waals,Vest)

function fofx=Waals(x)

global P T n a b R

fofx=(P+n^2*a/x^2)*(x-n*b)-n*R*T;

>> Chap9SamPro3

V =
    8.6613

Calculating an estimated value for V.

Function handle @waals is used to pass the 
user-defined function waals into fzero.

The volume of the gas is 8.6613 L.

x2 52+

x2 412+ 36

θ

θ( )cos x2 52+( ) x2 412+( ) 362–+

2 x2 52+ x2 412+
-------------------------------------------------------------------=
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The angle θ is expected to be between 0 and
π/2. Since  and the cosine is
decreasing with increasing θ, the maximum
angle corresponds to the smallest cos(θ). A
plot of  as a function of x shows that the
function has a minimum between 10 and 20.
The commands for the plot are:

The minimum can be determined with the fminbnd command:

Sample Problem 9-5: Water flow in a river

To estimate the amount of water that flows in
a river during a year, a section of the river is
made to have a rectangular cross section as
shown. In the beginning of every month
(starting at January 1st) the height h of the
water and the speed v of the water flow are
measured. The first day of measurement is
taken as 1, and the last day—which is Janu-
ary 1st of the next year—is day 366. The following data was measured:

Use the data to calculate the flow rate, and then integrate the flow rate to obtain an
estimate of the total amount of water that flows in the river during a year.

>>fplot('((x^2+5^2)+(x^2+41^2)-36^2)/(2*sqrt(x^2+ 5^2)*sqrt(x^2+
                                               41^2))',[0 25])

>> xlabel('x'); ylabel('cos(\theta)')

>>[x anglecos]=fminbnd('((x^2+5^2)+(x^2+41^2)-36^2)/
                    (2*sqrt(x^2+5^2)*sqrt(x^2+41^2))',10,20)

x =
   14.3178
anglecos =
    0.6225

>> angle=anglecos*180/pi
angle =
   35.6674

Day 1 32 60 91 121 152 182 213 244 274 305 335 366
h (m) 2.0 2.1 2.3 2.4 3.0 2.9 2.7 2.6 2.5 2.3 2.2 2.1 2.0
v (m/s) 2.0 2.2 2.5 2.7 5 4.7 4.1 3.8 3.7 2.8 2.5 2.3 2.0

0 5 10 15 20 25
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

x

co
s(
θ)

0( )cos 1=

θ( )cos

The minimum is at x = 14.3178 m.
At this point cos(θ) = 0.6225.
The minimum is at x = 14.3178 m.
At this point cos(θ) = 0.6225.
The minimum is at x = 14.3178 m.
At this point cos(θ) = 0.6225.

In degrees the angle is 35.6674 .°
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Solution
The flow rate, Q (volume of water per second), at each data point is obtained by
multiplying the water speed by the width and height of the cross-sectional area of
the water that flows in the channel:

   (m3/s)
The total amount of water that flows is estimated by the integral:

The flow rate is given in cubic meters per second, which means that time must
have units of seconds. Since the data is given in terms of days, the integral is mul-
tiplied by  s/day.

The following is a program written in a script file that first calculates Q and
then carries out the integration using the trapz command. The program also
generates a plot of the flow rate versus time.

When the file (saved as Chap9SamPro5) is executed in the Command Window,
the estimated amount of water is displayed and the plot is generated. Both are
shown below:.

w=8;

d=[1 32 60 91 121 152 182 213 244 274 305 335 366];

h=[2 2.1 2.3 2.4 3.0 2.9 2.7 2.6 2.5 2.3 2.2 2.1 2.0];

speed=[2 2.2 2.5 2.7 5 4.7 4.1 3.8 3.7 2.8 2.5 2.3 2];

Q=speed.*w.*h;

Vol=60*60*24*trapz(d,Q);

fprintf('The estimated amount of water that flows in the
river in a year is %g cubic meters.',Vol)

plot(d,Q)

xlabel('Day'), ylabel('Flow Rate (m^3/s)')

>> Chap9SamPro5

The estimated amount of water that flows in the river in a
year is 2.03095e+009 cubic meters.

Q vwh=

V 60 60 24⋅ ⋅( ) Q td
t1

t2

∫=

60 60 24⋅ ⋅( )
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Sample Problem 9-6: Car crash into a safety bumper 

A safety bumper is placed at the end of a
racetrack to stop out-of-control cars. The
bumper is designed such that the force that
the bumper applies to the car is a function
of the velocity v and the displacement x of
the front edge of the bumper according to the equation:

where K = 30 (s kg)/m5 is a constant.
A car with a mass m of 1,500 kg hits the bumper at a speed of 90 km/h.

Determine and plot the velocity of the car as a function of its position for 
m.
Solution
The deceleration of the car once it hits the bumper can be calculated from New-
ton’s second law of motion,

which can be solved for the acceleration a as a function of v and x:

The velocity as a function of x can be calculated by substituting the acceleration in
the equation

which gives

The last equation is a first-order ODE that needs to be solved for the interval
 with the initial condition  km/h at .

A numerical solution of the differential equation with MATLAB is shown in
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the following program, which is written in a script file:

Note that the function handle @bumper is used for passing the user-defined func-
tion bumper into ode45. The listing of the user-defined function with the differ-
ential equation, named bumper, is: 

When the script file executes (saved as Chap9SamPro6) the vectors x and v are
displayed in the Command Window (actually, they are displayed on the screen
one after the other, but to save room they are displayed below next to each other). 

global k m

k=30; m=1500; v0=90;

xspan=[0:0.2:3];

v0mps=v0*1000/3600;

[x v]=ode45(@bumper,xspan,v0mps)

plot(x,v)

xlabel('x (m)'); ylabel('velocity (m/s)')

function dvdx=bumper(x,v)

global k m

dvdx=-(k*v^2*(x+1)^3)/m;

>> Chap9SamPro6

x =
         0

v =
   25.0000

    0.2000    22.0420

    0.4000    18.4478

    0.6000    14.7561

    0.8000    11.4302

    1.0000     8.6954

    1.2000     6.5733

    1.4000     4.9793

    1.6000     3.7960

    1.8000     2.9220

    2.0000     2.2737

    2.2000     1.7886

    2.4000     1.4226

    2.6000     1.1435

    2.8000     0.9283

A vector that specifies the interval of the solution.
Changing the units of v0 to m/s.

Solving the ODE.
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The plot generated by the program of the velocity as a function of distance is: 

9.6 PROBLEMS

1. Determine the solution of the equation  .

2. Determine the solution of the equation  .

3. Determine the three positive roots of the equation .

4. Determine the positive roots of the equation .

5. A block of mass kg is being pulled
by a cable as shown. The force that is
required to move the box is given by:

where m,  is the friction
coefficient, and m/s2. Determine
the distance x when the pulling force is equal to 230 N.

6. A scale is made of two springs, as
shown in the figure. The springs
are nonlinear such that the force
they apply is given by

, where the K’s
are constants and  is the

elongation of the spring (  and  are the cur-
rent and initial lengths of the springs, respectively). Initially, the springs are
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not stretched. When an object is attached to the ring, the springs stretch and
the ring is displaced downward a distance x. The weight of the object can be
expressed in terms of the distance x by:

For the given scale m, m, and the springs’ constants are
N/m and N/m3. Plot W as a function of x for
. Determine the distance x when a 400 N object is attached to the

scale.

7. An estimate of the minimum velocity required for a round flat stone to skip
when it hits the water is given by (Lyderic Bocquet, “The Physics of Stone
Skipping,” Am. J. Phys., vol. 71, no. 2, February 2003)

where M and d are the stone mass and diameter,  is the water density, C is a
coefficient,  is the tilt angle of the stone,  is the incidence angle, and

m/s2. Determine d if m/s. (Assume that kg, ,
kg/m3, and .)

8. The diode in the circuit shown is forward
biased. The current I flowing through the
diode is given by:

where  is the voltage drop across the
diode, T is the temperature in kelvins,

A is the saturation current,
coulombs is the elementary charge value, and
joule/K is Boltzmann’s constant. The current I flowing

through the circuit (the same as the current in the diode) is given also by:

Determine  if V, K, and Ω. (Substitute I from
one equation into the other equation and solve the resulting nonlinear equa-
tion.)

W 2 FS
b x+( )

L
----------------=

a 0.22= b 0.08=

K1 1600= K2 100000=

0 x 0.25≤ ≤

V

16Mg
πCρwd2
--------------------

1 8M βtan2

πd3Cρw θsin
-------------------------------–

--------------------------------------------=

ρw

θ β

g 9.81= V 0.8= M 0.1= C 1=

ρw 1000= β θ 10°= =

Rvs
+
_

D

vDI

I IS e
qvD
kT

---------
1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

vD

IS 10 12–=

q 1.6 10 19–×=

k 1.38 10 23–×=

I
vS vD–

R
----------------=

vD vS 2= T 297= R 1000=
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9. Determine the minimum and the maximum of the function

.

10. A paper cup shaped as a cone is designed to have a vol-
ume of 250 cm3. Determine the radius  and height h
such that the least amount of paper will be used for mak-
ing the cup.

11. Consider again the block that is being pulled in Problem 5. Determine the dis-
tance x at which the force that is necessary to pull the box is the smallest.
What is the magnitude of this force?

12. Determine the dimensions (radius r and height h)
and the volume of the cylinder with the largest vol-
ume that can be made inside of a sphere with a
radius R of 14 in.

13. Consider the ellipse . Determine

the sides a and b of the rectangle with the larg-
est area that can be enclosed by the ellipse. 

14. Planck’s radiation law gives the spectral radiancy R as a function of the wave
length λ and temperature T (in kelvins):

where m/s is the speed of light, J s is Planck’s
constant, and J/K is the Boltzmann’s constant.

Plot R as a function of λ for m at K,
and determine the wavelength that gives the maximum R at this temperature.

f x( ) x 2–
x 2–( )4 2+[ ]1.8

--------------------------------------=

h
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192
-------- y2

52
-----+ 1=

R 2πc2h
λ5

--------------- 1
e hc( ) λkT( )⁄ 1–
--------------------------------=

c 3.0 108×= h 6.63 10 34–×=

k 1.38 10 23–×=

0.2 10 6–× λ 6.0 10 6–×≤ ≤ T 1500=
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15. A 108 in.–long beam AB is attached to the
wall with a pin at point A and to a 68 in.–
long cable CD. A load lb is
attached to the beam at point B. The ten-
sion in the cable T is given by 

where L and LC are the lengths of the beam and the cable, respectively, and d
is the distance from point A to point D, where the cable is attached. Make a
plot of T versus d. Determine the distance d where the tension in the cable is
the smallest.

16. Use MATLAB to calculate the following integral:

(a) (b)

17. Use MATLAB to calculate the following integrals:

(a) (b)

18. The speed of a race car during the first seven seconds of a race is given by:

Determine the distance the car traveled during the first six seconds.

19. The length L of the main supporting cable
of a suspension bridge can be calculated
by

where a is half the length of the bridge
and h is the distance from the deck to the top of the tower where the cable is
attached. Determine the length of a bridge with m and m.
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20. The flow rate Q (volume of fluid per sec-
ond) in a round pipe can be calculated
by:

For turbulent flow the velocity profile 

can be estimated by: . Determine Q for in., 

, in./s.

21. The electric field E due to a charged circular disk
at a point at a distance z along the axis of the disk
is given by

where  is the charge density,  is the
permittivity constant, C2/(N m2),
and R is the radius of the disk. Determine the electric field at a point located 5
cm from a disk with a radius of 6 cm, charged with μC/m2.

22. The length of a curve given by a parametric equation ,  is given by:

The cycloid curve is given by , and . Deter-
mine the length of a cycloid with in. for .

23. The variation of gravitational acceleration g with altitude y is given by

where km is the radius of the earth, and m/s2 is the gravi-
tational acceleration at sea level. The change in the gravitational potential
energy, ΔU, of an object that is raised from the earth is given by:

Determine the change in the potential energy of a satellite with a mass of 500
kg that is raised from the surface of the earth to a height of 800 km.
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24. A cross section of a river with
measurements of its depth at
intervals of 40 ft is shown in the
figure. Use numerical integra-
tion to estimate the cross-sec-
tional area of the river.

25. An approximate map of the state of Ohio
is shown in the figure. Measurements of
the width of the state are marked at inter-
vals of 30 miles. Use numerical integra-
tion to estimate the area of the state.
Compare the result with the actual area
of Ohio, which is 44,825 square miles.

26. The time-dependent relaxation modulus  of many biological materials
can be described by Fung’s reduced relaxation function:

Use numerical integration to find the relaxation modulus at 10 s, 100 s, and
1,000 s. Assume ksi, , s, and s. 

27. The orbit of Pluto is elliptical in shape, with
km and km.

The perimeter of an ellipse can be calculated by

where . Determine the distance

Pluto travels in one orbit. Calculate the average speed at which Pluto travels
(in km/h) if one orbit takes about 248 years.

28. The Fresnel integrals are:

 and 

Calculate  and  for  (use spacing of 0.05). In one figure plot
two graphs—one of  versus x and the other of  versus x. In a second
figure plot  versus .
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29. Solve:

  for    with  

Plot the solution.

30. Solve:

  for    with  

Plot the solution.

31. Solve:

  for    with  

Plot the solution.

32. A water tank shaped as an ellipsoid ( m,
m, m) has a circular hole at the bot-

tom, as shown. According to Torricelli’s law, the
speed v of the water that is discharging from the
hole is given by

where h is the height of the water and m/
s2. The rate at which the height, h, of the water in
the tank changes as the water flows out through
the hole is given by

where  is the radius of the hole.
Solve the differential equation for y. The initial height of the water is

m. Solve the problem for different times and find an estimate for the
time when m. Make a plot of y as a function of time.

dy
dx
------ x x2 y

4
------------+= 1 x 5≤ ≤ y 1( ) 1=

dy
dx
------ xy 0.5ye 0.1x––= 0 x 4≤ ≤ y 0( ) 6.5=

dy
dt
------ 80e 1.6 t– 4t( )cos 0.4y–= 0 t 4≤ ≤ y 0( ) 0=

h

r=0.025m
v

x

y

z

a
b

c

a 1.5=
b 4.0= c 3=

v 2gh=

g 9.81=

dy
dt
------ 2gy r2

ac 1– h c–( )2

c2
------------------+

--------------------------------------------=

rh

h 5.9=
h 0.1=
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33. The growth of a fish is often modeled by the von Bertalanffy growth model:

where w is the weight and a and b are constants. Solve the equation for w for
the case lb1/3, day–1, and lb. Make sure that the
selected time span is just long enough so that the maximum weight is
approached. What is the maximum weight for this case? Make a plot of w as a
function of time. 

34. The sudden outbreak of an insect population can be modeled by the equation

The first term relates to the well-known logistic population growth model
where N is the number of insects, R is an intrinsic growth rate, and C is the
carrying capacity of the local environment. The second term represents the
effects of bird predation. Its effect becomes significant when the population
reaches a critical size . r is the maximum value that the second term can
reach at large values of N.

Solve the differential equation for days and two growth rates,
 and  day–1, and with . The other parameters

are , ,  day–1. Make one plot comparing the two
solutions and discuss why this model is called an “outbreak” model.

35. An airplane uses a parachute and
other means of braking as it slows
down on the runway after land-
ing. Its acceleration is given by

m/s2. Since

, the rate of change of the

velocity is given by:

Consider an airplane with a velocity of 300 km/h that opens its parachute and
starts decelerating at t = 0 s. 
(a) By solving the differential equation, determine and plot the velocity as a

function of time from t = 0 s until the airplane stops.
(b) Use numerical integration to determine the distance x the airplane travels

as a function of time. Make a plot of x versus time.

dw
dt
------- aw2 3⁄ bw–=

a 5= b 2= w 0( ) 0.5=

dN
dt
------- RN 1 N

C
----–⎝ ⎠

⎛ ⎞ rN2

Nc
2 N2+

-------------------–=

Nc

0 t 50≤ ≤
R 0.55= R 0.58= N 0( ) 10000=

C 104= Nc 104= r 104=

a 0.0035v2– 3–=

a dv
dt
------=

dv
dt
------ 0.0035v2– 3–=
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36. An RC circuit includes a voltage
source , a resistor  Ω, and a
capacitor F, as shown
in the figure. The differential equation
that describes the response of the cir-
cuit is:

where  is the voltage of the capacitor. Initially, , and then at  the
voltage source is changed. Determine the response of the circuit for the fol-
lowing three cases:
(a) V for .
(b) V for .
(c) V for s, and then  for  s (rectangular

pulse).
Each case corresponds to a different differential equation. The solution is the
voltage of the capacitor as a function of time. Solve each case for s.
For each case plot  and  versus time (make two separate plots on the same
page).

37. An RL circuit includes a voltage
source , a resistor  Ω, and an
inductor H, as shown in the
figure. The differential equation that
describes the response of the circuit is

where  is the current in the inductor. Initially , and then at  the
voltage source is changed. Determine the response of the circuit for the fol-
lowing three cases:
(a) V for .

(b) V for .
Each case corresponds to a different differential equation. The solution is the
current in the inductor as a function of time. Solve each case for s.
For each case plot  and  versus time (make two separate plots on the same
page).
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38. Tumor growth can be modeled with the equation

where  is the area of the tumor and , k, and  are constants. Solve the
equation for  days, given , , , and

mm2. Make a plot of A as a function of time.

dA
dt
------- αA 1 A

k
---⎝ ⎠

⎛ ⎞
υ

–=

A t( ) α υ
0 t 30≤ ≤ α 0.8= k 60= υ 0.25=

A 0( ) 1=
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Chapter 10                              
Three-Dimensional 
Plots

Three-dimensional (3-D) plots can be a useful way to present data that consists of
more than two variables. MATLAB provides various options for displaying three-
dimensional data. They include line and wire, surface, mesh plots, and many oth-
ers. The plots can also be formatted to have a specific appearance and special
effects. Many of the three-dimensional plotting features are described in this chap-
ter. Additional information can be found in the Help Window under Plotting and
Data Visualization.

In many ways this chapter is a continuation of Chapter 5, where two-dimen-
sional plots were introduced. The 3-D plots are presented in a separate chapter
because not all MATLAB users use them. In addition, new users of MATLAB will
probably find it easier to practice 2-D plotting first and learn the material in Chap-
ters 6–9 before attempting 3-D plotting. It is assumed throughout the rest of this
chapter that the reader is familiar with 2-D plotting.

10.1 LINE PLOTS

A three-dimensional line plot is a line that is obtained by connecting points in
three-dimensional space. A basic 3-D plot ‘is created with the plot3 command,
which is very similar to the plot command and has the form:

plot3(x,y,z,‘line specifiers’,‘PropertyName’,property value)

(Optional) Specifiers that
define the type and color of
the line and markers.

x, y, and z are
vectors of the
coordinates of
the points.

(Optional) Properties with val-
ues that can be used to specify
the line width, and marker’s
size and edge and fill colors.
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• The three vectors with the coordinates of the data points must have the same
number of elements.

• The line specifiers, properties, and property values are the same as in 2-D plots
(see Section 5.1).

For example, if the coordinates x, y, and z are given as a function of the parameter
t by

a plot of the points for  can be produced by the following script file:

The plot shown in Figure 10-1 is created when the script is executed.

10.2 MESH AND SURFACE PLOTS

Mesh and surface plots are three-dimensional plots used for plotting functions of
the form  where x and y are the independent variables and z is the
dependent variable. It means that within a given domain the value of z can be cal-
culated for any combination of x and y. Mesh and surface plots are created in three

t=0:0.1:6*pi;

x=sqrt(t).*sin(2*t);

y=sqrt(t).*cos(2*t);

z=0.5*t;

plot3(x,y,z,'k','linewidth',1)

grid on

xlabel('x'); ylabel('y'); zlabel('z')

Figure 10-1: A plot of the function , ,  for 
.

x t 2t( )sin=
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steps. The first step is to create a grid in the x y plane that covers the domain of the
function. The second step is to calculate the value of z at each point of the grid.
The third step is to create the plot. The three steps are explained next.
Creating a grid in the x y plane (Cartesian coordinates):
The grid is a set of points in the x y plane in the domain of the function. The den-
sity of the grid (number of points used to define the domain) is defined by the
user. Figure 10-2 shows a grid in the domain  and . In this grid

the distance between the points is one unit. The points of the grid can be defined
by two matrices, X and Y. Matrix X has the x coordinates of all the points, and
matrix Y has the y coordinates of all the points:

  and  

The X matrix is made of identical rows since in each row of the grid the points
have the same x coordinate. In the same way the Y matrix is made of identical col-
umns since in each column of the grid the y coordinate of the points is the same.

MATLAB has a built-in function, called meshgrid, that can be used for

Figure 10-2: A grid in the x y plane for the domain  and  with 
                     spacing of 1.

1– x 3≤ ≤ 1 y 4≤ ≤

1– x 3≤ ≤ 1 y 4≤ ≤

X

1– 0 1 2 3
1– 0 1 2 3
1– 0 1 2 3
1– 0 1 2 3

= Y

4 4 4 4 4
3 3 3 3 3
2 2 2 2 2
1 1 1 1 1

=



326 Chapter 10: Three-Dimensional Plots

creating the X and Y matrices. The form of the meshgrid function is:

In the vectors x and y the first and last elements are the respective boundaries of
the domain. The density of the grid is determined by the number of elements in
the vectors. For example, the mesh matrices X and Y that correspond to the grid in
Figure 10-2 can be created with the meshgrid command by:

Once the grid matrices exist, they can be used for calculating the value of z at each
grid point.
Calculating the value of z at each point of the grid:
The value of z at each point is calculated by using element-by-element calcula-
tions in the same way it is used with vectors. When the independent variables x
and y are matrices (they must be of the same size), the calculated dependent vari-
able is also a matrix of the same size. The value of z at each address is calculated
from the corresponding values of x and y. For example, if z is given by

the value of z at each point of the grid above is calculated by:

>> x=-1:3;

>> y=1:4;

>> [X,Y]=meshgrid(x,y)

X =
    -1     0     1     2     3
    -1     0     1     2     3
    -1     0     1     2     3
    -1     0     1     2     3
Y =
     1     1     1     1     1
     2     2     2     2     2
     3     3     3     3     3
     4     4     4     4     4

>> Z = X.*Y.^2./(X.^2 + Y.^2)

[X,Y] = meshgrid(x,y)

X is the matrix of the x coordi-
nates of the grid points.
Y is the matrix of the y coordi-
nates of the grid points.

x is a vector that divides the domain of x.
y is a vector that divides the domain of y.

z xy2

x2 y2+
----------------=
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Once the three matrices have been created, they can be used to plot mesh or sur-
face plots.
Making mesh and surface plots:
A mesh or surface plot is created with the mesh or surf command, which has
the form:

where X and Y are matrices with the coordinates of the grid and Z is a matrix with
the value of z at the grid points. The mesh plot is made of lines that connect the
points. In the surface plot, areas within the mesh lines are colored.

As an example, the following script file contains a complete program that
creates the grid and then makes a mesh (or surface) plot of the function

 over the domain  and .

Note that in the program above the vectors x and y have a much smaller spacing
than the spacing earlier in the section. The smaller spacing creates a denser grid.
The figures created by the program are:

Z =
  -0.5000        0   0.5000   0.4000   0.3000
  -0.8000        0   0.8000   1.0000   0.9231
  -0.9000        0   0.9000   1.3846   1.5000
  -0.9412        0   0.9412   1.6000   1.9200

x=-1:0.1:3;

y=1:0.1:4;

[X,Y]=meshgrid(x,y);

Z=X.*Y.^2./(X.^2+Y.^2);

mesh(X,Y,Z) 

xlabel('x'); ylabel('y'); zlabel('z')

mesh(X,Y,Z) surf(X,Y,Z)

z xy2

x2 y2+
----------------= 1– x 3≤ ≤ 1 y 4≤ ≤

Type surf(X,Y,Z) for surface plot.
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Additional comments on the mesh command:

• The plots that are created have colors that vary according to the magnitude of z.
The variation in color adds to the three-dimensional visualization of the plots.
The color can be changed to be a constant either by using the Plot Editor in the
Figure Window (select the edit arrow, click on the figure to open the Property
Editor Window, then change the color in the Mesh Properties list), or by using
the colormap(C) command. In this command C is a three-element vector in
which the first, second, and third elements specify the intensity of Red, Green,
and Blue (RGB) colors, respectively. Each element can be a number between 0
(minimum intensity) and 1 (maximum intensity). Some typical colors are:

C = [0 0 0]   black C = [1 0 0]   red C = [0 1 0]   green                               
C = [0 0 1]   blue    C = [1 1 0]   yellow C = [1 0 1]   magenta              
C = [0.5 0.5 0.5]   gray

• When the mesh command executes, the grid is on by default. The grid can be
turned off with the grid off command.

• A box can be drawn around the plot with the box on command.

• The mesh and surf commands can also be used with the form mesh(Z) and
surf(Z). In this case the values of Z are plotted as a function of their
addresses in the matrix. The row number is on the x axis and the column num-
ber is on the y axis. 

There are several additional plotting commands that are similar to the mesh
and surf commands that create plots with different features. Table 10-1 shows
a summary of the mesh and surface plotting commands. All the examples in the

table are plots of the function  over the domain
 and .

Table 10-1: Mesh and surface plots

Plot type Example of plot Program

Mesh Plot

Function format:
mesh(X,Y,Z)

x=-3:0.25:3;

y=-3:0.25:3;

[X,Y] = meshgrid(x,y);

Z=1.8.^(-1.5*sqrt(X.^2+ 
Y.̂ 2)).*cos(0.5*Y).*sin(X);

mesh(X,Y,Z)

xlabel('x'); ylabel('y') 

zlabel('z')

z 1.8 1.5 x2 y2+– x( ) 0.5y( )cossin=

3– x 3≤ ≤ 3– y 3≤ ≤
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Surface Plot

Function format:
surf(X,Y,Z)

x=-3:0.25:3;

y=-3:0.25:3;

[X,Y]=meshgrid(x,y);

Z=1.8.^(-1.5*sqrt(X.^2+ 
Y.̂ 2)).*cos(0.5*Y).*sin(X);

surf(X,Y,Z)

xlabel('x'); ylabel('y')

zlabel('z')

Mesh Curtain 
Plot (draws a 
curtain around 
the mesh)

Function format:
meshz(X,Y,Z)

x=-3:0.25:3;

y=-3:0.25:3;

[X,Y]=meshgrid(x,y);

Z=1.8.^(-1.5*sqrt(X.^2+ 
Y.̂ 2)).*cos(0.5*Y).*sin(X);

meshz(X,Y,Z)

xlabel('x'); ylabel('y')

zlabel('z')

Mesh and Con-
tour Plot (draws 
a contour plot 
beneath the 
mesh)

Function format:
meshc(X,Y,Z)

x=-3:0.25:3;

y=-3:0.25:3;

[X,Y]=meshgrid(x,y);

Z=1.8.^(-1.5*sqrt(X.^2+ 
Y.̂ 2)).*cos(0.5*Y).*sin(X);

meshc(X,Y,Z)

xlabel('x'); ylabel('y')

zlabel('z')

Surface and Con-
tour Plot (draws 
a contour plot 
beneath the sur-
face)

Function format:
surfc(X,Y,Z)

x=-3:0.25:3;

y=-3:0.25:3;

[X,Y]=meshgrid(x,y);

Z=1.8.^(-1.5*sqrt(X.^2+ 
Y.̂ 2)).*cos(0.5*Y).*sin(X);

surfc(X,Y,Z)

xlabel('x'); ylabel('y')

zlabel('z')

Table 10-1: Mesh and surface plots (Continued)

Plot type Example of plot Program
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Surface Plot with 
Lighting

Function format:
surfl(X,Y,Z)

x=-3:0.25:3;

y=-3:0.25:3;

[X,Y]=meshgrid(x,y);

Z=1.8.^(-1.5*sqrt(X.^2+ 
Y.̂ 2)).*cos(0.5*Y).*sin(X);

surfl(X,Y,Z)

xlabel('x'); ylabel('y')

zlabel('z')

Waterfall Plot 
(draws a mesh in 
one direction 
only)

Function format:
water-
fall(X,Y,Z)

x=-3:0.25:3;

y=-3:0.25:3;

[X,Y] = meshgrid(x,y);

Z=1.8.^(-1.5*sqrt(X.^2+ 
Y.̂ 2)).*cos(0.5*Y).*sin(X);

waterfall(X,Y,Z)

xlabel('x'); ylabel('y')

zlabel('z')

3-D Contour Plot

Function format:
contour3(X, 
Y,Z,n)

n is the number
of contour levels
(optional)

x=-3:0.25:3;

y=-3:0.25:3;

[X,Y]=meshgrid(x,y);

Z=1.8.^(-1.5*sqrt(X.^2+ 
Y.̂ 2)).*cos(0.5*Y).*sin(X);

contour3(X,Y,Z,15)

xlabel('x'); ylabel('y')

zlabel('z')

2-D Contour Plot
(draws projec-
tions of contour 
levels on the x y 
plane)
Function format:
contour 
(X,Y,Z,n)
n is the number
of contour levels
(optional)

x=-3:0.25:3;

y=-3:0.25:3;

[X,Y ]=meshgrid(x,y);

Z=1.8.^(-1.5*sqrt(X.^2+ 
Y.̂ 2)).*cos(0.5*Y).*sin(X);

contour(X,Y,Z,15)

xlabel('x'); ylabel('y')

zlabel('z')

Table 10-1: Mesh and surface plots (Continued)
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10.3 PLOTS WITH SPECIAL GRAPHICS

MATLAB has additional functions for creating various types of special three-
dimensional plots. A complete list can be found in the Help Window under Plot-
ting and Data Visualization. Several of these 3-D plots are presented in Table 10-
2. The examples in the table do not show all the options available with each

Table 10-2: Specialized 3-D plots

Plot type Example of plot Program

Plot a Sphere

Function format:
sphere
Returns the x, y, 
and z coordi-
nates of a unit 
sphere with 20 
faces.
sphere(n)
Same as above 
with n faces.

sphere

or:

[X,Y,Z]=sphere(20);

surf(X,Y,Z)

Plot a Cylinder

Function format:
[X,Y,Z]=
cylinder(r)
Returns the x, y, 
and z coordi-
nates of cylinder 
with profile r.

t=linspace(0,pi,20);

r=1+sin(t);

[X,Y,Z]=cylinder(r);

surf(X,Y,Z)

axis square

3-D Bar Plot 

Function format:
bar3(Y)
Each element in Y 
is one bar. Col-
umns are grouped 
together.

Y=[1 6.5 7; 2 6 7; 3 
5.5 7; 4 5 7; 3 4 7; 
2 3 7; 1 2 7];

bar3(Y)
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plot type. More details on each type of plot can be obtained in the Help
Window, or by typing help command_name in the Command Window.
Polar coordinates grid in the x y plane:
 A 3-D plot of a function in which the value of z is given in polar coordinates (for
example ) can be done by following these steps:
• Create a grid of values of  and r with the meshgrid function.

3-D Stem Plot 
(draws sequen-
tial points with 
markers and ver-
tical lines from 
the x y plane)

Function format:
stem3(X,Y,Z)

t=0:0.2:10;

x=t;

y=sin(t);

z=t.^1.5;

stem3(x,y,z,'fill')

grid on

xlabel('x'); 

ylabel('y')

zlabel('z')

3-D Scatter Plot

Function format:
scatter3(X, 
Y,Z)

t=0:0.4:10;

x=t;

y=sin(t);

z=t.^1.5;

scatter3(x,y,z,'filled')

grid on

colormap([0.1 0.1 0.1])

xlabel('x');

ylabel('y')

zlabel('z')

3-D Pie Plot 

Function format:
pie3(X, 
explode)

X=[5 9 14 20];

explode=[0 0 1 0];

pie3(X,explode)

Table 10-2: Specialized 3-D plots (Continued)

Plot type Example of plot Program
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• Calculate the value of z at each point of the grid.

• Convert the polar coordinates grid to a grid in Cartesian coordinates. This can
be done with MATLAB’s built-in function pol2cart (see example below).

• Make a 3-D plot using the values of z and the Cartesian coordinates. 

For example, the following script creates a plot of the function  over the
domain  and .

The figures created by the program are:

10.4 THE view COMMAND

The view command controls the direction from which the plot is viewed. This is
done by specifying a direction in terms of azimuth and elevation angles, as seen in
Figure 10-3, or by defining a point in space from which the plot is viewed. To set
the viewing angle of the plot, the view command has the form:

• az is the azimuth, which is an angle (in degrees) in the x y plane measured
relative to the negative y axis direction and defined as positive in the
counterclockwise direction.

• el is the angle of elevation (in degrees) from the x y plane. A positive value
corresponds to opening an angle in the direction of the z axis.

• The default view angles are az = –37.5 , and el = 30 .

[th,r]=meshgrid((0:5:360)*pi/180,0:.1:2);

Z=r.*th;

[X,Y] = pol2cart(th,r);

mesh(X,Y,Z)

z rθ=

0 θ 360°≤ ≤ 0 r 2≤ ≤

Type surf(X,Y,Z) for surface plot.

Mesh plot Surface plot -2
0

2

-2

0

2
0

5

10

15

xy

z

-2
0

2

-2

0

2
0

5

10

15

xy

z

view(az,el) or    view([az,el])     

° °
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As an example, the surface plot from Table 10-1 is plotted again in Figure 10-4,
with viewing angles az = 20  and el = 35 .

• With the choice of appropriate azimuth and elevation angles, the view com-
mand can be used to plot projections of 3-D plots on various planes according
to the following table:

An example of a top view is shown next. Figure 10-5 shows the top view of the
function that is plotted in Figure 10-1. Examples of projections onto the x z and y z
planes are shown next, in Figures 10-6 and 10-7, respectively. The figures show
mesh plot projections of the function plotted in Table 10-1.

Figure 10-3: Azimuth and elevation angles.

x=-3:0.25:3;

y=-3:0.25:3;

[X,Y]=meshgrid(x,y);

Z=1.8.^(-1.5*sqrt(X.^2+ 
Y.^2)).*cos(0.5*Y).*sin(X);

surf(X,Y,Z)

view(20,35)

Figure 10-4: A surface plot of the function  with 
viewing angles of az = 20  and el = 35 .

Projection plane az value el value

x y (top view) 0 90
x z (side view) 0 0
y z (side view) 90 0

° °
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0
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y
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z

z 1.8 1.5 x2 y2+– x( ) 0.5y( )cossin=
° °
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t=0:0.1:6*pi;

x=sqrt(t).*sin(2*t);

y=sqrt(t).*cos(2*t);

z=0.5*t;

plot3(x,y,z,'k','linewidth',1)

view(0,90)

grid on

xlabel('x'); ylabel('y') 

zlabel('z')

Figure 10-5: A top view plot of the function , , 
 for .

x=-3:0.25:3;

y=-3:0.25:3;

[X,Y]=meshgrid(x,y);

Z=1.8.^(-1.5*sqrt(X.^2+ 
Y.^2)).*cos(0.5*Y).*sin(X);

mesh(X,Y,Z)

view(0,0)

Figure 10-6: Projections onto the x z plane of the function

                                        .

x=-3:0.25:3;

y=-3:0.25:3;

[X,Y]=meshgrid(x,y);

Z=1.8.^(-1.5*sqrt(X.^2+ 
Y.^2)).*cos(0.5*Y).*sin(X);

surf(X,Y,Z)

view(90,0)

Figure 10-7: Projections onto the y-z plane of the function

                                           .

x t 2t( )sin= y t 2t( )cos=

z 0.5t= 0 t 6π≤ ≤
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• The view command can also set a default view:

view(2) sets the default to the top view, which is a projection onto the
x-y plane with az = 0 , and el = 90 . 

view(3) sets the default to the standard 3-D view with az = –37.5  and
el = 30 .

• The viewing direction can also be set by selecting a point in space from which
the plot is viewed. In this case the view command has the form
view([x,y,z]), where x, y, and z are the coordinates of the point. The direc-
tion is determined by the direction from the specified point to the origin of the
coordinate system and is independent of the distance. This means that the view
is the same with point [6, 6, 6] as with point [10, 10, 10]. Top view can be set
up with [0, 0, 1]. A side view of the x z plane from the negative y direction can
be set with [0, –1, 0], and so on.

10.5 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 10-1: 3-D projectile trajectory

A projectile is fired with an initial velocity of
250 m/s at an angle of θ = 65  relative to the
ground. The projectile is aimed directly north.
Because of a strong wind blowing to the west,
the projectile also moves in this direction at a
constant speed of 30 m/s. Determine and plot
the trajectory of the projectile until it hits the
ground. For comparison, plot also (in the same figure) the trajectory that the pro-
jectile would have had if there was no wind.

Solution
As shown in the figure, the coordinate system is set up such that the x and y axes
point in the east and north directions, respectively. Then the motion of the projec-
tile can be analyzed by considering the vertical direction z and the two horizontal
components x and y. Since the projectile is fired directly north, the initial velocity

 can be resolved into a horizontal y component and a vertical z component:
    and    

In addition, due to the wind the projectile has a constant velocity in the negative x
direction,  m/s.

The initial position of the projectile (x0, y0, z0) is at point (3000, 0, 0). In the verti-
cal direction the velocity and position of the projectile are given by:

° °
°

°

°

v0

v0y v0 θ( )cos= v0z v0 θ( )sin=

vx 30–=
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  and  

The time it takes the projectile to reach the highest point  is .

The total flying time is twice this time, . In the horizontal direction
the velocity is constant (both in the x and y directions), and the position of the pro-
jectile is given by:

  and 

The following MATLAB program written in a script file solves the problem by
following the equations above.

The figure generated by the program is shown below.

v0=250; g=9.81; theta=65;

x0=3000; vx=-30;

v0z=v0*sin(theta*pi/180);

v0y=v0*cos(theta*pi/180);

t=2*v0z/g;

tplot=linspace(0,t,100);

z=v0z*tplot-0.5*g*tplot.^2;

y=v0y*tplot;

x=x0+vx*tplot;

xnowind(1:length(y))=x0;

plot3(x,y,z,'k-',xnowind,y,z,'k--')

grid on

axis([0 6000 0 6000 0 2500])

xlabel('x (m)'); ylabel('y (m)'); zlabel('z (m)')

vz v0z gt–= z z0 v0zt
1
2
---gt2–+=

vz 0=( ) thmax
v0z

g
------=

ttot 2thmax=

x x0 vxt+= y y0 v0yt+=

Creating a time vector with 100 elements.

Calculating the x, y, and z coordinates
of the projectile at each time.

Constant x coordinate when no wind. 
Two 3-D line plots.
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Sample Problem 10-2: Electric potential of two point charges

The electric potential V around a charged particle is given by

where  is the permittivity constant, q is the magni-

tude of the charge in coulombs, and r is the distance from the particle in meters.
The electric field of two or more particles is calculated by using superposition.
For example, the electric potential at a point due to two particles is given by

where , , , and  are the charges of the particles and the distance from the
point to the corresponding particle, respectively. 

Two particles with a charge of
 C and  C are

positioned in the x y plane at points (0.25, 0,
0) and (–0.25, 0, 0), respectively, as shown.
Calculate and plot the electric potential due
to the two particles at points in the x y plane
that are located in the domain 
and  (the units in the x y plane
are meters). Make the plot such that the x y
plane is the plane of the points, and the z axis is the magnitude of the electric
potential.
Solution
The problem is solved by following these steps:
(a) A grid is created in the x y plane with the domain  and

.
(b) The distance from each grid point to each of the charges is calculated.
(c) The electric potential at each point is calculated. 
(d) The electric potential is plotted.
The following is a program in a script file that solves the problem.

eps0=8.85e-12; q1=2e-10; q2=3e-10;

k=1/(4*pi*eps0);

x=-0.2:0.01:0.2;

y=-0.2:0.01:0.2;

[X,Y]=meshgrid(x,y);

V 1
4πε0
-----------q

r
---=

ε0 8.8541878 10 12–× C
N m2
---------------=

V 1
4πε0
----------- q1

r1
-----

q2

r2
-----+⎝ ⎠

⎛ ⎞=

q1 q2 r1 r2

q1 2 10 10–×= q2 3 10 10–×=

0.2– x 0.2≤ ≤
0.2– y 0.2≤ ≤

0.2– x 0.2≤ ≤
0.2– y 0.2≤ ≤

Creating a grid in the x y plane.
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The plot generated when the program runs is:

Sample Problem 10-3: Heat conduction in a square plate

Three sides of a rectangular plate (a = 5 m, b = 4 m)
are kept at a temperature of 0 C and one side is
kept at a temperature C, as shown in the
figure. Determine and plot the temperature distri-
bution T(x, y) in the plate.

Solution
The temperature distribution, T(x, y) in the plate can be determined by solving the
two-dimensional heat equation. For the given boundary conditions T(x, y) can be
expressed analytically by a Fourier series (Erwin Kreyszig, Advanced Engineer-
ing Mathematics, John Wiley and Sons, 1993):

A program in a script file that solves the problem is listed below. The program fol-
lows these steps:

r1=sqrt((X+0.25).^2+Y.^2);

r2=sqrt((X-0.25).^2+Y.^2);

V=k*(q1./r1+q2./r2);

mesh(X,Y,V)

xlabel('x (m)'); ylabel('y (m)'); zlabel('V (V)')

Calculating the distance r1 for each grid point.
Calculating the distance r2 for each grid point.

Calculating the electric potential V at each grid point.
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(a) Create an X, Y grid in the domain  and . The length of the
plate, a, is divided into 20 segments, and the width of the plate, b, is divided
into 16 segments.

(b) Calculate the temperature at each point of the mesh. The calculations are done
point by point using a double loop. At each point the temperature is deter-
mined by adding k terms of the Fourier series.

(c) Make a surface plot of T.

The program was executed twice, first using five terms (k = 5) in the Fourier series
to calculate the temperature at each point, and then with k = 50. The mesh plots
created in each execution are shown in the figures below. The temperature should
be uniformly 80 C at y = 4 m. Note the effect of the number of terms (k) on the
accuracy at y = 4 m.

a=5; b=4; na=20; nb=16; k=5; T0=80;

clear T

x=linspace(0,a,na);

y=linspace(0,b,nb);

[X,Y]=meshgrid(x,y);

for i=1:nb

    for j=1:na

        T(i,j)=0;

        for n=1:k

            ns=2*n-1;

      T(i,j)=T(i,j)+sin(ns*pi*X(i,j)/a).*sinh(ns*pi*Y(i,j)/
a)/(sinh(ns*pi*b/a)*ns);

        end

        T(i,j) = T(i,j)*4*T0/pi;

    end

end

mesh(X,Y,T)

xlabel('x (m)'); ylabel('y (m)'); zlabel('T ( ^oC)')

0 x a≤ ≤ 0 y b≤ ≤

Creating a grid in the x y plane.
First loop, i, is the index of the grid’s row.

Second loop, j, is the index of the grid’s column.

Third loop, n, is the nth term of the Fourier
series, k is the number of terms.

°
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10.6 PROBLEMS

1. The position of a moving particle as a function of time is given by:

             
Plot the position of the particle for .

2. An elliptical staircase that decreases in size
with height can be modeled by the paramet-
ric equations

       

where ,

a and b are the semimajor and semiminor axes of the ellipse, h is the staircase
height, and n is the number of revolutions that the staircase makes. Make a 3-
D plot of the staircase with m, m, m, and . (Cre-
ate a vector t for the domain 0 to , and use the plot3 command.)

3. The ladder of a fire truck can be ele-
vated (increase of angle φ), rotated
about the z axis (increase of angle θ),
and extended (increase of r). Initially
the ladder rests on the truck ( ,

, and m). Then the ladder
is moved to a new position by raising
the ladder at a rate of 5 deg/s, rotating
at a rate of 8 deg/s, and extending the ladder at a rate of 0.6 m/s. Determine
and plot the position of the tip of the ladder for 10 seconds.

k = 50k = 5

x 4 0.1t–( ) 0.8t( )sin= y 4 0.1t–( ) 0.8t( )cos= z 0.4t 3 2⁄( )=

0 t 30≤ ≤

−20
0

20

−10

0

10
0

10

20

x (m)y (m)

z 
(m

)

x r t( )cos= y r t( )sin= z ht
2πn
----------=

r ab
b t( )cos[ ]2 a t( )sin[ ]2+

-------------------------------------------------------------e 0.04 t–=

a 20= b 10= h 18= n 5=
2πn

φ 0=

θ 0= r 8=
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4. Make a 3-D surface plot of the function  in the domain

 and .

5. Make a 3-D surface plot of the function  in the domain
 and .

6. Make a 3-D mesh plot of the function , where  in the

domain  and .

7. Make a 3-D surface plot of the function  in the
domain  and .

8. An anti-symmetric cross-ply composite
laminate has two layers in which the fibers
are aligned perpendicular to one another. A
laminate of this type will deform into a sad-
dle shape due to residual thermal stresses as
described by the equation

where x and y are the in-plane coordinates,
w is the out-of-plane deflection, and k is the
curvature (a complicated function of material properties and geometry). Make
a surface plot showing the deflection of a six-inch square plate (  in.,

in.), assuming in–1.

9. The van der Waals equation gives a relationship between the pressure p (atm),
volume V, (L), and temperature T (K) for a real gas:

where n is the number of moles, (L atm)/(mol K) is the gas con-
stant, and a (L2 atm/mol2), and b (L/mol) are material constants.

Consider 1.5 moles of nitrogen ( L2 atm/mol2,  L/
mol). Make a 3-D plot that shows the variation of pressure (dependent vari-
able, z axis) with volume (independent variable, x axis) and temperature (inde-
pendent variable, y axis). The domains for the volume and temperature are

L and K.

z x2

3
----- 2 3y( )sin+=

3– x 3≤ ≤ 3– y 3≤ ≤

z 0.5 x y 0.5+=
2– x 2≤ ≤ 2– y 2≤ ≤

z Rsin
R

-----------= R x2 y2+=

10– x 10≤ ≤ 10– y 10≤ ≤

z xy( )cos x2 y2+( )cos=

π– x π≤ ≤ π– y π≤ ≤

w k x2 y2–( )=

3– x 3≤ ≤
3– y 3≤ ≤ k 0.01=

P nRT
V b–
------------ n2a

V2
--------–=

R 0.08206=

a 1.39= b 0.03913=

0.3 V 1.2≤ ≤ 273 T 473≤ ≤
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10. Molecules of a gas in a container are moving around at different speeds. Max-
well’s speed distribution law gives the probability distribution  as a func-
tion of temperature and speed:

where M is the molar mass of the gas in kg/mol, J/(mol K), is the gas
constant, T is the temperature in kelvins, and v is the molecule’s speed in   m/s.

Make a 3-D plot of  as a function of v and T for m/s and
K for oxygen (molar mass 0.032 kg/mol).

11. The wind chill temperature, , is the air temperature felt on exposed skin
due to wind. In U.S. customary units it is calculated by:

where T is the temperature in degrees F, and v is the wind speed in mi/h.
Make a 3-D plot of  as a function of v and T for mi/h and

F.

12. The flow Q (m3/s) in a rectangular channel is given by the Manning’s equa-
tion:

where d is the depth of water (m), w is the width of the channel (m), S is the
slope of the channel (m/m), n is the roughness coefficient of the channel
walls, and k is a conversion constant (equal to 1 when the units above are
used). Make a 3-D plot of Q (z axis) as a function of w (x axis) for m,
and a function of d (y-axis) for m. Assume  and

m/m.

13. An RLC circuit with an alternating
voltage source is shown. The source
voltage  is given by

, where ,
in which  is the driving frequency.
The amplitude of the current, I, in this
circuit is given by

where R and C are the resistance of the resistor and capacitance of the
capacitor, respectively. For the circuit in the figure F,

P v( )

P v( ) 4π M
2πRT
--------------⎝ ⎠
⎛ ⎞

3 2⁄
v2e Mv2–( ) 2RT( )⁄=

R 8.31=

P v( ) 0 v 1000≤ ≤
70 T 320≤ ≤

Twc

Twc 35.74 0.6215T 35.75v0.16– 0.4275T v0.16+ +=

Twc 0 v 70≤ ≤
0 T 50≤ ≤

Q kdw
n

---------- wd
w 2d+
----------------⎝ ⎠
⎛ ⎞

2 3⁄
S=

0 w 8≤ ≤
0 d 4≤ ≤ n 0.05=

S 0.001=

vs
vs vm ωdt( )sin= ωd 2πfd=

fd

I
vm

R2 ωdL 1 ωdC( )⁄–( )2+
--------------------------------------------------------------=

C 15 10× 6–=
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H, and V.
a) Make a 3-D plot of I (z axis) as a function of  (x axis) for

Hz, and as a function of R (y axis) for Ω.
b) Make a plot that is a projection on the x z plane. Estimate from this plot

the natural frequency of the circuit (the frequency at which I is maxi-
mum). Compare the estimate with the calculated value of .

14. A defect in a crystal lattice where a row of atoms is missing is called an edge
dislocation. The stress field around an edge dislocation is given by:

where G is the shear modulus, b is the Burgers vector, and ν is Poisson’s ratio.
Plot the stress components (each in a separate figure) due to an edge disloca-
tion in aluminum, for which  Pa, m, and

. Plot the stresses in the domain m and
m. Plot the coordinates x and y in the horizontal plane,

and the stresses in the vertical direction.

15. The current I flowing through a semiconductor
diode is given by

where A is the saturation current,

 C is the elementary charge value,  J/K is Bolt-
zmann’s constant,  is the voltage drop across the diode, and T is the tem-
perature in kelvins. Make a 3-D plot of I (z axis) versus  (x axis) for

, and versus T (y axis) for K.

16. The equation for the streamlines for uniform flow over a cylinder is

where  is the stream function. For example, if , then . Since the

L 240 10× 3–= vm 24=

ωd
60 f 110≤ ≤ 10 R 40≤ ≤

1 2π LC( )⁄

σxx
Gb–

2π 1 ν–( )
------------------------ y 3x2 y2+( )

x2 y2+( )
2

---------------------------=

σyy
Gb

2π 1 ν–( )
------------------------ y x2 y2–( )

x2 y2+( )
2

-----------------------=

τxy
Gb

2π 1 ν–( )
------------------------ x x2 y2–( )

x2 y2+( )
2

-----------------------=

G 27.7 109×= b 0.286 10× 9–=

ν 0.334= 5 10 9–×– x 5 10 9–×≤ ≤

5 10 9–×– y 1– 10 9–×≤ ≤

D

vDI
I IS e

qvD
kT

---------
1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

IS 10 12–=

q 1.6 10 19–×= k 1.38 10 23–×=
vD

vD

0 vD 0.4≤ ≤ 290 T 320≤ ≤

ψ x y,( ) y y
x2 y2+
----------------–=

ψ ψ 0= y 0=
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equation is satisfied for all x, the x axis is the zero ( ) streamline.
Observe that the collection of points where  is also a streamline.
Thus, the stream function above is for a cylinder of radius 1. Make a 2-D con-
tour plot of the streamlines around a cylinder with 1 in. radius. Set up the
domain for x and y to range between –3 and 3. Use 100 for the number of con-
tour levels. Add to the figure a plot of a circle with a radius of 1. Note that
MATLAB also plots streamlines inside the cylinder. This is a mathematical
artifact.

17. The deflection w of a clamped circular membrane of radius  subjected to
pressure P is given by (small deformation theory)

where r is the radial coordinate, and , where E, t, and  are the

elastic modulus, thickness, and Poisson’s ratio of the membrane, respectively.
Consider a membrane with psi, in., psi,

in., and . Make a surface plot of the membrane.

18. The Verhulst model, given in the following equation, describes the growth of
a population that is limited by various factors such as overcrowding and lack
of resources:

 

where  is the number of individuals in the population,  is the initial
population size,  is the maximum population size possible due to the vari-
ous limiting factors, and r is a rate constant. Make a surface plot of  ver-
sus t and  assuming s–1, and . Let t vary between 0 and 100
and  between 100 and 1,000.

19. The geometry of a ship hull (Wigley
hull) can be modeled by the equation

where x, y, and z are the length, width,
and height, respectively. Use MAT-
LAB to make a 3-D figure of the hull
as shown. Use , ,

, , and .

ψ 0=

x2 y2+ 1=

rd
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Prd

4

64K
---------- 1 r
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K Et3

12 1 υ2–( )
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20. The stresses fields near a crack tip of a
linear elastic isotropic material for mode I
loading are given by:

For ksi  plot the stresses (each in a separate figure) in the domain
 and in. Plot the coordinates x and y in the horizontal

plane, and the stresses in the vertical direction. 

21. A ball thrown up falls back to the floor and
bounces many times. For a ball thrown up
in the direction shown in the figure, the
position of the ball as a function of time is
given by:

       

The velocities in the x and y directions are
constants throughout the motion and are
given by  and

. In the vertical z direc-
tion the initial velocity is ,
and when the ball impacts the floor its
rebound velocity is 0.8 of the vertical
velocity at the start of the previous bounce.
The time between bounces is given by

, where  is the vertical com-
ponent of the velocity at the start of the
bounce. Make a 3-D plot (shown in the figure) that shows the trajectory of the
ball during the first five bounces. Take m/s, , , and

m/s2.
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Chapter 11                
Symbolic Math 

All of the mathematical operations done with MATLAB in the first 10 chapters
were numerical. The operations were carried out by writing numerical expressions
that could contain numbers and variables with preassigned numerical values.
When a numerical expression is executed by MATLAB, the outcome is also
numerical (a single number or an array with numbers). The number, or numbers,
are either exact or a floating point–approximated value. For example, typing 1/4
gives 0.2500—an exact value, and typing 1/3 gives 0.3333—an approximated
value.

Many applications in math, science, and engineering require symbolic oper-
ations, which are mathematical operations with expressions that contain symbolic
variables (variables that don’t have specific numerical values when the operation
is executed). The result of such operations is also a mathematical expression in
terms of the symbolic variables. One simple example involves solving an alge-
braic equation that contains several variables and solving for one variable in terms
of the others. If a, b, and x are symbolic variables, and , x can be solved
in terms of a and b to give . Other examples of symbolic operations are
analytical differentiation or integration of mathematical expressions. For instance,
the derivative of  with respect to t is .

MATLAB has the capability of carrying out many types of symbolic opera-
tions. The numerical part of the symbolic operation is carried out by MATLAB
exactly, with no approximation of numerical values. For example, the result of

adding  and  is  and not 0.5833x.

Symbolic operations can be performed by MATLAB once the Symbolic
Math Toolbox is installed. The Symbolic Math Toolbox is a collection of MAT-
LAB functions that are used for execution of symbolic operations. The commands
and functions for the symbolic operations have the same style and syntax as those
for the numerical operations. The symbolic operations themselves are executed
primarily by MuPad®, which is mathematical software designed for this purpose.
The MuPad software is embedded within MATLAB and is automatically activated
when a symbolic MATLAB function is executed. MuPad can also be used as sep-
arate independent software. That software uses the MuPAD language, which has a

ax b– 0=
x b a⁄=

2t3 5t 8–+ 6t2 5+

x
4
--- x

3
--- 7

12
------x
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completely different structure and commands than MATLAB. The Symbolic Math
Toolbox is included in the student version of MATLAB. In the standard version,
the toolbox is purchased separately. To check if the Symbolic Math Toolbox is
installed on a computer, the user can type the command ver in the Command
Window. In response, MATLAB displays information about the version that is
used as well as a list of the toolboxes that are installed.   

The starting point for symbolic operations is symbolic objects. Symbolic
objects are made of variables and numbers that, when used in mathematical
expressions, tell MATLAB to execute the expression symbolically. Typically, the
user first defines (creates) the symbolic variables (objects) that are needed, and
then uses them to create symbolic expressions that are subsequently used in sym-
bolic operations. If needed, symbolic expressions can be used in numerical opera-
tions

The first section in this chapter describes how to define symbolic objects
and how to use them to create symbolic expressions. The second section shows
how to change the form of existing expressions. Once a symbolic expression has
been created, it can be used in mathematical operations. MATLAB has a large
selection of functions for this purpose. The next four sections (11.3–11.6) describe
how to use MATLAB to solve algebraic equations, to carry out differentiation and
integration, and to solve differential equations. Section 11.7 covers plotting sym-
bolic expressions. How to use symbolic expressions in subsequent numerical cal-
culations is explained in the following section.

11.1 SYMBOLIC OBJECTS AND SYMBOLIC EXPRESSIONS

A symbolic object can be a variable (without a preassigned numerical value), a
number, or an expression made of symbolic variables and numbers. A symbolic
expression is a mathematical expression containing one or more symbolic objects.
When typed, a symbolic expression may look like a standard numerical expres-
sion. However, because the expression contains symbolic objects, it is executed
by MATLAB symbolically.

11.1.1 Creating Symbolic Objects

Symbolic objects can be variables or numbers. They can be created with the sym
and/or syms commands. A single symbolic object can be created with the sym
command:

where the string, which is the symbolic object, is assigned to a name. The string
can be:
• A single letter or a combination of several letters (no spaces). Examples: ‘a’,

‘x’, ‘yad’.

object_name = sym(‘string’)
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• A combination of letters and digits starting with a letter and with no spaces
Examples: ‘xh12’,‘r2d2’.

• A number. Examples: ‘15’, ‘4’.

In the first two cases (where the string is a single letter, a combination of several
letters, or a combination of letters and digits), the symbolic object is a symbolic
variable. In this case it is convenient (but not necessary) to give the object the
same name as the string. For example, a, bb, and x, can be defined as symbolic
variables as follows:

The name of the symbolic object can be different from the name of the variable.
For example:

As mentioned, symbolic objects can also be numbers. The numbers don’t
have to be typed as strings. For example, the sym command is used next to create
symbolic objects from the numbers 5 and 7 and assign them to the variables c and
d, respectively.

As shown, when a symbolic object is created and a semicolon is not typed at the
end of the command, MATLAB displays the name of the object and the object
itself in the next two lines. The display of symbolic objects starts at the beginning
of the line and is not indented as is the display of numerical variables. The differ-
ence is illustrated below, where a numerical variable is created.

>> a=sym('a')

a =
a

>> bb=sym('bb')

bb =
bb

>> x=sym('x');
>>

>> g=sym('gamma')

g =
gamma

>> c=sym(5)

c =
5

>> d=sym(7)

d =
7

Create a symbolic object a and assign it to a.

The display of a symbolic
object is not indented.

The symbolic variable x is created but not displayed,
since a semicolon is typed at the end of the command.

The symbolic object is gamma, and
the name of the object is g.

Create a symbolic object from the number 5 and assign it to c.

The display of a symbolic
object is not indented.
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Several symbolic variables can be created in one command by using the
syms command, which has the form:

The command creates symbolic objects that have the same names as the symbolic
variables. For example, the variables y, z, and d can all be created as symbolic
variables in one command by typing:

When the syms command is executed, the variables it creates are not displayed
automatically—even if a semicolon is not typed at the end of the command.

11.1.2 Creating Symbolic Expressions

Symbolic expressions are mathematical expressions written in terms of symbolic
variables. Once symbolic variables are created, they can be used for creating sym-
bolic expressions. The symbolic expression is a symbolic object (the display is not
indented). The form for creating a symbolic expression is:

A few examples are: 

When a symbolic expression, which includes mathematical operations that can be
executed (addition, subtraction, multiplication, and division), is entered, MAT-
LAB executes the operations as the expression is created. For example:

>> e=13

e =
    13

>> syms y z d

>> y
y =
y

>> syms a b c x y

>> f=a*x^2+b*x + c

f =
a*x^2 + b*x + c

>> g=2*a/3+4*a/7-6.5*x+x/3+4*5/3-1.5

The display of the value of a
numerical variable is indented.

13 is assigned to e (numerical variable).

syms variable_name variable_name variable_name

The variables created by the syms command are
not displayed automatically. Typing the name of
the variable shows that the variable was created.

Expression_name = Mathematical expression

Define a, b, c, x, and y as symbolic variables.

Create the symbolic expression
 and assign it to f.ax2 bx c+ +

The display of the symbolic expression is not indented.

is entered.

2a
3

------ 4a
7

------ 6.5x– x
3
--- 4 5

3
---⋅ 1.5–+ + +
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Notice that all the calculations are carried out exactly, with no numerical approxi-

mation. In the last example,  and  were added by MATLAB to give ,

and  was added to . The operations with the terms that contain only

numbers in the symbolic expression are carried out exactly. In the last example,

 is replaced by .

The difference between exact and approximate calculations is demonstrated
in the following example, where the same mathematical operations are carried
out—once with symbolic variables and once with numerical variables.

An expression that is created can include both symbolic objects and numer-
ical variables. However, if an expression includes a symbolic object (or several),
all the mathematical operations will be carried out exactly. For example, if c is
replaced by a in the last expression, the result is exact, as it was in the first exam-
ple.         

Additional facts about symbolic expressions and symbolic objects:

• Symbolic expressions can include numerical variables that have been obtained
from the execution of numerical expressions. When these variables are inserted
in symbolic expressions their exact value is used, even if the variable was dis-
played before with an approximated value. For example:

g =
(26*a)/21 - (37*x)/6 + 31/6

>> a=sym(3); b=sym(5);

>> e=b/a+sqrt(2)

e =
2^(1/2) + 5/3

>> c=3; d=5;

>> f=d/c+sqrt(2)

f =
    3.0809

>> g=d/a+sqrt(2)

g =
2^(1/2) + 5/3

>> h=10/3

 is displayed.26a
21

--------- 37x
6

---------– 31
6

------+

2a
3

------ 4a
7

------ 26a
21

---------

6.5x– x
3
---+

37x
6

---------

4 5
3
--- 1.5+⋅ 31

6
------

Define a and b as symbolic 3 and 5, respectively.
Create an expression that includes a and b.

An exact value of e is displayed as a symbolic
object (the display is not indented). 

Define c and d as numerical 3 and 5, respectively.
Create an expression that includes c and d.

An approximated value of f is displayed
as a number (the display is indented). 

h is defined to be 10/3 (a numerical variable).
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• The double(S) command can be used to convert a symbolic expression
(object) S that is written in an exact form to numerical form. (The name “dou-
ble” comes from the fact that the command returns a double-precision floating-
point number representing the value of S.) Two examples are shown. In the
first, the p from the last example is converted into numerical form. In the sec-
ond, a symbolic object is created and then converted into numerical form.   

• A symbolic object that is created can also be a symbolic expression written in
terms of variables that were not first created as symbolic objects. For example,
the quadratic expression  can be created as a symbolic object
named f by using the sym command:

It is important to understand that in this case, the variables a, b, c, and x included
in the object do not exist individually as independent symbolic objects (the whole
expression is one object). This means that it is impossible to perform symbolic
math operations associated with the individual variables in the object. For exam-
ple, it will not be possible to differentiate f with respect to x. This is different
from the way in which the quadratic expression was created in the first example in
this section, where the individual variables are first created as symbolic objects
and then used in the quadratic expression.

h =
    3.3333

>> k=sym(5); m=sym(7);

>> p=k/m+h

p =
85/21

>> pN=double(p)

pN =
    4.0476

>> y=sym(10)*cos(5*pi/6)

y =
-5*3^(1/2)

>> yN=double(y)

yN =
   -8.6603

>> f=sym('a*x^2+b*x+c')

f =
a*x^2 + b*x +c

An approximated value of h (numerical variable) is displayed. 

Define k and m as symbolic 5 and 7, respectively.
h, k, and m are used in an expression. 

The exact value of h is used in the determination of p.
An exact value of p (symbolic object) is displayed. 

p is converted to numerical form (assigned to pN).

Create a symbolic expression y.

Exact value of y is displayed.

y is converted to numerical form (assigned to yN).

ax2 bx c+ +
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• Existing symbolic expressions can be used to create new symbolic expressions.
This is done by simply using the name of the existing expression in the new
expression. For example:

11.1.3 The findsym Command and the Default Symbolic Variable

The findsym command can be used to find which symbolic variables are
present in an existing symbolic expression. The format of the command is:

The findsym(S)command displays the names of all the symbolic variables
(separated by commas) that are in the expression S in alphabetical order. The
findsym(S,n)command displays n symbolic variables that are in expression
S in the default order. For one-letter symbolic variables, the default order starts
with x, and followed by letters, according to their closeness to x. If there are two
letters equally close to x, the letter that is after x in alphabetical order is first (y
before w, and z before v). The default symbolic variable in a symbolic expression
is the first variable in the default order. The default symbolic variable in an
expression S can be identified by typing findsym(S,1). Examples:

>> syms x y

>> SA=x+y, SB=x-y

SA =
x+y
SB =
x-y

>> F=SA^2/SB^3+x^2

F =
(x+y)^2/(x-y)^3+x^2

>> syms x h w y d t

>> S=h*x^2+d*y^2+t*w^2

S =
t*w^2 + h*x^2 + d*y^2

>> findsym(S)

ans =
d, h, t, w, x, y

>> findsym(S,5)

ans =
x,y,w,t,h

Define x and y as symbolic variables.
Create two symbolic expressions SA and SB. 

SA x y+=

SB x y–=

Create a new symbolic expression F using SA and SB.

F SA2( ) SB3( )⁄ x2+ x y+( )2

x y–( )3
------------------ x2+= =

findsym(S) findsym(S,n)or

Define x, h, w, y, d, and t as symbolic variables.
Create a symbolic expression S.

Use the findsym(S) command.
The symbolic variables are displayed in alphabetical order.

Use the findsym(S,n) command (n = 5).

Five symbolic variables are displayed in the default order.
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11.2 CHANGING THE FORM OF AN EXISTING SYMBOLIC EXPRESSION

Symbolic expressions are either created by the user or by MATLAB as the result
of symbolic operations. The expressions created by MATLAB might not be in the
simplest form or in a form that the user prefers. The form of an existing symbolic
expression can be changed by collecting terms with the same power, by expanding
products, by factoring out common multipliers, by using mathematical and trigo-
nometric identities, and by many other operations. The following subsections
describe several of the commands that can be used to change the form of an exist-
ing symbolic expression.

11.2.1 The collect, expand, and factor Commands

The collect, expand, and factor commands can be used to perform the
mathematical operations that are implied by their names.
The collect command:

The collect command collects the terms in the expression that have the vari-
able with the same power. In the new expression, the terms will be ordered in
decreasing order of power. The command has the forms

where S is the expression. The collect(S) form works best when an expres-
sion has only one symbolic variable. If an expression has more than one variable,
MATLAB will collect the terms of one variable first, then those of a second vari-
able, and so on. The order of the variables is determined by MATLAB. The user
can specify the first variable by using the collect(S, variable_name)
form of the command. Examples:

>> findsym(S,1)

ans =
x

>> syms x y

>> S=(x^2+x-exp(x))*(x+3)
S =
(x + 3)*(x - exp(x) + x^2)

>> F = collect(S)

F =
x^3+4*x^2+(3-exp(x))*x-3*exp(x)

>> T=(2*x^2+y^2)*(x+y^2+3)
T =
(2*x^2+y^2)*(y^2+x+3)

Use the findsym(S,n) command with n = 1.

The default symbolic variable is displayed.

collect(S) collect(S, variable_name)

Define x and y as symbolic variables.

Create the symbolic expression 
and assign it to S.x 3+( ) x ex– x2+( )

Use the collect command.

MATLAB returns the expression:
.x3 4x2 3 ex––( )x 3ex–+ +

Create the symbolic expression T 
.2x2 y2+( ) y2 x 3+ +( )
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Note that when collect(T)is used, the reformatted expression is written in
order of decreasing powers of x, but when collect(T,y)is used, the reformat-
ted expression is written in order of decreasing powers of y.
The expand command:

The expand command expands expressions in two ways. It carries out products
of terms that include summation (used with at least one of the terms), and it uses
trigonometric identities and exponential and logarithmic laws to expand corre-
sponding terms that include summation. The form of the command is:

where S is the symbolic expression. Two examples are:

The factor command:

The factor command changes an expression that is a polynomial to a product of
polynomials of a lower degree. The form of the command is:

where S is the symbolic expression. An example is:

>> G=collect(T)

G =
2*x^3+(2*y^2+6)*x^2+y^2*x+y^2*(y^2+3)

>> H=collect(T,y)

H =
y^4+(2*x^2+x+3)*y^2+2*x^2*(x+3)

>> syms a x y

>> S=(x+5)*(x-a)*(x+4)
S =
-(a-x)*(x+4)*(x+5)

>> T=expand(S)

T =
20*x-20*a-9*a*x-a*x^2+9*x^2+x^3

>> expand(sin(x-y))

ans =
cos(y)*sin(x)-cos(x)*sin(y)

>> syms x

Use the collect(T)command.

MATLAB returns the expression .2x3 2y2 6+( )x2 y2x y2 y2 3+( )+ + +

Use the collect(T,y)command.

MATLAB returns the expression
.y4 2x2 x 3+ +( )y2 2x2 x 3+( )+ +

expand(S)

Define a, x, and y as symbolic variables.

Create the symbolic expression 
 and assign it to S.a x–( ) x 4+( ) x 5+( )–

Use the expand command.
MATLAB returns the expression

.20x 20a– 9ax– ax2– 9x2 x3+ +

Use the expand command to expand .x y–( )sin

MATLAB uses trig identity for the expansion.

factor(S)

Define x as a symbolic variable.
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11.2.2 The simplify and simple Commands

The simplify and simple commands are both general tools for simplifying
the form of an expression. The simplify command uses built-in simplification
rules to generate a simpler form of the expression than the original. The simple
command is programmed to generate a form of the expression with the least num-
ber of characters. Although there is no guarantee that the form with the least num-
ber of characters is the simplest, in actuality this is often the case.
The simplify command:

The simplify command uses mathematical operations (addition,
multiplication, rules of fractions, powers, logarithms, etc.) and functional and
trigonometric identities to generate a simpler form of the expression. The format
of the simplify command is:

Two examples are:

>> S=x^3+4*x^2-11*x-30
S =
x^3+4*x^2-11*x-30

>> factor(S)

ans =
(x+5)*(x-3)*(x+2)

>> syms x y

>> S=(x^2+5*x+6)/(x+2)

S =
(x^2+5*x+6)/(x+2)

>> SA = simplify(S)

SA =
x+3

>> simplify((x+y)/(1/x+1/y))

ans =
x*y

Create the symbolic expression 
 and assign it to S.x3 4x2 11x– 30–+

Use the factor command.
MATLAB returns the expression

.x 5+( ) x 3–( ) x 2+( )

simplify(S)

where either S is the name of the 
existing expression to be simplified,

an expression to be simplified 
can be typed in for S.

or

Define x and y as symbolic variables.

Create the symbolic expression 
, and assign it to S.x2 5x 6+ +( ) x 2+( )⁄

Use the simplify command to simplify S.
MATLAB simplifies the expres-
sion to .x 3+

Simplify .x y+( ) 1
x
--- 1

y
---+⎝ ⎠

⎛ ⎞⁄

MATLAB simplifies the expression to ).xy
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The simple command:

The simple command finds the form of the expression with the fewest number
of characters. In many cases this form is also the simplest. When the command is
executed, MATLAB creates several forms of the expression by applying the
collect, expand, factor, and simplify commands, and other simplifica-
tion functions that are not covered here. Then MATLAB returns the expression
with the shortest form. The simple command has the following three forms:

The difference between the forms is in the output. The use of two of the forms is
shown next.

The use of the simple(S)form of the command is not demonstrated because the
display of the output is lengthy. MATLAB displays 10 different tries and assigns
the shortest form to ans. The reader should try to execute the command and
examine the output display.

11.2.3 The pretty Command

The pretty command displays a symbolic expression in a format resembling
the mathematical format in which expressions are generally typed. The command
has the form

>> syms x

>> S=(x^3-4*x^2+16*x)/(x^3+64)

S =
(x^3-4*x^2+16*x)/(x^3+64)

>> F = simple(S)

F =
x/(x+4)

>> [G how] = simple(S)

G =
x/(x+4)

how =
simplify

F = simple(S)

The shortest 
form of S is 
assigned to F.

The shortest form of S is 
assigned to F. The name 
(string) of the simplification 
method is assigned to how.

All the simplification trails
are displayed. The shortest
is assigned to ans.

[F how] = simple(S)simple(S)

Define x as a symbolic variable.
Create the symbolic expression 

, and assign it to S.x3 4x2– 16x+
x3 64+

----------------------------------

Use the F = simple(S) command to simplify S.

The simplest form of S, , is assigned to F.x x 4+( )⁄

Use the [G how] = simple(S) command.

The simplest form of S, , is assigned to G.x x 4+( )⁄

The word “simplify” is assigned to G, which means that the
shortest form was obtained using the simplify command.

pretty(S)
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Example:

11.3 SOLVING ALGEBRAIC EQUATIONS

A single algebraic equation can be solved for one variable, and a system of equa-
tions can be solved for several variables with the solve function. 
Solving a single equation:

An algebraic equation can have one or several symbolic variables. If the equation
has one variable, the solution is numerical. If the equation has several symbolic
variables, a solution can be obtained for any of the variables in terms of the others.
The solution is obtained by using the solve command, which has the form

• The argument eq can be the name of a previously created symbolic expression,
or an expression that is typed in. When a previously created symbolic expres-
sion S is entered for eq, or when an expression that does not contain the = sign
is typed in for eq, MATLAB solves the equation eq = 0.

• An equation of the form  can be solved by typing the equation
(including the = sign) as a string for eq.

• If the equation to be solved has more than one variable, the solve(eq) com-
mand solves for the default symbolic variable (see Section 11.1.3). A solution
for any of the variables can be obtained with the solve(eq,var) command
by typing the variable name for var.

• If the user types solve(eq), the solution is assigned to the variable ans.

• If the equation has more than one solution, the output h is a symbolic column
vector with a solution at each element. The elements of the vector are symbolic
objects. When an array of symbolic objects is displayed, each row is enclosed
with square brackets (see the following examples).

>> syms a b c x

>> S=sqrt(a*x^2 + b*x + c)

S =
(a*x^2+b*x+c)^(1/2)

>> pretty(S)

                  2          1/2
              (a x  + b x + c)

Define a, b, c, and x as symbolic variables.
Create the symbolic expression 

, and assign it to S.ax2 bx c+ +

The pretty command displays 
the expression in a math format.

h = solve(eq) h = solve(eq,var)or

f x( ) g x( )=
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The following examples illustrate the use of the solve command.

• It is also possible to use the solve command by typing the equation to be
solved as a string, without having the variables in the equation first created as
symbolic objects. However, if the solution contains variables (when the equa-
tion has more than one variable), the variables do not exist as independent
symbolic objects. For example:

>> syms a b x y z

>> h=solve(exp(2*z)-5)

h =
log(5)/2

>> S=x^2-x-6
S =
x^2-x-6

>> k=solve(S)

k =
 -2
  3

>> solve('cos(2*y)+3*sin(y)=2')

ans =
     pi/2
     pi/6
 (5*pi)/6

>> T= a*x^2+5*b*x+20
T =
a*x^2+5*b*x+20

>> solve(T)

ans =
 -(5*b+5^(1/2)*(5*b^2-16*a)^(1/2))/(2*a)
 -(5*b-5^(1/2)*(5*b^2-16*a)^(1/2))/(2*a)

>> M = solve(T,a)

M =
-(5*b*x+20)/x^2

>> ts=solve('4*t*h^2+20*t-5*g')

ts =
(5*g)/(4*h^2+20)

Define a, b, x, y, and z as symbolic variables.

Use the solve command to solve .e2z 5– 0=

The solution is assigned to h.

Create the symbolic expression 
, and assign it to S.x2 x– 6–

Use the solve(S)command to solve .x2 x– 6– 0=

The equation has two solutions. They are assigned to 
k, which is a column vector with symbolic objects.

Use the solve command to 
solve . 
(The equation is typed as a string 
in the command.)

2y( )cos 3 y( )sin+ 2=

The solution is assigned to ans.

Create the symbolic expression 
, and assign it to T.ax2 5bx 20+ +

Use the solve(S)command to solve .T 0=

The equation  
is solved for the vari-
able x, which is the 
default variable.

T 0=

Use the solve(eq,var)command to solve .T 0=

The equation  is solved for the variable a.T 0=

The expression 
 is typed in 

the solve command. 
4th2 20t 5g–+

The variables t, h, and g were not created as symbolic variables 
before the expression was typed in the solve command. 

MATLAB solves the equation  for t.4th2 20t 5g–+ 0=
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The equation can also be solved for a different variable. For example, a solu-
tion for g is obtained by:

Solving a system of equations:

The solve command can also be used for solving a system of equations. If the
number of equations and the number of variables are the same, the solution is
numerical. If the number of variables is greater than the number of equations, the
solution is symbolic for the desired variables in terms of the other variables. A
system of equations (depending on the type of equations) can have one or several
solutions. If the system has one solution, each of the variables for which the sys-
tem is solved has one numerical value (or expression). If the system has more than
one solution, each of the variables can have several values.

The format of the solve command for solving a system of n equations is:

• The arguments eq1,eq2,...,eqn are the equations to be solved. Each
argument can be a name of a previously created symbolic expression, or an
expression that is typed in as a string. When a previously created symbolic
expression S is entered, the equation is S = 0. When a string that does not con-
tain the = sign is typed in, the equation is expression = 0. An equation that
contains the = sign must be typed as a string.

• In the first format, if the number of equations n is equal to the number of vari-
ables in the equations, MATLAB gives a numerical solution for all the vari-
ables. If the number of variables is greater than the number of equations n,
MATLAB gives a solution for n variables in terms of the rest of the variables.
The variables for which solutions are obtained are chosen by MATLAB
according to the default order (Section 11.1.3).

• When the number of variables is greater than the number of equations n, the
user can select the variables for which the system is solved. This is done by
using the second format of the solve command and entering the names of the
variables var1,var2,...,varn.

The output from the solve command, which is the solution of the sys-
tem, can have two different forms. One is a cell array and the other is a structure.
A cell array is an array in which each of the elements can be an array. A structure

>> gs=solve('4*t*h^2+20*t-5*g','g')

gs =
(4*t*h^2)/5 + 4*t

output = solve(eq1,eq2,....,eqn)

output = solve(eq1,eq2,...,eqn,var1,var2,...,varn)
or
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is an array in which the elements (called fields) are addressed by textual field des-
ignators. The fields of a structure can be arrays of different sizes and types. Cell
arrays and structures are not presented in detail in this book, but a short explana-
tion is given below so that the reader will be able to use them with the solve
command.

When a cell array is used in the output of the solve command, the com-
mand has the following form (in the case of a system of three equations):

[varA, varB, varC] = solve(eq1,eq2,eq3)

• Once the command is executed, the solution is assigned to the variables varA,
varB, and varC, and the variables are displayed with their assigned solution.
Each of the variables will have one or several values (in a column vector)
depending on whether the system of equations has one or several solutions.

• The user can select any names for varA, varB, and varC. MATLAB assigns
the solution for the variables in the equations in alphabetical order. For exam-
ple, if the variables for which the equations are solved are x, u, and t, the solu-
tion for t is assigned to varA, the solution for u is assigned to varB, and the
solution for x is assigned to varC.

The following examples show how the solve command is used for the
case where a cell array is used in the output:

In the example above, notice that the system of two equations is solved by MAT-
LAB for x and y in terms of t, since x and y are the first two variables in the default
order. The system, however, can be solved for different variables. As an example,
the system is solved next for y and t in terms of x (using the second form of the
solve command:

>> syms x y t

>> S=10*x+12*y+16*t;

>> [xt yt]=solve(S, '5*x-y=13*t')

xt =
2*t
yt =
-3*t

>> [tx yx]=solve(S,'5*x-y=13*t',y,t)

tx =
x/2
yx =
-(3*x)/2

Define x, y, and t as symbolic variables.
Assign to S the expression .10x 12y 16t+ +

Use the solve command to solve 
the system: 
                  

10x 12y 16t+ + 0=
5x y– 13t=

Output in a cell array with two cells named xt and yt.
The solutions for x and y are assigned to xt and yt, respectively.

The variables for which the system
is solved (y and t) are entered.

The solutions for the variables for which the system is
solved are assigned in alphabetical order. The first cell has
the solution for t, and the second cell has the solution for y.
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When a structure is used in the output of the solve command, the command has
the form (in the case of a system of three equations)

AN = solve(eq1,eq2,eq3)

• AN is the name of the structure.

• Once the command is executed the solution is assigned to AN. MATLAB dis-
plays the name of the structure and the names of the fields of the structure,
which are the names of the variables for which the equations are solved. The
size and the type of each field is displayed next to the field name. The content
of each field, which is the solution for the variable, is not displayed.

• To display the content of a field (the solution for the variable), the user has to
type the address of the field. The form for typing the address is:
structure_name.field_name (see example below).

As an illustration the system of equations solved in the last example is solved
again using a structure for the output.

Sample Problem 11-1 shows the solution of a system of equations that has two
solutions. 

Sample Problem 11-1: Intersection of a circle and a line

The equation of a circle in the x y plane with radius R and its center at point (2, 4)
is given by . The equation of a line in the plane is given by

. Determine the coordinates of the points (as a function of R) where the

line intersects the circle.
Solution
The solution is obtained by solving the system of the two equations for x and y in
terms of R. To show the difference in the output between using cell array and

>> syms x y t

>> S=10*x+12*y+16*t;

>> AN=solve(S,'5*x-y=13*t')

AN = 
  x: [1x1 sym]
  y: [1x1 sym]

>> AN.x
ans =
2*t

>> AN.y
ans =
-3*t

Use the solve command to solve the 
system: 
             

10x 12y 16t+ + 0=
5x y– 13t=

MATLAB displays the name of the structure AN and the 
names of its fields x and y (size and type), which are the 
names of the variables for which the equations are solved.

Type the address of the field x.

The content of the field (the solution for x) is displayed.

Type the address of the field y.

The content of the field (the solution for y) is displayed.

x 2–( )2 y 4–( )2+ R2=

y x
2
--- 1+=
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structure output forms of the solve command, the system is solved twice. The
first solution has the output in a cell array:

The second solution has the output in a structure:

11.4 DIFFERENTIATION

Symbolic differentiation can be carried out by using the diff command. The
form of the command is:

• Either S can be the name of a previously created symbolic expression, or an
expression can be typed in for S.

• In the diff(S) command, if the expression contains one symbolic variable,
the differentiation is carried out with respect to that variable. If the expression

>> syms x y R

>> [xc,yc]=solve('(x-2)^2+(y-4)^2=R^2','y=x/2+1')

xc =
((4*R^2)/5 - 64/25)^(1/2) + 14/5
 14/5 - ((4*R^2)/5 - 64/25)^(1/2)
yc =
((4*R^2)/5 - 64/25)^(1/2)/2 + 12/5
 12/5 - ((4*R^2)/5 - 64/25)^(1/2)/2

>> COORD=solve('(x-2)^2+(y-4)^2=R^2','y = x/2+1')

COORD = 
    x: [2x1 sym]
    y: [2x1 sym]

>> COORD.x
ans =
((4*R^2)/5 - 64/25)^(1/2) + 14/5
14/5 - ((4*R^2)/5 - 64/25)^(1/2)

>> COORD.y
ans =
((4*R^2)/5 - 64/25)^(1/2)/2 + 12/5
12/5 - ((4*R^2)/5 - 64/25)^(1/2)/2

The two equations are typed in the solve command.

Output in a cell array.

Output in a cell array 
with two cells named xc 
and yc. Each cell con-
tains two solutions in a 
symbolic column vector.

Output in a structure.

Output in a structure named COORD that has two 
fields, x and y. Each field is a 2 by 1 symbolic vector.

Type the address of the field x.

The content of the field (the 
solution for x) is displayed.

Type the address of the field y.

The content of the field (the 
solution for y) is displayed.

diff(S) diff(S,var)or
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contains more than one variable, the differentiation is carried out with respect
to the default symbolic variable (Section 11.1.3).

• In the diff(S,var) command (which is used for differentiation of expres-
sions with several symbolic variables) the differentiation is carried out with
respect to the variable var.

• The second or higher (nth) derivative can be determined with the diff(S,n)
or diff(S,var,n) command, where n is a positive number. n = 2 for the
second derivative, n = 3 for the third, and so on.

Some examples are:

• It is also possible to use the diff command by typing the expression to be dif-
ferentiated as a string directly in the command without having the variables in
the expression first created as symbolic objects. However, the variables in the
differentiated expression do not exist as independent symbolic objects.

>> syms x y t

>> S=exp(x^4);

>> diff(S)

ans =
4*x^3*exp(x^4)

>> diff((1-4*x)^3)

ans =
-12*(1-4*x)^2

>> R=5*y^2*cos(3*t);

>> diff(R)

ans =
10*y*cos(3*t)

>> diff(R,t)

ans =
-15*y^2*sin(3*t)

>> diff(S,2)

ans =
12*x^2*exp(x^4)+16*x^6*exp(x^4)

Define x, y, and t as symbolic variables.
Assign to S the expression .ex4

Use the diff(S)command to differentiate S.

The answer  is displayed.4x3ex4

Use the diff(S)command to differentiate .1 4x–( )3

The answer  is displayed.12 1 4x–( )2–

Assign to R the expression .5y2 3t( )cos
Use the diff(R)command to differentiate R.

MATLAB differentiates R with respect to y (default 
symbolic variable); the answer  is displayed.10y 3t( )cos

Use the diff(R,t)command to differentiate R w.r.t. t.

The answer  is displayed.15y2 3t( )sin–

Use diff(S,2)command to obtain the second derivative of S.

The answer  
is displayed.

12x2ex4 16x6ex4+
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11.5 INTEGRATION

Symbolic integration can be carried out by using the int command. The com-
mand can be used for determining indefinite integrals (antiderivatives) and defi-
nite integrals. For indefinite integration the form of the command is:

• Either S can be the name of a previously created symbolic expression, or an
expression can be typed in for S.

• In the int(S) command, if the expression contains one symbolic variable,
the integration is carried out with respect to that variable. If the expression con-
tains more than one variable, the integration is carried out with respect to the
default symbolic variable (Section 11.1.3).

• In the int(S,var) command, which is used for integration of expressions
with several symbolic variables, the integration is carried out with respect to
the variable var.

Some examples are:

For definite integration the form of the command is:

• a and b are the limits of integration. The limits can be numbers or symbolic
variables.

>> syms x y t

>> S=2*cos(x)-6*x;

>> int(S)

ans =
2*sin(x)-3*x^2

>> int(x*sin(x))

ans =
sin(x)-x*cos(x)

>>R=5*y^2*cos(4*t);

>> int(R)

ans =
(5*y^3*cos(4*t))/3

>> int(R,t)

ans =
(5*y^2*sin(4*t))/4

int(S) int(S,var)or

Define x, y, and t as symbolic variables.
Assign to S the expression .2 x( )cos 6x–

Use the int(S)command to integrate S.

The answer  is displayed.2 x( )sin 3x2–

Use the int(S)command to integrate .x x( )sin

The answer  is displayed.x( )sin x x( )cos–

Assign to R the expression .5y2 4t( )cos

Use the int(R)command to integrate R.
MATLAB integrates R with respect to y (default sym-
bolic variable); the answer   is displayed.5y3 4t( ) 3⁄cos

Use the int(R,t)command to integrate R w.r.t. t.

The answer  is displayed.5y2 4t( ) 4⁄sin

int(S,a,b) int(S,var,a,b)or
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For example, determination of the definite integral  with MAT-

LAB is:

• It is possible also to use the int command by typing the expression to be inte-
grated as a string without having the variables in the expression first created as
symbolic objects. However, the variables in the integrated expression do not
exist as independent symbolic objects.

• Integration can sometimes be a difficult task. A closed-form answer may not
exist, or if it exists, MATLAB might not be able to find it. When that happens
MATLAB returns int(S) and the message Explicit integral
could not be found.

11.6 SOLVING AN ORDINARY DIFFERENTIAL EQUATION

An ordinary differential equation (ODE) can be solved symbolically with the
dsolve command. The command can be used to solve a single equation or a sys-
tem of equations. Only single equations are addressed here. Chapter 10 discusses
using MATLAB to solve first-order ODEs numerically. The reader’s familiarity
with the subject of differential equations is assumed. The purpose of this section is
to show how to use MATLAB for solving such equations.

A first-order ODE is an equation that contains the derivative of the depen-
dent variable. If t is the independent variable and y is the dependent variable, the
equation can be written in the form

A second-order ODE contains the second derivative of the dependent variable (it
can also contain the first derivative). Its general form is:

A solution is a function  that satisfies the equation. The solution can be
general or particular. A general solution contains constants. In a particular solu-
tion the constants are determined to have specific numerical values such that the
solution satisfies specific initial or boundary conditions.

The command dsolve can be used for obtaining a general solution or,
when the initial or boundary conditions are specified, for obtaining a particular
solution.

>> syms y

>> int(sin(y)-5*y^2,0,pi)

ans =
2 - (5*pi^3)/3

ysin 5y2–( ) yd
0

π

∫

dy
dt
------ f t y,( )=

d2y
dt2
-------- f t y dy

dt
------, ,⎝ ⎠

⎛ ⎞=

y f t( )=



11.6 Solving an Ordinary Differential Equation 367

General solution:
 For obtaining a general solution, the dsolve command has the form:

• eq is the equation to be solved. It has to be typed as a string (even if the vari-
ables are symbolic objects).

• The variables in the equation don’t have to first be created as symbolic objects.
(If they have not been created, then, in the solution the variables will not be
symbolic objects.)

• Any letter (lowercase or uppercase), except D can be used for the dependent
variable.

• In the dsolve(‘eq’) command the independent variable is assumed by
MATLAB to be t (default).

• In the dsolve(‘eq’,‘var’) command the user defines the independent
variable by typing it for var (as a string).

• In specifying the equation the letter D denotes differentiation. If y is the depen-

dent variable and t is the independent variable, Dy stands for . For example,

the equation  is typed in as‘Dy + 3*y = 100’.

• A second derivative is typed as D2, third derivative as D3, and so on. For

example, the equation  is typed in as: ‘D2y + 3*Dy +

5*y = sin(t)’.
• The variables in the ODE equation that is typed in the dsolve command do

not have to be previously created symbolic variables. 
• In the solution MATLAB uses C1, C2, C3, and so on, for the constants of inte-

gration.

For example, a general solution of the first-order ODE  is obtained

by:

A general solution of the second-order ODE  is obtained by:

>> dsolve('Dy=4*t+2*y')

ans =
C1*exp(2*t) - 2*t - 1

>> dsolve('D2x+2*Dx+x=0')

dsolve(‘eq’) dsolve(‘eq’,‘var’)or

dy
dt
------

dy
dt
------ 3y+ 100=

d2y
dt2
-------- 3dy

dt
------ 5y+ + t( )sin=

dy
dt
------ 4t 2y+=

The answer  is displayed.y C1e2t 2t– 1–=

d2x
dt2
-------- 2dx

dt
------ x+ + 0=
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The following examples illustrate the solution of differential equations that con-
tain symbolic variables in addition to the independent and dependent variables.

Particular solution:
A particular solution of an ODE can be obtained if boundary (or initial) conditions
are specified. A first-order equation requires one condition, a second-order equa-
tion requires two conditions, and so on. For obtaining a particular solution, the
dsolve command has the form

• For solving equations of higher order, additional boundary conditions have to
be entered in the command. If the number of conditions is less than the order of
the equation, MATLAB returns a solution that includes constants of integration
(C1, C2, C3, and so on).

• The boundary conditions are typed in as strings in the following:

Math form MATLAB form
‘y(a)=A’
‘Dy(a)=A’
‘D2y(a)=A’

ans =
C1/exp(t)+(C2*t)/exp(t)

>> dsolve('Ds=a*x^2')

ans =
a*t*x^2 + C1

>> dsolve('Ds=a*x^2','x')

ans =
(a*x^3)/3 + C1

>> dsolve('Ds=a*x^2','a')

ans =
(a^2*x^2)/2 + C2

The answer  is displayed.x C1e t– C2te t–+=

The independent variable is t (default). 
MATLAB solves the equation .ds

dt
----- ax2=

The solution  is displayed.s ax2t C1+=

The independent variable is defined to be x. 
MATLAB solves the equation .ds

dx
------ ax2=

The solution  is displayed.s 1
3
---ax3 C1+=

The independent variable is defined to be a. 
MATLAB solves the equation .ds

da
------ ax2=

The solution  is displayed.s 1
2
---a2x2 C1+=

dsolve(‘eq’,‘cond1’,‘var’)

dsolve(‘eq’,‘cond1’,‘cond2’,....,‘var’)

First-order ODE:

Higher-order ODE:

y a( ) A=

y′ a( ) A=

y′′ a( ) A=
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• The argument ‘var’ is optional and is used to define the independent variable
in the equation. If none is entered, the default is t.

For example, the first-order ODE , with the initial condition

 is solved with MATLAB by:

The second-order ODE , , , can be solved

with MATLAB by:

Additional examples of solving differential equations are shown in Sample Prob-
lem 11-5.

If MATLAB cannot find a solution, it returns an empty symbolic object and
the message Warning: explicit solution could not be found.

11.7 PLOTTING SYMBOLIC EXPRESSIONS

In many cases, there is a need to plot a symbolic expression. This can easily be
done with the ezplot command. For a symbolic expression S that contains one
variable var, MATLAB considers the expression to be a function , and the
command creates a plot of  versus var. For a symbolic expression that con-
tains two symbolic variables var1 and var2, MATLAB considers the expres-
sion to be a function in the form , and the command creates a
plot of one variable versus the other.

To plot a symbolic expression S that contains one or two variables, the
ezplot command is:

>> dsolve('Dy+4*y=60','y(0)=5')

ans =
15 - 10/exp(4*t)

>> dsolve('D2y-2*Dy+2*y=0','y(0)=1','Dy(0)=0')

ans =
exp(t)*cos(t)-exp(t)*sin(t)

>> factor(ans)

ans =
exp(t)*(cos(t)-sin(t))

dy
dt
------ 4y+ 60=

y 0( ) 5=

The answer  is displayed.y 15 10 e4t⁄( )–=

d2y
dt2
-------- 2dy

dt
------– 2y+ 0= y 0( ) 1= dy

dt
------

t 0=

0=

The answer  is displayed.y et t( )cos et t( )sin–=

The answer can be simplified with the factor command.
The simplified answer 
is displayed.

y et t( )cos t( )sin–( )=

S var( )
S var( )

S var1 var2,( ) 0=

ezplot(S)

ezplot(S,[min,max])

ezplot(S,[xmin,xmax,ymin,ymax])

or

or

Domain of independent variable.

Domain of dependent variable.
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• S is the symbolic expression to be plotted. It can be the name of a previously
created symbolic expression, or an expression can be typed in for S.

• It is also possible to type the expression to be plotted as a string without having
the variables in the expression first created as symbolic objects.

• If S has one symbolic variable, a plot of  versus  is created, with
the values of var (the independent variable) on the abscissa (horizontal axis),
and the values of  on the ordinate (vertical axis).

• If the symbolic expression S has two symbolic variables, var1 and var2, the
expression is assumed to be a function with the form . MAT-
LAB creates a plot of one variable versus the other variable. The variable that
is first in alphabetic order is taken to be the independent variable. For example,
if the variables in S are x and y, then x is the independent variable and is plotted
on the abscissa and y is the dependent variable plotted on the ordinate. If the
variables in S are u and v, then u is the independent variable and v is the depen-
dent variable.

• In the ezplot(S) command, if S has one variable ( ), the plot is over
the domain  (default domain) and the range is selected by MAT-
LAB. If S has two variables ( ), the plot is over 
and .

• In the ezplot(S,[min,max]) command the domain for the independent
variable is defined by min and max:— —and the range is
selected by MATLAB.

• In the ezplot(S,[xmin,xmax,ymin,ymax]) command the domain for
the independent variable is defined by xmin and xmax, and the domain of the
dependent variable is defined by ymin and ymax.

The ezplot command can also be used to plot a function that is given in a
parametric form. In this case two symbolic expressions, S1 and S2, are involved,
where each expression is written in terms of the same symbolic variable (indepen-
dent parameter). For example, for a plot of y versus x where  and

, the form of the ezplot command is:

• S1 and S2 are symbolic expressions containing the same single symbolic vari-
able, which is the independent parameter. S1 and S2 can be the names of pre-
viously created symbolic expressions, or expressions can be typed in.

S var( ) var( )

S var( )

S var1 var2,( ) 0=

S var( )
2π– var 2π< <

S var1 var2,( ) 2π– var1 2π< <
2π– var2 2π< <

min var max< <

x x t( )=

y y t( )=

ezplot(S1,S2)

ezplot(S1,S2,[min,max])or

Domain of independent parameter.
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• The command creates a plot of  versus . The symbolic expres-
sion that is typed first in the command (S1 in the definition above) is used for
the horizontal axis, and the expression that is typed second (S2 in the defini-
tion above) is used for the vertical axis.

• In the ezplot(S1,S2)command the domain of the independent variable is
 (default domain).

• In the ezplot(S1,S2,[min,max])command the domain for the indepen-
dent variable is defined by min and max: .

Additional comments: 
Once a plot is created, it can be formatted in the same way as plots created with
the plot or fplot format. This can be done in two ways: by using commands or
by using the Plot Editor (see Section 5.4). When the plot is created, the expression
that is plotted is displayed automatically at the top of the plot. MATLAB has addi-
tional plot functions for plotting two-dimensional polar plots and for plotting
three-dimensional plots. For more information, the reader is referred to the Help
menu of the Symbolic Math Toolbox.

Several examples of using the ezplot command are shown in Table 11-1.
Table 11-1: Plots with the ezplot command

Command Plot
>> syms x

>> S=(3*x+2)/(4*x-1)

S =

(3*x+2)/(4*x-1)

>> ezplot(S)

>> syms x y

>> S=4*x^2-18*x+4*y^2+12*y-11

S =

4*x^2-18*x+4*y^2+12*y-11

>> ezplot(S)

S2 var( ) S1 var( )

0 var 2π< <

min var max< <

-6 -4 -2 0 2 4 6
-0.5

0

0.5

1

1.5

2

x

(3 x+2)/(4 x-1)

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

x

y

4 x2-18 x+4 y2+12 y-11 = 0
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11.8 NUMERICAL CALCULATIONS WITH SYMBOLIC EXPRESSIONS

Once a symbolic expression is created by the user or by the output from any of
MATLAB’s symbolic operations, there may be a need to substitute numbers for
the symbolic variables and calculate the numerical value of the expression. This
can be done by using the subs command. The subs command has several forms
and can be used in different ways. The following describes several forms that are
easy to use and are suitable for most applications. In one form, the variable (or
variables) for which a numerical value is substituted and the numerical value itself
are typed inside the subs command. In another form, each variable is assigned a
numerical value in a separate command and then the variable is substituted in the
expression.

The subs command in which the variable and its value are typed inside the
command is shown first. Two cases are presented—one for substituting a numeri-
cal value (or values) for one symbolic variable, and the other for substituting
numerical values for two or more symbolic variables.
Substituting a numerical value for one symbolic variable:
A numerical value (or values) can be substituted for one symbolic variable when a
symbolic expression has one or more symbolic variables. In this case the subs
command has the form:

• number can be one number (a scalar), or an array with many elements (a vec-
tor or a matrix).

>> syms t

>> x=cos(2*t)

x =

cos(2*t)

>> y=sin(4*t)

y =

sin(4*t)

>> ezplot(x,y)

Table 11-1: Plots with the ezplot command (Continued)

Command Plot

-1 -0.5 0 0.5 1

-0.5

0

0.5

x
y

x = cos(2 t), y = sin(4 t)

The name of the
symbolic expression.

The variable for 
which a numerical 
value is substituted.

The numerical value 
(or values) assigned 
to var.

R = subs(S,var,number)
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• The value of S is calculated for each value of number and the result is
assigned to R, which will have the same size as number (scalar, vector, or
matrix).

• If S has one variable, the output R is numerical. If S has several variables and a
numerical value is substituted for only one of them, the output R is a symbolic
expression.

An example with an expression that includes one symbolic variable is:

In the last example, notice that when the numerical value of the symbolic expres-
sion is calculated, the answer is numerical (the display is indented). An example
of substituting numerical values for one symbolic variable in an expression that
has several symbolic variables is:

>> syms x

>> S=0.8*x^3+4*exp(0.5*x)

S =
4*exp(x/2) + (4*x^3)/5

>> SD=diff(S)

SD =
2*exp(x/2)+(12*x^2)/5)

>> subs(SD, x, 2)

ans =
   15.0366

>> SDU=subs(SD, x, [2:0.5:4])

SDU =
   15.0366  21.9807  30.5634  40.9092  53.1781

>> syms a g t v

>> Y=v^2*exp(a*t)/g

Y =
v^2*exp(a*t)/g

>> subs(Y,t,2)

ans =
v^2*exp(2*a)/g

>> Yt=subs(Y,t,[2:4])

Define x as a symbolic variable.
Assign to S the expression

.0.8x3 4e 0.5x( )+

Use the diff(S)command to differentiate S.

The answer  is assigned to SD.2ex 2⁄ 12x2 5⁄+

Use the subs command to substitute  in SD.x 2=

The value of SD is displayed.

Use the subs command to substitute 
x = [2, 2.5, 3, 3.5, 4] (vector) in SD.

The values of SD (assigned to SDU) for each value of x are displayed in a vector.

Define a, g, t, and v as symbolic variables.

Create the symbolic expression
 and assign it to Y.v2e at( ) g⁄

Use the subs command to substitute  in SD.t 2=

The answer  is displayed.v2e 2a( ) g⁄

Use the subs command to substitute 
t = [2, 3, 4] (vector) in Y.
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Substituting a numerical value for two or more symbolic variables:
A numerical value (or values) can be substituted for two or more symbolic vari-
ables when a symbolic expression has several symbolic variables. In this case the
subs command has the following form (it is shown for two variables, but it can
be used in the same form for more):

• The variables var1 and var2 are the variables in the expression S for which
the numerical values are substituted. The variables are typed as a cell array
(inside curly braces { }). A cell array is an array of cells where each cell can
be an array of numbers or text.

• The numbers number1,number2 substituted for the variables are also typed
as a cell array (inside curly braces { }). The numbers can be scalars, vectors,
or matrices. The first cell in the numbers cell array (number1) is substituted
for the variable that is in the first cell of the variable cell array (var1), and so
on.

• If all the numbers that are substituted for variables are scalars, the outcome will
be one number or one expression (if some of the variables are still symbolic).

• If, for at least one variable, the substituted numbers are an array, the mathemat-
ical operations are executed element-by-element and the outcome is an array of
numbers or expressions. It should be emphasized that the calculations are per-
formed element-by-element even though the expression S is not typed in the
element-by-element notation. This also means that all the arrays substituted for
different variables must be of the same size.

• It is possible to substitute arrays (of the same size) for some of the variables
and scalars for other variables. In this case, in order to carry out element-by-
element operations, MATLAB expands the scalars (array of 1s times the sca-
lar) to produce an array result.

 The substitution of numerical values for two or more variables is demonstrated in
the next examples.

Yt =
[ v^2*exp(2*a)/g, v^2*exp(3*a)/g, v^2*exp(4*a)/g]

The answer is a vector with elements of symbolic expressions for each value of t.

The name of the
symbolic expression.

The variables for 
which numerical val-
ues are substituted.

The numerical value 
(or values) assigned to 
var1 and var2.

R = subs(S,{var1,var2},{number1,number2})
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A second method for substituting numerical values for symbolic variables
in a symbolic expression is to first assign numerical values to the variables and
then use the subs command. In this method, once the symbolic expression exists
(at which point the variables in the expression are symbolic) the variables are
assigned numerical values. Then the subs command is used in the form:

Once the symbolic variables are redefined as numerical variables they can no
longer be used as symbolic. The method is demonstrated in the following exam-
ples.

>> syms a b c e x

>> S=a*x^e+b*x+c

S =
a*x^e+b*x+c

>> subs(S,{a,b,c,e,x},{5,4,-20,2,3})

ans =
   37

>> T=subs(S,{a,b,c},{6,5,7})

T =
5*x+ 6*x^e+7

>> R=subs(S,{b,c,e},{[2 4 6],9,[1 3 5]})

R =
[  2*x+a*x+9, a*x^3+4*x+9, a*x^5+6*x+9]

>> W=subs(S,{a,b,c,e,x},{[4 2 0],[2 4 6],[2 2 2],[1 3 5],[3 2 1]})

W =
    20    26     8

>> syms A c m x y

>> S=A*cos(m*x)+c*y

S =
c*y+A*cos(m*x)

>> A=10; m=0.5; c=3;

>> subs(S)

ans =
3*y + 10*cos(x/2)

Define a, b, c, e, and x as symbolic variables.

Create the symbolic expression
 and assigned it to S.axe bx c+ +

Cell array.

Substitute in S scalars for all
the symbolic variables.

Cell array.

The value of S is displayed.

Substitute in S scalars for the
symbolic variables a, b, and c.

The result is an expression with the variables x and e.

Substitute in S a scalar for c,
and vectors for b and e.

The result is a vector of 
symbolic expressions.

Substitute in S vectors for all the variables.

The result is a vector of numerical values.

R = subs(S) The name of the
symbolic expression.

Define A, c, m, x, and y as symbolic variables.

Create the symbolic expression
 and assign it to S.A mx( )cos cy+

Assign numerical values to variables A, m, and c.
Use the subs command with the expression S.

The numerical values of variables
A, m, and c are substituted in S.
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11.9 EXAMPLES OF MATLAB APPLICATIONS

Sample Problem 11-2: Firing angle of a projectile

A projectile is fired at a speed
of 210 m/s and an angle θ.
The projectile’s intended tar-
get is 2,600 m away and 350
m above the firing point.
(a) Derive the equation that

has to be solved in order
to determine the angle θ such that the projectile will hit the target.

(b) Use MATLAB to solve the equation derived in part (a).
(c) For the angle determined in part (b), use the ezplot command to make a

plot of the projectile’s trajectory.
Solution
(a)  The motion of the projectile can be analyzed by considering the horizontal
and vertical components. The initial velocity  can be resolved into horizontal
and vertical components:

    and    

In the horizontal direction the velocity is constant, and the position of the projec-
tile as a function of time is given by:

Substituting  m for the horizontal distance that the projectile travels to
reach the target and  for , and solving for t gives:

In the vertical direction the position of the projectile is given by:

Substituting  m for the vertical coordinate of the target,  for
, , and t gives:

>> x=linspace(0,2*pi,4);

>> T = subs(S)

T =
[ 3*y+10, 3*y+5, 3*y-5, 3*y-10]

Assign numerical values (vector) to variable x.
Use the subs command with the expression S.

The numerical values of variables A,
m, c, and x are substituted. The result
is a vector of symbolic expressions.

v0

v0x v0 θ( )cos= v0y v0 θ( )sin=

x v0xt=

x 2600=

210 θ( )cos v0x

t 2600
210 θ( )cos
--------------------------=

y v0yt 1
2
---gt2–=

y 350= 210 θ( )sin
v0x g 9.81=
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or:

The solution of this equation gives the angle θ at which the projectile has to be
fired.
(b)  A solution of the equation derived in part (a) obtained by using the solve
command (in the Command Window) is:

(c)  The solution from part (b) shows that there are two possible angles and thus
two trajectories. In order to make a plot of a trajectory, the x and y coordinates of
the projectile are written in terms of t (parametric form):

  and  

The domain for t is  to . 

These equations can be used in the ezplot command to make the plots shown in

>> syms th

Angle = solve('2600*sqrt(1 - cos(th)̂ 2)/cos(th) - 0.5*9.81*(2600/
(210*cos(th)))̂ 2 = 350')

Angle =
    1.245354497237416168313813580656
  0.45925280703207121277786452037279
 -0.45925280703207121277786452037279
   -1.245354497237416168313813580656

>> Angle1 = Angle(1)*180/pi

Angle1 =
224.16380950273491029648644451808/pi

>> Angle1=double(Angle1)

Angle1 =
   71.3536

>> Angle2=Angle(2)*180/pi

Angle2 =
82.665505265772818300015613667102/pi

>> Angle2=double(Angle2)

Angle2 =
   26.3132

350 210 θ( )sin 2600
210 θ( )cos
-------------------------- 1

2
---9.81 2600

210 θ( )cos
--------------------------⎝ ⎠
⎛ ⎞

2
–=

350 2600 1 θ( )cos2–
θ( )cos

-------------------------------------------- 1
2
---9.81 2600

210 θ( )cos
--------------------------⎝ ⎠
⎛ ⎞

2
–=

MATLAB displays four 
solutions. The two posi-
tive ones are relevant to 
the problem.

Converting the solution in the first ele-
ment of Angle from radians to degrees.

MATLAB displays the answer as
a symbolic object in terms of π.

Use the double command to obtain
numerical values for Angle1.

Converting the solution in the second ele-
ment of Angle from radians to degrees.

MATLAB displays the answer as
a symbolic object in terms of π.

Use the double command to obtain
numerical values for Angle2.

x v0 θ( )cos t= y v0 θ( )sin t 1
2
---gt2–=

t 0= t 2600
210 θ( )cos
--------------------------=
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the following program written in a script file.

When this program is executed, the following plot is generated in the Figure Win-
dow:

Sample Problem 11-3: Bending resistance of a beam

The bending resistance of a rectangular beam of
width b and height h is proportional to the beam’s

moment of inertia I, defined by . A rectan-
gular beam is cut out of a cylindrical log of radius R.
Determine b and h (as a function of R) such that the
beam will have maximum I.

xmax=2600; v0=210; g=9.81;

theta1=1.24535; theta2=.45925;

t1=xmax/(v0*cos(theta1));

t2=xmax/(v0*cos(theta2));

syms t

X1=v0*cos(theta1)*t;

X2=v0*cos(theta2)*t;

Y1=v0*sin(theta1)*t-0.5*g*t^2;

Y2=v0*sin(theta2)*t-0.5*g*t^2;

ezplot(X1,Y1,[0,t1])

hold on

ezplot(X2,Y2,[0,t2])

hold off

Assign the two solutions from
part (b) to theta1 and theta2.

Plot one trajectory.

Plot a second trajectory.

0 500 1000 1500 2000 2500
0

200

400

600

800

1000

1200

1400

1600

1800

2000

x

y

x = 6623137634930013/35184372088832 t, y = 3275240998958541/35184372088832 t-981/200 t2

I 1
12
------bh3=
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Solution
The problem is solved by following these steps:
1. Write an equation that relates R, h, and b.
2. Derive an expression for I in terms of h.
3. Take the derivative of I with respect to h.
4. Set the derivative equal to zero and solve for h.
5. Determine the corresponding b.
The first step is carried out by looking at the triangle in the figure. The relation-
ship between R, h, and b is given by the Pythagorean theorem as

. Solving this equation for b gives .

The rest of the steps are done using MATLAB:

>> syms b h R

>> b=sqrt(4*R^2-h^2);

>> I=b*h^3/12

I =
(h^3*(4*R^2-h^2)^(1/2))/12

>> ID=diff(I,h)

ID =
(h^2*(4*R^2-h^2)^(1/2))/4-h^4/(12*(4*R^2-h^2)^(1/2))

>> hs=solve(ID,h)

hs =
          0
  3^(1/2)*R
 -3^(1/2)*R

>> bs=subs(b,hs(2))

bs =
(R^2)^(1/2)

b
2
---⎝ ⎠
⎛ ⎞

2 h
2
---⎝ ⎠
⎛ ⎞

2
+ R2= b 4R2 h2–=

Create a symbolic expression for b.
Step 2: Create a symbolic expression for I.

MATLAB substitutes b in I.
Step 3: Use the diff(R)command
to differentiate I with respect to h.

The derivative of I is displayed.
Step 4: Use the solve command to solve the 
equation ID = 0 for h. Assign the answer to hs.

MATLAB displays three solutions. The positive 
non zero solution  is relevant to the problem.3R

Step 5: Use the subs command to determine b by 
substituting the solution for h in the expression for b.

The answer for b is displayed. (The answer 
is R, but MATLAB displays .)R2( )1 2⁄
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Sample Problem 11-4: Fuel level in a tank

The horizontal cylindrical tank shown is
used to store fuel. The tank has a diameter
of 6 m and is 8 m long. The amount of fuel
in the tank can be estimated by looking at
the level of the fuel through a narrow verti-
cal glass window at the front of the tank. A
scale that is marked next to the window
shows the levels of the fuel corresponding to
40, 60, 80, 120, and 160 thousand liters.
Determine the vertical positions (measured
from the ground) of the lines of the scale.
Solution
The relationship between the level of the fuel and its volume can be written in the
form of a definite integral. Once the integration is carried out, an equation is
obtained for the volume in terms of the fuel’s height. The height corresponding to
a specific volume can then be determined from solving the equation for the height.
The volume of the fuel V can be determined
by multiplying the area of the cross section of
the fuel A (the shaded area) by the length of
the tank L. The cross-sectional area can be
calculated by integration.

The width w of the top surface of the fuel can
be written as a function of y. From the trian-
gle in the figure on the right, the variables y,
w, and R are related by:

Solving this equation for w gives:

The volume of the fuel at height h can now be calculated by substituting w in the
integral in the equation for the volume and carrying out the integration. The result
is an equation that gives the volume V as a function of h. The value of h for a given
V is obtained by solving the equation for h. In the present problem values of h have
to be determined for volumes of 40, 60, 80, 120, and 160 thousand liters. The
solution is given in the following MATLAB program (script file):

V AL L w yd
0

h

∫= =

w
2
----⎝ ⎠
⎛ ⎞

2
R y–( )2+ R2=

w 2 R2 R y–( )2–=



11.9 Examples of MATLAB Applications 381

When the script file is executed, the outcomes from commands that don’t have a
semicolon at the end are displayed. The display in the Command Window is:

Units: The unit for length in the solution is meters, which correspond to m3 for the
volume (1 m3 = 1,000 L).

R=3; L=8;

syms w y h

w=2*sqrt(R^2-(R-y)^2)

S = L*w

V = int(S,y,0,h)

Vscale=[40:40:200]

for i=1:5

    Veq=V-Vscale(i);

    h_ans(i)=solve(Veq);

end

h_scale=double(h_ans)

>> w =
2*(9-(y-3)^2)^(1/2)

S =
16*(9-(y-3)^2)^(1/2)

V =
36*pi+72*asin(h/3-1)+8*(9-(h-3)^2)^(1/2)*(h-3)

Vscale =
  40  80  120  160  200

h_scale =
  1.3972  2.3042  3.1439  3.9957  4.9608

Create a symbolic expression for w.
Create the expression that will be integrated.
Use the int command to integrate S from 0
to h. The result gives V as a function of h.

Create a vector with the values of V in the scale.
Each pass in the loop solves h for one value of V.

Create the equation for h that has to be solved.
Use the solve command to solve for h.

h_ans is a vector (symbolic with numbers) with the values
of h that correspond to the values of V in the vector Vscale.

Use the double command to obtain numeri-
cal values for the elements of vector h_ans.

The symbolic expression for w is displayed.

S is the expression that will be integrated.

The result from the integration; V as a function of h.
The values of V in the scale are displayed.

The positions of the lines in the scale are displayed.
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Sample Problem 11-5: Amount of medication in the body

The amount M of medication present in the body depends on the rate at which the
medication is consumed by the body and on the rate at which the medication
enters the body, where the rate at which the medication is consumed is propor-
tional to the amount present in the body. A differential equation for M is

where k is the proportionality constant and p is the rate at which the medication is
injected into the body.
(a) Determine k if the half-life of the medication is 3 hours.
(b) A patient is admitted to a hospital and the medication is given at a rate of 50

mg per hour. (Initially there is no medication in the patient’s body.) Derive an
expression for M as a function of time.

(c) Plot M as a function of time for the first 24 hours.
Solution
(a)  The proportionality constant can be determined from considering the case in
which the medication is consumed by the body and no new medication is given. In
this case the differential equation is:

The equation can be solved with the initial condition  at :

The solution gives M as a function of time:

A half-life of 3 hours means that at  hours . Substituting this

information in the solution gives , and the constant k is determined

from solving this equation: 

>> syms M M0 k t

>> Mt=dsolve('DM=-k*M','M(0)=M0')

Mt =
M0/exp(k*t)

ks=solve('0.5=1/exp(k*3)')

ks =
.23104906018664843647241070715273

dM
dt

-------- kM– p+=

dM
dt

-------- kM–=

M M0= t 0=

Use the dsolve command 

to solve .dM
dt

-------- kM–=

M t( )
M0

ekt
-------=

t 3= M t( ) 1
2
---M

0
=

0.5 1
e3k
-------=

Use the solve command to 
solve .0.5 e 3k–=
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(b)  For this part the differential equation for M is:

The constant k is known from part (a), and  mg/h is given. The initial con-
dition is that in the beginning there is no medication in the patient’s body, or

 at . The solution of this equation with MATLAB is:

(c)  A plot of Mtb as a function of time for  can be done by using the
ezplot command:

In the actual display of the last expression that was generated by MATLAB (Mtt
= . . .) the numbers have many more decimal digits than shown above. The num-
bers were shortened so that they will fit on the page.
The plot that is generated is:

>> syms p

>> Mtb=dsolve('DM=-k*M+p','M(0)=0')

Mtb =
(p-p/exp(k*t))/k)

>> pgiven=50;

>> Mtt=subs(Mtb,{p,k},{pgiven,ks})

Mtt =
216.404-216.404/exp(0.231049*t)

>> ezplot(Mtt,[0,24])

dM
dt

-------- kM– p+=

p 50=

M 0= t 0=

Use the dsolve command 

to solve .dM
dt

-------- kM– p+=

0 t 24≤ ≤

Substitute numerical 
values for p and k.
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0
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TIME (h)
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11.10 PROBLEMS

1. Define x as a symbolic variable and create the two symbolic expressions

  and 
Use symbolic operations to determine the simplest form of each of following
expressions:

(a) (b) (c)

(d) Use the subs command to evaluate the numerical value of the result
from part (c) for .

2. Define y as a symbolic variable and create the two symbolic expressions
 and 

Use symbolic operations to determine the simplest form of each of following
expressions:

(a) (b) (c)

(d) Use the subs command to evaluate the numerical value of the result
from part (c) for .

3. Define x and y as symbolic variables and create the two symbolic expressions
 and 

Use symbolic operations to determine the simplest form of . Use the
subs command to evaluate the numerical value of the result for  and

.

4. Define x as a symbolic variable.
(a) Derive the equation of the polynomial that has the roots ,

, , and .
(b) Determine the roots of the polynomial

by using the factor command.

5. Use the commands from Section 11.2 to show that:
(a)

(b)

S1 x2 x 6–( ) 4 3x 2–( )+= S2 x 2+( )2 8x–=

S1 S2⋅
S1

S2
----- S1 S2+

x 5=

S1 x x2 6x 12+ +( ) 8+= S2 x 3–( )2 10x 5–+=

S1 S2⋅
S1

S2
----- S1 S2+

x 3=

S x xy2 y4+ += T x y2–=

S T⋅
x 9=

y 2=

x 2–=
x 0.5–= x 2= x 4.5=

f x( ) x6 6.5x5– 58x4– 167.5x3 728x2 890x– 1400–+ +=

4x( )sin 4 x xcossin 8 xsin3 xcos–=

xcos ycos 1
2
--- x y–( )cos x y+( )cos+[ ]=
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6. Use the commands from Section 11.2 to show that:

(a)

(b)

7. The folium of Descartes is the graph
shown in the figure. In parametric form
its equation is given by:

  and    for  

(a) Use MATLAB to show that the
equation of the folium of Descartes
can also be written as:

(b) Make a plot of the folium for the domain shown in the figure by using the
ezplot command.

8. A water tower has the geometry shown in the figure
(the lower part is a cylinder with radius R and height h,
and the upper part is a half sphere with radius R).
Determine the radius R if m and the volume is
1,050 m3. (Write an equation for the volume in terms
of the radius and the height. Solve the equation for the
radius, and use the double command to obtain a
numerical value.

9. The relation between the tension T and the steady shortening velocity v in a
muscle is given by the Hill equation:

where a and b are positive constants and  is the isometric tension, i.e., the
tension in the muscle when . The maximum shortening velocity occurs
when .
(a) Using symbolic operations, create the Hill equation as a symbolic expres-

sion. Then use subs to substitute , and finally solve for v to show
that .

(b) Use  from part (a) to eliminate the constant b from the Hill equation,

and show that .

3x( )tan 3 xtan xtan3–
1 3 xtan2–

---------------------------------=

x y z+ +( )sin xsin y zcoscos xcos y zcossin+=

xcos y zsincos xsin y zsinsin–+

x
y

x3+y3-3 x y = 0

-2 -1 0 1 2
-3

-2

-1

0

1

2

x 3t
1 t3+
-------------= y 3t2

1 t3+
-------------= t 1–≠

x3 y3+ 3xy=

h
R

R

h 10=

T a+( ) v b+( ) T0 a+( )b=

T0
v 0=

T 0=

T 0=

vmax bT0( ) a⁄=
vmax

v
a T0 T–( )
T0 T a+( )
-----------------------vmax=
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10. Consider the two ellipses in the x y plane given by the equations

  and  

(a) Use the ezplot command to plot the two ellipses in the same figure.
(b) Determine the coordinates of the points where the ellipses intersect.

11. A 120 in.–long beam AB is attached to the
wall with a pin at point A and to a 66 in.–
long cable CD. A load lb is
attached to the beam at point B. The tension
in the cable T and the x and y components of
the force at A (  and ) can be calcu-
lated from the equations: 

 

                   

where L and are the lengths of the beam and the cable, respectively, and d is
the distance from point A to point D where the cable is attached.
(a) Use MATLAB to solve the equations for the forces T, , and  in

terms of d, L, , and W. Determine  given by .
(b) Use the subs command to substitute lb, in., and

in. into the expressions derived in part (a). This will give the
forces as a function of the distance d.

 (c) Use the ezplot command to plot the forces T and  (both in the same
figure as functions of d, for d starting at 20 and ending at 70 in.

(d) Determine the distance d where the tension in the cable is the smallest.
Determine the value of this force.

12. A box of mass m is being pulled by a rope
as shown. The force F in the rope as a func-
tion of x can be calculated from the equa-
tions: 

where N and  are the normal force and friction coefficient between the box

x 1–( )2

62
------------------ y2

32
-----+ 1= x 2+( )2

22
------------------- y 5–( )2

42
------------------+ 1=

d

66 in.

A

W

L

B

C

D

W 200=

FAx FAy

FAx T d
Lc
-----– 0=

FAy T
Lc

2 d2–

Lc
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and surface, respectively. Consider the case where kg, m,
, and m/s2. 

(a) Use MATLAB to derive an expression for F, in terms of x, h, m, g, and .
(b) Use the subs command to substitute kg, m, ,

and m/s2 into the expressions that were derived in part (a). This
will give the force as a function of the distance x.

 (c) Use the ezplot command to plot the force F as a function of x, for x
starting at 5 and ending at 30 m.

 (d) Determine the distance x where the force that is required to pull the box is
the smallest, and determine the magnitude of that force. 

13. The mechanical power output P in a contracting muscle is given by:

where T is the muscle tension, v is the shortening velocity (max of ),  is 
the isometric tension (i.e., tension at zero velocity), and k is a non-dimen-
sional constant that ranges between 0.15 and 0.25 for most muscles. The equa-
tion can be written in non-dimensional form:

where , and . Consider the case .
(a) Plot p versus u for .
(b) Use differentiation to find the value of u where p is maximum.
(c) Find the maximum value of p.

14. The equation of a circle is ,
where R is the radius of the circle. Write a
program in a script file that first derives the
equation (symbolically) of the tangent line to
the circle at the point  on the upper
part of the circle (i.e., for  and

). Then for specific values of R, , and
 the program makes a plot, like the one

shown on the right, of the circle and the tan-
gent line. Execute the program with 
and . 

m 18= h 10=
μ 0.55= g 9.81=

μ
m 18= h 10= μ 0.55=

g 9.81=

P Tv
kvT0 1 v

vmax
----------–⎝ ⎠

⎛ ⎞

k v
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----------+

--------------------------------------= =

vmax T0

p ku 1 u–( )
k u+

-----------------------=

p Tv( ) T0vmax( )⁄= u v vmax⁄= k 0.25=

0 u 1≤ ≤

x

y

−20 −10 0 10 20
−20

−10
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20
x2 y2+ R2=

x0 y0,( )
R– x0 R< <

0 y0< x0
y0

R 10=
x0 7=
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15. A tracking radar antenna is locked on
an airplane flying at a constant altitude
of 5 km, and a constant speed of 540
km/h. The airplane travels along a
path that passes exactly above the
radar station. The radar starts the
tracking when the airplane is 100 km
away. 
(a) Derive an expression for the angle θ of the radar antenna as a function of

time.

(b) Derive an expression for the angular velocity of the antenna, , as a

function of time.
(c) Make two plots on the same page, one of θ versus time and the other of

 versus time, where the angle is in degrees and the time is in minutes

for  min.

16. Evaluate the following indefinite integrals:

(a) (b)

.
17. Define x as a symbolic variable and create the symbolic expression

Plot S in the domain  and calculate the integral .

.
18. The parametric equations of an ellipsoid are:

, , 
where  and 
Show that the differential volume element of the ellip-
soid shown is given by:

Use MATLAB to evaluate the integral of dV from  to
0 symbolically and show that the volume of the ellipsoid

is .

dθ
dt
------

dθ
dt
------
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------------------ xd∫= I x2 x xdcos∫=
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π
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0 u 2π≤ ≤ π– v 0≤ ≤

dV πabc vsin3 dv–=

π–

V 4
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19. The one-dimensional diffusion equation is given by:

Show that the following are solutions to the diffusion equation.

(a) , where A and B are constants.

(b) , where A, B, C, and  are constants.

20. A ceramic tile has the design shown in the
figure. The shaded area is painted red and
the rest of the tile is white. The border line
between the red and the white areas follows
the equation

Determine k such that the areas of the white
and the red colors will be the same. 

21. Show that the location of the centroid  of
the half-circle area shown is given by

. The coordinate  can be calculated

by:

22. For the half-circle area shown in the previous problem, show that the moment

of inertia about the x axis, , is given by . The moment of inertia

 can be calculated by:

23. The rms value of an AC voltage is defined by

where T is the period of the waveform.

(a) A voltage is given by . Show that  and is inde-
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pendent of ω. (The relationship between the period T and the radian fre-
quency ω is .)

(b) A voltage is given by V. Determine .

24. The spread of an infection from a single individual to a population of N unin-
fected persons can be described by the equation

  with initial condition 

where x is the number of uninfected individuals and R is a positive rate con-
stant. Solve this differential equation symbolically for . Also, determine
symbolically the time t at which the infection rate dx/dt is maximum.

25. The Maxwell-Boltzmann probability density function  is given by

where m (kg) is the mass of each molecule, v (m/s) is the speed, T (K) is the
temperature, and J/K is Boltzmann’s constant. The most
probable speed  corresponds to the maximum value of  and can be

determined from . Create a symbolic expression for , differen-

tiate it with respect to v and show that . Calculate  for oxygen

molecules ( kg) at K ( J/K). Make a
plot of  versus v for m/s for oxygen molecules 

26. The velocity of a skydiver whose parachute
is still closed can be modeled by assuming
that the air resistance is proportional to the
velocity. From Newton’s second law of
motion the relationship between the mass m
of the skydiver and his velocity v is given
by (down is positive)

where c is a drag constant and g is the gravitational constant ( m/s2).
(a) Solve the equation for v in terms of m, g, c, and t, assuming that the initial

velocity of the skydiver is zero.
(b) It is observed that 4 s after a 90 kg skydiver jumps out of an airplane, his

velocity is 28 m/s. Determine the constant c.
(c) Make a plot of the skydiver velocity as a function of time for s.
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27. A resistor R ( ) and an
inductor L ( H) are con-
nected as shown. Initially, the switch
is connected to point A and there is no
current in the circuit. At  the
switch is moved from A to B, so that
the resistor and the inductor are con-
nected to  ( V), and current
starts flowing in the circuit. The switch remains connected to B until the volt-
age on the resistor reaches 5 V. At that time ( ) the switch is moved back to
A.

The current i in the circuit can be calculated from solving the differential
equations:

 during the time from  and until the time when the

switch is moved back to A.

from the time when the switch is moved back to A and on.

The voltage across the resistor, , at any time is given by .
(a) Derive an expression for the current i in terms of R, L, , and t for

 by solving the first differential equation.
(b) Substitute the values of R, L, and  in the solution for i, and determine

the time  when the voltage across the resistor reaches 5 V.
(c) Derive an expression for the current i in terms of R, L, and t, for  by

solving the second differential equation.
(d) Make two plots (on the same page), one for  versus t for  and

the other for  versus t for .

28. Determine the general solution of the differential equation

Show that the solution is correct. (Derive the first derivative of the solution,
and then substitute back into the equation.)

29. Determine the solution of the following differential equation that satisfies the
given initial conditions. Plot the solution for .
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30. The current, i, in a series RLC circuit
when the switch is closed at  can
be determined from the solution of the
2nd-order ODE

where R, L, and C are the resistance of the resistor, the inductance of the
inductor, and the capacitance of the capacitor, respectively.
(a) Solve the equation for i in terms of L, R, C, and t, assuming that at 

 and / .
(b) Use the subs command to substitute H, , and

 into the expression that were derived in part (a). Make a plot
of i versus t for s. (Underdamped response.)

(c) Use the subs command to substitute H, , and
 into the expression that were derived in part (a). Make a

plot of i versus t for s. (Overdamped response.)
(d) Use the subs command to substitute H, , and

 into the expression that were derived in part (a). Make a plot
of i versus t for s. (Critically damped response.)

31. Damped free vibrations can be
modeled by a block of mass m that
is attached to a spring and a dash-
pot as shown. From Newton’s sec-
ond law of motion, the
displacement x of the mass as a
function of time can be determined by solving the differential equation

where k is the spring constant and c is the damping coefficient of the dashpot.
If the mass is displaced from its equilibrium position and then released, it will
start oscillating back and forth. The nature of the oscillations depends on the
size of the mass and the values of k and c.

For the system shown in the figure, kg and N/m. At time
 the mass is displaced to m and then released from rest. Derive

expressions for the displacement x and the velocity v of the mass, as a function
of time. Consider the following two cases:
(a) (N s)/m.
(b) (N s)/m.
For each case, plot the position x and the velocity v versus time (two plots on
one page). For case (a) take s, and for case (b) take s.
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Appendix:                                      
Summary of Characters,     
Commands, and Functions
The following tables list MATLAB’s characters, commands, and functions that
are covered in the book. The items are grouped by subjects.       

Characters and arithmetic operators
Character Description Page

+ Addition. 11, 64
– Subtraction. 11, 64
* Scalar and array multiplication. 11, 65
.* Element-by-element multiplication of arrays. 72
/ Right division. 11, 71
\ Left division. 11, 70
./ Element-by-element right division. 72
.\ Element-by-element left division. 72
^ Exponentiation. 11
.^ Element-by-element exponentiation. 72
: Colon; creates vectors with equally spaced elements, 

represents range of elements in arrays.
37, 44

= Assignment operator. 16
( ) Parentheses; sets precedence, encloses input arguments 

in functions and subscripts of arrays.
11, 42, 44, 
222

[ ] Brackets; forms arrays. encloses output arguments in 
functions.

37, 38, 39, 
222

, Comma; separates array subscripts and function argu-
ments, separates commands in the same line.

9, 17, 42-
45, 222

; Semicolon; suppresses display, ends row in array. 10, 39
’ Single quote; matrix transpose, creates string. 41, 53-55
... Ellipsis; continuation of line. 9
% Percent; denotes a comment, specifies output format. 10

Relational and logical operators
Character Description Page

< Less than. 174
> Greater than. 174

<= Less than or equal. 174
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>= Greater than or equal. 174
== Equal. 174
~= Not equal. 174
& Logical AND. 177
| Logical OR. 177
~ Logical NOT. 177

Managing commands
Command Description Page
cd Changes current directory. 23
clc Clears the Command Window. 10
clear Removes all variables from the memory. 19
clear x y z Removes variables x, y, and z from the memory. 19
close Closes the active Figure Window. 158
fclose Closes a file. 109
figure Opens a Figure Window. 158
fopen Opens a file. 108
global Declares global variables. 225
help Displays help for MATLAB functions. 224
iskeyword Displays keywords. 19
lookfor Search for specified word in all help entries. 224
who Displays variables currently in the memory. 19, 96
whos Displays information on variables in the memory. 19, 96

Predefined variables
Variable Description Page
ans Value of last expression. 19
eps The smallest difference between two numbers. 19
i 19
inf Infinity. 19
j Same as i. 19
NaN Not a number. 19
pi The number π. 19

Display formats in the Command Window
Command Description Page
format bank Two decimal digits. 13
format compact Eliminates empty lines. 13
format long Fixed-point format with 14 decimal digits. 13
format long e Scientific notation with 15 decimal digits. 13

Relational and logical operators (Continued)
Character Description Page

1–
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format long g Best of 15-digit fixed or floating point. 13
format loose Adds empty lines. 13
format short Fixed-point format with 4 decimal digits. 13
format short e Scientific notation with 4 decimal digits. 13
format short g Best of 5-digit fixed or floating point. 13

Elementary math functions
Function Description Page
abs Absolute value. 14
exp Exponential. 14
factorial The factorial function. 15
log Natural logarithm. 14
log10 Base 10 logarithm. 14
nthroot Real nth root or a real number. 14
sqrt Square root. 14

Trigonometric math functions
Function Description Page Function Description Page
acos Inverse cosine. 15 cos Cosine. 15
acot Inverse cotangent. 15 cot Cotangent. 15
asin Inverse sine. 15 sin Sine. 15
atan Inverse tangent. 15 tan Tangent. 15

Hyperbolic math functions
Function Description Page Function Description Page
cosh Hyperbolic cosine. 15 sinh Hyperbolic sine. 15
coth Hyperbolic cotangent. 15 tanh Hyperbolic tangent. 15

Rounding
Function Description Page
ceil Round towards infinity. 15
fix Round towards zero. 15
floor Round towards minus infinity. 15
rem Returns the remainder after x is divided by y. 15
round Round to the nearest integer. 15
sign Signum function. 16

Display formats in the Command Window (Continued)
Command Description Page
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Creating arrays
Function Description Page
diag Creates a diagonal matrix from a vector. Creates a vector

from the diagonal of a matrix.
50

eye Creates a unit matrix. 40, 68
linspace Creates equally spaced vector. 38
ones Creates an array with ones. 40
rand Creates an array with random numbers. 77, 78
randi Creates an array with random integers. 78
randn Creates an array with normally distributed numbers. 79
randperm Creates vector with permutation of integers. 78
zeros Creates an array with zeros. 40

Handling arrays
Function Description Page
length Number of elements in the vector. 49
reshape Rearrange a matrix. 49
size Size of an array. 49

Array functions
Function Description Page
cross Calculates cross product of two vectors. 77
det Calculates determinant. 70, 77
dot Calculates scalar product of two vectors. 66, 77
inv Calculates the inverse of a square matrix. 69, 77
max Returns maximum value. 76
mean Calculates mean value. 76
median Calculates median value. 76
min Returns minimum value. 76
sort Arranges elements in ascending order. 76
std Calculates standard deviation. 77
sum Calculates sum of elements. 76

Input and output
Command Description Page
disp Displays output. 101
fprintf Displays or saves output. 103-110
input Prompts for user input. 99
load Retrieves variables to the workspace. 112
save Saves the variables in the workspace. 111
uiimport Starts the Import Wizard 116
xlsread Imports data from Excel 114
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xlswrite Exports data to Excel 115

Two-dimensional plotting
Command Description Page
bar Creates a vertical bar plot. 152
barh Creates a horizontal bar plot. 152
errorbar Creates a plot with error bars. 151
fplot Plots a function. 140
hist Creates a histogram. 154-156
hold off Ends hold on. 142
hold on Keeps current graph open. 142
line Adds curves to existing plot. 143
loglog Creates a plot with log scale on both axes. 149
pie Creates a pie plot. 153
plot Creates a plot. 134
polar Creates a polar plot. 156
semilogx Creates a plot with log scale on the x axis. 149
semilogy Creates a plot with log scale on the y axis. 149
stairs Creates a stairs plot. 153
stem Creates a stem plot. 153

Three-dimensional plotting
Command Description Page
bar3 Creates a vertical 3-D bar plot. 331
contour Creates a 2-D contour plot. 330
contour3 Creates a 3-D contour plot. 330
cylinder Plots a cylinder. 331
mesh Creates a mesh plot. 327, 328
meshc Creates a mesh and a contour plot. 329
meshgrid Creates a grid for a 3-D plot. 325
meshz Creates a mesh plot with a curtain. 329
pie3 Creates a pie plot. 332
plot3 Creates a plot. 323
pol2cart Convert the polar coordinates grid to a grid in Cartesian

coordinates.
333

scatter3 Creates a scatter plot. 332
sphere Plots a sphere. 331
stem3 Creates a stem plot 332
surf Creates a surface plot. 327, 329
surfc Creates a surface and a contour plot. 329

Input and output
Command Description Page
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surfl Creates a surface plot with lighting. 330
waterfall Creates a mesh plot with a waterfall effect. 330

Formatting plots
Command Description Page
axis Sets limits to axes. 147
colormap Sets color. 328
grid Adds grid to a plot. 148, 328
gtext Adds text to a plot. 145
legend Adds legend to a plot. 145
subplot Creates multiple plots on one page. 157
text Adds text to a plot. 145
title Adds title to a plot. 144
view Controls the viewing direction of a 3-D plot. 333
xlabel Adds label to x axis. 144
ylabel Adds label to y axis. 144

Math functions (create, evaluate, solve)
Command Description Page
feval Evaluates the value of a math function. 238
fminbnd Determines the minimum of a function. 298
fzero Solves an equation with one variable. 296
inline Creates an inline function. 233

Numerical integration
Function Description Page
quad Integrates a function. 300
quadl Integrates a function. 301
trapz Integrates a function. 302

Ordinary differential equation solvers
Command Description Page
ode113 Solves a first order ODE. 304
ode15s Solves a first order ODE. 305
ode23 Solves a first order ODE. 304
ode23s Solves a first order ODE. 305
ode23t Solves a first order ODE. 305
ode23tb Solves a first order ODE. 305
ode45 Solves a first order ODE. 304

Three-dimensional plotting (Continued)
Command Description Page
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Logical Functions
Function Description Page
all Determines if all array elements are nonzero. 180
and Logical AND. 179
any Determines if any array elements are nonzero. 180
find Finds indices of certain elements of a vector. 180
not Logical NOT. 179
or Logical OR. 179
xor Logical exclusive OR. 180

Flow control commands
Command Description Page
break Terminates execution of a loop. 200
case Conditionally execute commands. 187
continue Terminates a pass in a loop. 200
else Conditionally execute commands. 184
elseif Conditionally execute commands. 185
end Terminates conditional statements and loops. 182, 187, 

191, 195
for Repeats execution of a group of commands. 191
if Conditionally execute commands. 182
otherwise Conditionally execute commands. 187
switch Switches among several cases based on expression. 187
while Repeats execution of a group of commands. 195

Polynomial functions
Function Description Page
conv Multiplies polynomials. 265
deconv Divides polynomials. 265
poly Determines coefficients of a polynomial. 264
polyder Determines the derivative of a polynomial. 266
polyval Calculates the value of a polynomial. 262
roots Determines the roots of a polynomial. 263

Curve fitting and interpolation
Function Description Page
interp1 One-dimensional interpolation. 267
polyfit Curve fit polynomial to set of points. 269

Symbolic Math
Function Description Page
collect Collects terms in an expression. 354
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diff Differentiates an equation. 363
double Converts number from symbolic form to numerical form 352
dsolve Solves an ordinary differential equation. 367
expand Expands an expression. 355
ezplot Plots an expression. 369
factor Factors to product of lower order polynomials. 355
findsym Displays the symbolic variables in an expression. 353
int integrates an expression. 365
pretty Displays expression in math format. 357
simple Finds a form of an expression with fewest characters. 357
simplify Simplifies an expression. 356
solve Solves a single equation, or a system of equations. 358
subs Substitutes numbers in an expression. 372
sym Creates symbolic object. 348
syms Creates symbolic object. 350

Symbolic Math (Continued)
Function Description Page
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Answers to Selected Problems
Chapter 1

2. (a) 7.6412 (b) 6.8450

4. (a) 7.9842 (b) 80.0894

6. (a) 73.2258 (b) 26.0345

8. (a) 62.6899 (b) 2.1741

10. (a) 12.4378cm (b) 11.1663cm

16. (a)
(b)  

18. (a)
(b) and c) 66.1438 mm

20. 2.6042

22. 77

24. (a) $1678.20 (b) $1783.09
(c) $1783.00

26. 2598960

28. 0.3815 A

32. 2.7778e-10 m

34. 193 days

36. (a) 92.0412 (b) 7.9057

38. 1.1838e6 watts

40. 30.1497 s, 1063.3 ft, 14635 ft

Chapter 2

2. 2.6163   32.0000  -12.1500   54.0000   
40.4473    1.2962

4. 3.1250
    0.3290
    6.1000
    6.7346
    0.0055
   11.3387
  133.0000

6. 3.5000   12.2500   -0.5469  -22.4000    
1.8708

8. 81.0000   72.3750   63.7500   55.1250   
46.5000   37.8750   29.2500   20.6250   
12.0000

10. -21.0000
 -18.6429
 -16.2857
       ....
    9.6429
   12.0000

Chapter 3

2. 7.0000   1.0000  -0.3333  -0.5000  
-0.2000    0.3333    1.0000

4.  1.9933   10.9800   11.2161   10.8566  
10.4286   10.0259    9.6652    9.3455  
9.0616

6. 0    0.2410    0.3949    0.4669    0.4958    
0.5066    0.5106    0.5120  m/s

8. (a) and (b)  29.6184

14. (a) 1.3333   9.3750  24.6154   
47.0556  76.6957
(b) -2    8   76  250  578

16. 42

18.

α 15.3245°=

β 31.909°= γ 132.7665°=

γ 82.8192°=

106.9541°
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20.          0                0                0
       7.7863       214.42       1082.2
       15.573       428.83       2164.5
          ...               ...               ...
       70.077       1929.7       9740.1
       77.863       2144.2        10822

22. 6.000000000000000
4.000000000000000
3.000000000000000
2.500000000000000
2.100000000000000
2.000999999999918
2.000010000000827

24. (a) 3.141593304503081
(b) 3.141592653595635
(c) 3.141592653589794

26. hm=575.3948m, xhm=309.6821m

30. (c) pmax05=0.095454545454545
pmax01=0.095491071428571

(d) E =0.038250669386692

32. u=-4, v=2.5, w=4, x=1, y=-2
34. , , 

, , 

Chapter 4

2.  Years      Monthly Pay  Total Pay
         10.00       1053.34     126400.61
         11.00         979.04     129232.91
            ...              ...               ...
         30.00        527.69      189969.06

4. h(cm)    R1(cm)     R2(cm)      S(cm^2)
         8.00        5.73         6.87        571.23
         10.00      5.12         6.15        556.95
           ...            ...             ...             ...
         16.00      4.05         4.86        574.04

6. Time(hrs)   No of Bacteria
            0            1
            1            2
            2            4

    ...           ...
   23  8.3886e+006

          24  1.6777e+007

8. Time(s)    x (m)   v (m/s)
             0             0   20.0000
    0.0200    0.3693   17.0407
    0.0400    0.6832   14.4510
        ...            ...            ...
    0.5000    1.7337   -1.8957

10. Interest Rate Acc Value
          2.00      12189.94
          2.50      12800.85
            ...             ...
           6.00      17908.48

12.  a=74.5   b=80.931

14.  153 ft

16.     t(s)        th (deg)         r(m)
                0              90            500
         4.488       66.401       559.35
         8.976       51.029       707.62
           ...               ...              ...
       62.832         51.34       3201.6

18.     T (C)   p(mmHg)
                       0    26.5741
     2.0000    29.6487
      4.0000    33.0268
                 ...              ...
       42.0000  197.7684

20. Fractions of SO2, SO3, O2 and N2 are
0.1477, 0.4212, 0.1002, and 0.3308
respectively.

IR1 0.5185= IR2 1.8642=

IR3 1.7037= IR4 0.2716=

IR5 0.4074=
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22. N, N, 
N, N, 
N, N, 

N, N, 
N.

24. ,   , , 
, 

26. eagle 4, birdie 2, bogey -1, double -2

Chapter 5

2.

4.

6.

8.

12.

14.

16.

F1 11139= F2 8340.6–=

F3 7876.1–= F4 7876.1=

F5 9567.7–= F6 1575.2–=

F7 6600= F8 1575.2=

F9 2391.9–=

a 0.5= b 0.1–= c 10–=
d 2–= e 10=
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18.

20.

22.

26.

28.

30.
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Chapter 6

6. (a) Chicago 79.1290oF
Sun Francisco 74.5484 oF

(b) Chicago 16
Sun Franciscoe 113

(c) 23 days, on days:  1     2     3     4     
5     6     7     8     9    11    13    14    
15   16    17    18    19    20    22    
23    24    25    26

(d) 1 day, on the 30th

8. 2.0000    0.7500    0.4444
    3.0000    1.0000    0.5556
    4.0000    1.2500    0.6667
    5.0000    1.5000    0.7778

12. The required number is:  17435

14. For , 3.133787490628158

18. (a) 0.707106782936867
(b) -0.258819047933546

20. (a) 137
(b) 165

26. (a) 10.488088482190042
(b) 3.056844778539776e+002
(c) 4.821825380515788

28. (a) 924.602 USGalon
(b) 7.06293 ft3 
(c) 13.5921 m3 

Chapter 7

2. (a)  -18.5991,    52.8245

(b)

4.  24.5872 m/s

6. (a) 9.9216 
(b) 16.3459

8. 0.013518673497095 lb

10. (a) 134 oF
(b) 195 oF

12. 2.4615

14. (a) [-3.5 14.2] 
(b) [13.4 -8.1 17.2]

16. (a) [0.68457  0.72894] 
(b) [-0.23337  0.77791  -0.58343]

18. (a) 38 
(b) 87.885

20.

22. (a)

m 100=
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(b)

24.  1.0978

28. (a) -39
(b) -36.3

30. (a) 15.8 C, 56.7%
(b) 29.6 C, 69.7%

34.  258.2759 mm4 

36.

38. (a) 0.722263919605908 Numerical
 0.722264296886855 Analytical
(b) 0.386396294708275 Numerical

0.386294361119891 Analytical

Chapter 8

2.

4. P = [1 0.2 -2.2 -0.392 0.4704]

6.

8. 8 10 12 14

10. 2.4829 cm 

12. (a) p = [ 4  -124   880     0]
(b)

(c) 1.4001 in.  or  8.4374 in.
(d) 4.5502 in.  1813.7 in3.

14. (a) p = [ -9.4248  94.248   0     0]
(b)

(c) 3.6586 in.  or  8.9373 in.
(d) 6.6667 in.  1396.3 in3.
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18. , 

20. 1.1987 L

22.
(a)

(b)

(c)

(d)

24.

26. C = 1.5682e+5,  S = 148.16

28. m = 9.4157,  b = 3.4418

30. , 

m 0.0017042–= b 211.88=

TB16000 184.61=
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Chapter 9

2. 2.2112

4. 3.8011  3.4936  1.8387  1.3148 
6.  0.17289 m

8. 0.5405 V

10. cm, cm.

12. in.,  in.

14.  m

16. (a) 62.269
(b)  -0.5640

18. 776.6000 ft

20. 1.6035 in3/s

22. 61.152 in.

24. 40800 ft2

26. 5.839 psi, 5.306 psi, 5.012 psi

28.

30.

32. 5642.5 s

34.
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36. (a)

(b)

(c)

38.

Chapter 10

4.

6.

8.

10.

12.

14.
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16.

18.

20.

Chapter 11

2. (a) (x + 2)^5
(b) x + 2
(c) (x + 2)^2*(x + 3) 
(d) 150

4. (a) x^6 - (13*x^5)/2 - 58*x^4 + 
(335*x^3)/2 + 728*x^2 - 890*x - 
1400
(b) -5  -3.5  -1  2  4  10

8. 5.0059 m

10. (a)

(b) (-0.2886359424,  2.9299922102)
(-3.3574030955,  2.0623432220)

12. (a) F =(g*m*mew*(h^2+x^2)^(12))/
(x + h*mew)
N =(g*m*x)/(x + h*mew)
(b) (97119*(x^2 + 100)^(1/2))/
(1000*(x + 11/2))

-5

0

5

x 10
-9

-6

-4

-2

0

x 10
-9

-1

0

1

2

x 10
9

x (m)y (m)

S
tr

es
s 

 σ
yy

 (
P

a)

-5

0

5

x 10
-9

-6

-4

-2

0

x 10
-9

-5

0

5

x 10
8

x (m)y (m)

S
tr

es
s 

 τ
xy

 (
P

a)

x

y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0
20

40
60

80
100

0
200

400
600

800
1000

0

200

400

600

800

1000

t (s)Ninf

N

0
0.05

0.1
0.15

0.2

0
0.05

0.1
0.15

0.2
0

500

1000

x (in.)y (in.)

S
x 

(k
si

)

0
0.05

0.1
0.15

0.2

0
0.05

0.1
0.15

0.2
0

500

1000

1500

x (in.)y (in.)

S
x 

(k
si

)

0
0.05

0.1
0.15

0.2

0
0.05

0.1
0.15

0.2
-400

-200

0

200

x (in.)y (in.)

S
x 

(k
si

)

x

y

-6 -4 -2 0 2 4 6 8
-4

-2

0

2

4

6

8

10



Answers to Selected Problems 411

(c)

(d) 200/11 m,  85.0972 N

14. y =-(x*x0 - R^2)/((R + x0)^(1/2)*
(R - x0)^(1/2))

16. (a) -((1 - x^2)^(1/2)*(x^2 + 2))/3
(b) x^2*sin(x)-2*sin(x)+2*x*cos(x)

20 1/4

24. x = exp(-R*(N+1)*t)*N*(N+1)
/(1+exp(-R*(N+1)*t)*N)
t_max = log(N)/R/(N+1)

26. (a) g/c*m-exp(-c/m*t)*g/c*m
(b) 16.1489 kg/s
(c)

28. C2/x + x^4/10

30. (a) 10*C - (C*(8*L + 5*(C^2*R^2 - 
4*C*L)^(1/2) - 5*C*R))/
(exp((t*((C^2*R^2 - 4*C*L)^(1/2) + 
C*R))/(2*C*L))*(C^2*R^2 - 
4*C*L)^(1/2)) - 
(C*exp((t*((C^2*R^2 - 4*C*L)^(1/2) 
- C*R))/(2*C*L))*(5*(C^2*R^2 - 
4*C*L)^(1/2) - 8*L + 5*C*R))/
(C^2*R^2 - 4*C*L)^(1/2)

(b)

(c)

(d)
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Index
A
abs, 14, 395
acos, 15, 395
acot, 15, 395
all, 180, 399
and, 179, 399
anonymous function, 230
ans, 19, 394
any, 180, 399
arithmetic operations with scalars, 10
array

addition, subtraction, 64
addressing, matrix, 43
addressing, vector, 42
creating, 35
division, 68
element-by-element operations, 72
multiplication, 65
one-dimensional (vector), 35
two-dimensional (matrix), 39

Array Editor Window, 97
arrow key, 9
asin, 15, 395
assignment operator, 16
atan, 15, 395
axis, 147, 398
B
BackgroundColor, 147
bar, 152, 397
bar3, 331, 397
barh, 152, 397
break, 200, 399
C
case, 187, 399
cd, 23, 394
ceil, 15, 395
clc, 10, 394
clear, 19, 394
close, 158, 394

collect, 354, 399
colon symbol, 44
Color, 137, 147
colormap, 328, 398
Command History Window, 5, 10
Command Window, 5, 9
comment, 10
conditional statement

if-else-end, 184
if-elseif-else-end, 185
if-end, 182

continue, 200, 399
contour, 330, 397
contour3, 330, 397
conv, 265, 399
cos, 15, 395
cosh, 15, 395
cot, 15, 395
coth, 15, 395
cross, 77, 396
Current Directory Window, 22
current directory, 22
curve fitting

exponential function, 271
logarithmic function, 271
power function, 271
reciprocal function, 271

curve fitting interface, 278
curve fitting, 261, 267
cylinder, 331, 397
D
deconv, 265, 399
det, 70, 77, 396
determinant, 70
diag, 50, 396
diff, 363, 400
differential equation, 303, 366
differentiation, symbolic, 363
disp, 101, 396
display formats, 12



414  Index

dot, 66, 77, 396
double, 352, 400
dsolve, 367, 400
E
EdgeColor, 147
Editor Window, 7
Editor/Debugger Window, 21
element-by-element operations, 72
ellipsis, 9
else, 184, 399
elseif, 185, 399
end, 182, 187, 191, 195, 399
eps, 19, 394
equation, solving, 295, 348, 358
equations, set of linear, 71
error bars, 150
errorbar, 151, 397
escape character, 104
exp, 14, 395
expand, 355, 400
exporting data, 114
eye, 40, 68, 396
ezplot, 369, 400
F
factor, 355, 400
factorial, 15, 395
fclose, 109, 394
feval, 238, 398
fid (file identifier), 108
Figure Window, 6
Figure Windows (multiple), 157
figure, 158, 394
find, 180, 399
findsym, 353, 400
fix, 15, 395
floor, 15, 395
fminbnd, 298, 398
FontAngle, 147
FontName, 147
FontSize, 147
FontWeight, 147
fopen, 108, 394
for, 191, 399

format, 12, 394
formatting text, 145, 146
fplot, 140, 397
fprintf, 103–110, 396
function

anonymous, 230
function functions, 234
function handle, 235
inline, 233
nested functions, 242
subfunctions, 240
user-defined, 219

function file
creating, 220
function definition line, 222, 223
H1 line, 224
help text lines, 224
input/output arguments, 222
saving, 225
structure, 221
using, 226

function, built-in, 13
fzero, 296, 398
G
global variables, 225
global, 225, 394
Greek characters, 146
grid, 148, 328, 398
gtext, 145, 398
H
handle (function), 235
Help Window, 7
help, 224
help, 224, 394
hist, 154–156, 397
histograms, 153–156
hold off, 142, 397
hold on, 142, 397
I
i, 19, 394
identity matrix, 68
if, 182, 399
Import Wizard, 116
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importing a function, 236
importing data, 114
indefinite loop, 196
inf, 19, 394
inline function, 233
inline, 233, 398
input a string, 100
input, 99, 396
int, 365, 400
integration, numerical, 300
integration, symbolic, 365
interp1, 276, 399
interpolation

cubic spline, 276
linear, 276
nearest, 276

interpolation, 274
inv, 69, 77, 396
inverse, matrix, 69
iskeyword, 19, 394
J
j, 19, 394
L
least squares, 268
left division, 70
legend, 145, 398
length, 49, 396
line, 143, 397
linestyle, 137
LineWidth, 147
linewidth, 137
linspace, 38, 396
load, 112, 396
log, 14, 395
log10, 14, 395
logical array, 174
logical operator, 177
logical vectors, 176
loglog, 149, 397
lookfor, 224, 394
loop

for-end, 190
nested, 198

while, 195
M
marker, 137
markeredgecolor, 137
markerfacecolor, 137
markersize, 137
matrix

adding elements, 47
deleting elements, 48
determinant, 70
identity, 68
inverse, 69
size of, 39

max, 76, 396
mean, 76, 396
median, 76, 396
mesh, 327, 328, 397
meshc, 329, 397
meshgrid, 325, 397
meshz, 329, 397
M-file, 20, 229
min, 76, 396
modifiers, text, 146
multiple Figure Windows, 157
N
NaN, 19, 394
nested functions, 242
nested loops, 198
not, 179, 399
nthroot, 14, 395
number format, 105
O
ode113, 304, 398
ode15s, 305, 398
ode23, 304, 398
ode23s, 305, 398
ode23t, 305, 398
ode23tb, 305, 398
ode45, 304, 398
ones, 40, 396
or, 179, 399
order of precedence, 11, 176, 178
otherwise, 187, 399
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output commands, 100
output to a file, 108
P
passing a function, 236
percent symbol, 10
pi, 19, 394
pie, 153, 397
pie3, 332, 397
plot

axis label, 144
axis range, 147
bar plot (3-D), 331
bar plot, 152
color specifiers, 136
contour plot (2-D), 330
contour plot (3-D), 330
cylinder, 331
error bars, 150
formatting, 144–148
grid for 3-D plot, 325
grid, 148
histograms, 153–156
legend, 145
line (3-D), 323
line specifiers, 135, 137
logarithmic axes, 149
marker specifiers, 136
mesh (3-D), 327
mesh and contour plot (3-D), 329
mesh curtain plot (3-D), 329
mesh plot (3-D), 328
multiple graphs in a plot, 141–144
multiple plots on a page, 157
pie charts, 153
pie plot (3-D), 332
Plot Editor, 148
plot viewing direction (3-D), 333
polar grid, 332
polar plot, 156
properties, 136
scatter plot (3-D), 332
special graphics, 152
specifiers, 136

stair plot, 152
stem plot (3-D), 332
stem plot, 152
surface plot (3-D), 327, 329
surface with lighting plot (3-

D), 330
symbolic expression, 369
text, 145
three-dimensional, 323
title, 144
waterfall plot (3-D), 330

plot, 134, 397
plot3, 323, 397
plotting a function, 139–141
pol2cart, 333, 397
polar plot, 156
polar, 156, 397
poly, 264, 399
polyder, 266, 399
polyfit, 269, 399
polynomial

addition, 264
derivative, 266
division, 265
MATLAB representation, 261
multiplication, 265
roots, 263
value of, 262

polyval, 262, 399
pretty, 357, 400
property name, 137, 146
property value, 137, 146
Q
quad, 300, 398
quadl, 301, 398
R
rand, 77, 78, 396
randi, 78, 79, 396
randn, 79, 396
random numbers, 77
randperm, 78, 396
relational operator, 174
rem, 15, 395
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reshape, 49, 396
right division, 71
roots, 263, 399
Rotation, 147
round, 15, 395
S
save, 111, 396
saving the workspace, 111
scatter3, 332, 397
script file

creating, 21
input to, 97–100
output from, 100–110
running, 22
saving, 22

script file, 20
semicolon, 10, 17
semilogx, 149, 397
semilogy, 149, 397
sign, 16, 395
simple, 357, 400
simplify, 356, 400
sin, 15, 395
sinh, 15, 395
size, 49, 396
solve, 358, 400
sort, 76, 396
sphere, 331, 397
sqrt, 14, 395
stairs, 153, 397
std, 77, 396
stem, 153, 397
stem3, 332, 397
stopping indefinite loop, 196
string, input, 100
strings, 53–55
subfunctions, 240
subplot, 157, 398
subs, 372, 400
subscript, 146
sum, 76, 396
superscript, 146
surf, 327, 329, 397

surfc, 329, 397
surfl, 330, 398
switch, 187, 399
switch-case statement, 187
sym, 348, 400
symbolic math

default variable, 353
differential equation solution, 367
differentiation, 363
equation solving, 358
expression, 350
integration, 365
numerical calculations with, 372
object, 348
plotting expression, 369
variable, 349, 350

syms, 350, 400
T
table, display, 86, 102
tan, 15, 395
tanh, 15, 395
text modifiers, 146
text, 145, 398
title, 144, 398
transpose operator, 41
trapz, 302, 398
truth table, 181
U
uiimport, 116, 396
V
variable

defining, matrix, 39–41
defining, scalar, 16
defining, vector, 36–38
global, 225
local, 224
name, 18
predefined, 18

vector
adding elements, 46
constant spacing, 37, 38
creating, 36
deleting elements, 48
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vectorization, 75
view, 333, 398
W
waterfall, 330, 398
while, 195, 399
who, 19, 96, 394
whos, 19, 96, 394
Workspace Window, 97
workspace, 96
X
xlabel, 144, 398
xlsread, 114, 396
xlswrite, 115, 397
xor, 180, 399
Y
ylabel, 144, 398
Z
zeros, 40, 396
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