TECHNOLOGY BASED ENTREPRENEURSHIP DEVELOPMENT PROGRAMME View project

UNDERSTANDING AUTOIMMUNE DISEASE: AN UPDATE REVIEW

Article · July 2016 CITATIONS READS 7,325 4 6 authors, including: Shashi Pratap Singh Pranay Wal Pranveer Singh Institute of Technology Pranveer Singh Institute of Technology 12 PUBLICATIONS 16 CITATIONS 134 PUBLICATIONS 351 CITATIONS SEE PROFILE SEE PROFILE Ankita Wal Vikas Srivastava Pranveer Singh Institute of Technology Indian Institute of Toxicology Research 74 PUBLICATIONS 185 CITATIONS 27 PUBLICATIONS 639 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Elsevier book chapter View project

REVIEW ARTICLE

ISSN:2394-2371 CODEN (USA):IJPTIL

UNDERSTANDING AUTOIMMUNE DISEASE: AN UPDATE REVIEW

Shashi Pratab Singh¹*, Pranay Wal¹, Ankita Wal¹, Vikas Srivastava², Ratnakar Tiwari², Radha Dutt Sharma²

Pranveer Singh Institute of Technology, Kanpur- 209305, U.P., India Indian Institute of Toxicology Research, CSIR, Lucknow-226001, U.P., India

ABSTRACT

Autoimmune diseases are pathological conditions identified by abnormal autoimmune responses and characterized by auto-antibodies and T-cell responses to self-molecules by immune system reactivity. Some other common autoimmune disorders include rheumatoid arthritis, systemic lupus erythematosus (lupus), and vasculitis. Human autoimmune diseases (AD) occur frequently (affecting in aggregate more than 5% of the population worldwide), and impose a significant burden of morbidity and mortality on the human population. AD are defined as diseases in which immune responses to specific self-antigens contribute to the ongoing tissue damage that occurs in that disease. ADs may be either tissue-specific (e.g., thyroid, β-cells of the pancreas), where unique tissue-specific antigens are targeted, or may be more systemic, in which multiple tissues are affected, and a variety of apparently ubiquitously expressed autoantigens are targeted. Women account for about 75% of the estimated 23.5 million people in America afflicted by autoimmune diseases, and autoimmune diseases constitute some of the leading causes of death and disability in women below 65 years of age. The development of autoimmune diseases depends on a combination of genetic and environmental factors. Most autoimmune diseases are thought to be polygenic, involving more than one gene. For clinicians, autoimmune diseases appear to be either systemic (e.g. systemic lupus erythematosus) or organspecific (e.g. Type 1 diabetes mellitus). This classification, although clinically useful, does not necessarily correspond to a difference in causation. A more useful division distinguishes between diseases in which there is a general alteration in the selection, regulation or death of T cells or B cells and those in which an aberrant response to a particular antigen, self or foreign, causes autoimmunity. Antigens are taken up by antigen presenting cells (APC) such as dendritic cells (DC) and processed into peptides which are loaded onto MHC molecules for presentation to T cells via clonotypic T cell receptors (TCR).

Keywords: - Autoimmune diseases, T-cell, B cells, Auto-antibodies, Autoantigens.

INTRODUCTION

Autoimmune disease is a condition which is

 $\hbox{*Corresponding Author:}\\$

Shashi Pratab Singh, Research Scholar Pranveer Singh Institute of Technology,

Kanpur- 209305, U.P., India

E.Mail: shashipratapsingh111@gmail.com

Article Published: July-Sept 2016

triggered by the immune system initiating an attack on self-molecules due to the deterioration of immunologic tolerance to auto-reactive immune cells.[1] Smith and Germolec state that "autoimmune disorders affect approximately 3% of the North American and European

populations, >75% of those affected being women." The initiation of attacks against the body's self-molecules in autoimmune diseases, in most cases is unknown, but a number of studies suggest that they are strongly associated with factors such as genetics, infections and /or environment.^[1] An immune system is a highly regulated biological mechanism that identifies and reacts to antigens from various foreign substances found in an organism's body and reacts to these possible pathological threats by producing certain types of lymphocytes such as white blood cells and antibodies that have the ability to destroy or neutralize various germs, poisons and other foreign agents.[2] Typically, the immune system is able to distinguish the foreign agents from the organism's own healthy cells and tissues. Autoimmunity, on the other hand, describes a diseased condition in which an organism fails to recognize its own cells and tissues, thereby enabling the immune system to trigger response against its own components.[2]

Autoimmune diseases are pathological conditions identified by abnormal autoimmune responses and characterized by auto-antibodies and T-cell responses to self-molecules by immune system reactivity.[3] Autoimmune diseases occur when there is interruption of the usual control process, thereby allowing the system to malfunction and attack healthy cells

and tissues.^[4] A common example of autoimmune disease is Type I Diabetes, which affects nearly a million people in the United States. It is a condition in which the pancreas does not produce enough insulin to control sugar blood levels due to the autoimmune destruction of the insulin-producing pancreatic cells.[5] Some other common autoimmune disorders include rheumatoid arthritis, systemic lupus erythematosus (lupus), and vasculitis.[4]

The Immune System and Autoimmunity

Immunology is the science that deals with body's response to antigenic challenge (Latin Immunitas, freedom from). The term 'immunity' traditionally refers to the resistance exhibited by host toward injury caused by microorganisms and their products. Immunity is of different types it can be innate (native) or acquired (adaptive) immunity. Immunity is a very broad scientific discipline involving concept mechanism are involved in the protection of the body against infectious agent but they can also damage host autoimmunity. [6] organism called as Autoimmunity is the mechanism where an organism fails to recognize its own constituent parts (down to the submolecular levels) as 'self', which results in an immune response against its own cells and tissues. Any disease that results from such an aberrant immune response is termed an autoimmune disease.[7]

Autoimmunity is characterized by the reaction of cells (auto reactive T-lymphocytes) or products (autoantibodies) of the immune system against the organism's own antigens (autoantigen). It may be part of the physiological immune response (natural autoimmunity) or pathologically induced, which may eventually lead to development of clinical abnormalities (autoimmune disease).[8] Yet, despite Rose's discovery, over a decade passed before autoimmunity became a commonly accepted precept; the damage was done. The time it took the scientific community to fully accept the growing reality of autoimmunity has delayed the of findings translation its into medical knowledge, with grave implications in current diagnosis of epidemiological autoimmune diseases demonstrated to be a possible factor in reducing incidence of cancer through versatile CD8+ T cells, which kill target self-cells by releasing cytokines capable of increasing the susceptibility of target cells to cytotoxicity, or by secreting chemokines that attract other immune cells to the site of autoimmunity.[9]

Autoimmune Diseases

Human autoimmune diseases (AD) occur frequently (affecting in aggregate more than 5% of the population worldwide), and impose a significant burden of morbidity and mortality on the human population.[10] AD are defined as

diseases in which immune responses to specific self-antigens contribute to the ongoing tissue damage that occurs in that disease. ADs may be either tissue-specific (e.g., thyroid, β-cells of the pancreas), where unique tissue-specific antigens are targeted, or may be more systemic, in which multiple tissues are affected, and a variety of apparently ubiquitously expressed autoantigens are targeted.[11] The etiology of autoimmune diseases has been difficult to elucidate. Several factors are thought to contribute to the development of immune response to self, including genetics and environment.[12-14]

Several common autoimmune diseases, such as rheumatoid arthritis. systemic lupus erythematosus and multiple sclerosis, genetically linked to distinct human major histocompatibility complex (MHC) class II molecules and other immune modulators. Furthermore. autoimmunity often clusters families, indicating the potential for a broadspectrum genetic defect in immunological tolerance mechanisms. However, the genetic factors leading to the development of immune responses against specific antigens in a tissue and/or organ-specific manner remain largely unknown. Among the environmental factors, infections have been implicated in the onset and/or promotion of autoimmunity.[15]

Classification of Autoimmune Diseases

For clinicians, autoimmune diseases appear to be either systemic (e.g. systemic lupus erythematosus) or organ-specific (e.g. Type 1 diabetes mellitus). This classification, although clinically useful, does not necessarily correspond to a difference in causation. A more useful division distinguishes between diseases in which there is a general alteration in the selection, regulation or death of T cells or B cells and those in which an aberrant response to a particular antigen, self or foreign, causes autoimmunity. An example of a general defect is the absence of the Fas protein or its receptor- proteins involved in cell death- and a representative antigen specific disorder is the demyelination syndrome follows that enteric infection Campylobacterjejuni. This classification is useful in deciding on therapy, which may differ according to the pathogenic mechanism. Alterations that lower the threshold for the survival and activation of autoreactive B cells often cause the production of multiple autoantibodies, as in the case of the antinuclear and anti-DNA antibodies in systemic lupus erythematosu.[16-19] Low levels of these autoantibodies are the rule in all people. Genetic alterations with .global effects on the function of regulatory T cells or cytokine production often leads to inflammatory bowel disease.[20,21]

There are more than eighty identified autoimmune diseases.[22]

ADs traditionally have been categorized as organ specific or systemic or both (Table 1). The organ-specific ADs may represent examples of normal immune responses that produce disease because they are "misdirected" against a self-antigen or organ. By contrast, in systemic ADs, multiple organs are targets for immune attack, and chronic activation of innate and adaptive immune cells is usually present. SLE is considered to be the prototypic systemic AD. However, it should be noted that the categorization of an AD as organ-specific or systemic is based primarily on clinical observations rather than the expression pattern of the self antigen that appears to be targeted in the attack.[30] Table1&Figure1.

Women and Autoimmune Diseases

Approximately one-third of the risk of developing an autoimmune disease can be attributed to heritable factors, especially gender. Women account for about 75% of the estimated 23.5 million people in America afflicted by autoimmune diseases, and autoimmune diseases constitute some of the leading causes of death and disability in women below 65 years of age.[23,24] In several instances, such as rheumatoid arthritis, multiple sclerosis, and myocarditis, the autoimmune disease can be induced experimentally by administering selfantigen in the presence of adjuvant (collagen, myelin basic protein, and cardiac myosin, respectively).[25]An important unifying theme

in autoimmune diseases is a high prevalence in women. (Figure- 2)[26,27]

Conservative estimates indicate that 6.7 million or 78.8% of the persons with autoimmune diseases are women.[26] While the relationship between sex and prevalence of autoimmune disorders remains unclear, researchers have noted that women have higher levels of antibodies and mount larger inflammatory responses than men when their immune systems are triggered, possibly increasing the risk of autoimmunity.[23,24] Autoimmune diseases tend to fluctuate in accordance with hormonal changes, such as during pregnancy, menstrual cycle, menopause, aging and usage of birth control pills.[23] Autoimmune diseases fluctuate by racial lines as well, since two gene variants were found that are related to an increased risk of lupus among African American women.[28]TABLE-2[29].

Genetic Risk Factors

The development of autoimmune diseases depends on a combination of genetic and environmental factors. Most autoimmune diseases are thought to be polygenic, involving more than one gene. There is familial clustering, and the rate of concordance for autoimmune disease is higher in monozygotic twins than in dizygotic twins.[31-33] A few autoimmune diseases, such autoimmune as lymphoproliferative syndrome and the syndrome

of autoimmune polyglandular endocrinopathy with candidiasis and ectodermal dysplasia (APECED), are due to mutations in single gene. Even in these conditions, other genes modify the severity of disease and not all who possess the mutant gene manifest the disease. Most autoimmune diseases are multigenic, with multiple susceptibility genes working in concert to produce the phenotype. In general, the polymorphisms also occur in normal people and are compatible with normal immune function. Only when present with other susceptibility do they contribute genes to autoimmunity.[34,35] Some of these genes confer a much higher level of risk than others; for e.g. the major histocompatibility complex makes an important contribution to disease susceptibility. Most autoimmune diseases are linked to a particular class I or II HLA molecules[36]

Environmental Factors

Environmental factors may have various roles in promoting, causing or modifying autoimmune diseases. If, and when specific environmental factors contribute to autoimmune diseases, they may well determine the onset of illness, the nature of initial manifestations, or be a determining factor on whether an autoimmune disease contained within an individual might occur at all.[37]

Besides genetic factors, pathological environmental factors play a role in initiating or exacerbating certain autoimmune disorders. For example, the product of a human gene that confers susceptibility to Crohn's disease recognizes components of certain bacteria, and viral infections have long been suspected as triggers of Type 1 Diabetes. Conversely, other research suggests that the numbers of regulatory T cells that normally hold potentially destructive immune responses in check are reduced by viral infections. Exposure to various synthetic chemicals and metals in the initiation of autoimmune disease may also increase susceptibility disorders. to autoimmune Generally, inhibit immune metals cell proliferation and activation; mercury, gold, and silver, for example, can induce lymphocyte proliferation and subsequent autoimmunity. A broad range of synthetic chemicals, including hormone supplementation, hormone blockers, pesticides, insecticides, fungicides, and food and herbal products, may elicit estrogenic or antiestrogenic activity.[38]

Autoimmune Disease: Pathogenesis

Multiple arms of the immune system may be involved in autoimmune pathology. Antigens are taken up by antigen presenting cells (APC) such as dendritic cells (DC) and processed into peptides which are loaded onto MHC molecules for presentation to T cells via clonotypic T cell

receptors (TCR). Cytolytic T cells (Tc, activated by MHC class I on APC) can directly lyse a target, while T helper cells (Th, activated by MHC class II) release cytokines that can have direct effects or can activate macrophages, monocytes and B cells. B cells themselves have surface receptors that can bind surface antigens. Upon receiving signals from Th cells, B cells secrete antibodies specific for the antigens. Antibody may bind its specific target alone or bind to and activate may macrophages simultaneously via the Fc receptor. Multiple mechanisms have been described to explain how pathogens might induce activation and critical expansion of autoreactive T cells and start autoimmune disease.[39-44]

A microbial antigen can include an epitope that is structurally similar to an autoantigen epitope, providing the basic element of the mechanism referred to as molecular mimicry.[45-50]

Another mechanism would imply that the inflammatory setting and the paracrine secretion of T cell growth factors induce the expansion of activated autoreactive T cells, whose small number was previously insufficient to drive an autoimmune disease. Such a mechanism is referred to as bystander activation.[51] Pathogen-induced tissue inflammation may result in local activation of APC and enhanced processing/presentation of self-antigens that causes T cell priming, followed by T cell

activation and expansion of additional specificities (epitope spreading) [52,53]. Activation of resting autoreactive T cells may be achieved by viral and bacterial superantigens that bind a variety of MHC class II molecules and activate large numbers of T cells, irrespective of their specificity.[54]

Pathogen responses and autoimmunity

The ability of the host to defend against invading pathogens is to a large extent mediated by a group of germline-encoded receptors known as pattern-recognition receptors (PRR). These molecules include Toll-like receptors (TLR), nucleotide-binding and oligomerization domain (NOD)-like receptors (NLR), (RIG-I)-like helicases and a subset of C-type lectin receptors, which together recognize a large number of molecular patterns present in bacteria, viruses and fungi.[55]

Molecular mimicry

Antigen recognition by the TCR allows T-cell activation by different peptides bound to one or even several MHC molecules [56]. The pathogen may carry elements that are similar enough in amino acid sequence or structure to self-antigen, so T cells that are activated in response to the pathogen are also cross-reactive to self and lead to direct damage and further activation of other arms of the immune system. Similarly, antibodies reflecting B-cell receptor specificity

were found to recognize both microbial and selfantigens, this hypothesis is know as molecular mimicry.[57]

It is now generally accepted that a single T cell can respond to various distinct peptides, and that different peptide/MHC complexes can lead to cross-reactivity by the same TCR as long as the complexes have similar charge distribution and overall shape.[58-60]

Animal models in which molecular mimicry can trigger autoimmune disease are abundant. These include: Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease (TMEV-IDD), a model of human multiple sclerosis in which intracerebral TMEV infection of mice leads to an autoimmune demyelinating 30-40 after disorder days infection.[53] Mechanism by which pathogens may cause autoimmunity. a) Molecular mimicry describes the activation of crossreactive T cells that recognize both the pathogen-derived epitopes and the self-derived epitopes. Pathogen-derived epitops are taken up by APC and presented to T cells. Activation of T cells results in the direct lysis of self-tissue or release of cytokines and chemokines that activate macrophages, which mediate self-tissue damage, and provide help to pathogen-specific B cells. The subsequent release of self-tissue antigens and their uptake by APC perpetuates the autoimmune disease. b) Bystander activation is the nonspecific activation of self-reactive T cells. Activation of pathogenspecific T cells leads to inflammation that damages self-tissue in an antigen non-specific manner, and triggers activation of self-reactive T cells. c) Epitope spreading involves a persistent pathogen infection that causes damage to selftissue. This results in the release of self-peptides, which are engulfed by APC and presented to self-reactive T cells. Continual damage and release of self-peptides results in the spread of the self-reactive immune response to multiple self-epitopes.

FIGURE-3[61]

Treatments for Autoimmune Diseases

Since cures are currently unavailable for most autoimmune disorders, patients often face a lifetime of debilitating symptoms, loss of organ and tissue function, and high medical costs.[62] For many autoimmune disorders, the goals of treatments are to reduce chronic symptoms and lower the level of immune system activity while maintaining the immune system's ability to fight foreign contaminants. Treatments vary widely and depend on the specific disease and the symptoms. For example, those afflicted with Type I Diabetes must replenish their insulin levels. usually through injections. In autoimmune diseases like Type I Diabetes, patients may need supplements to provide a hormone or vitamin that the body is lacking. If the autoimmune disorder either directly or indirectly affects the blood or the circulatory system, such as autoimmune hemolytic anemia (AIHA), lupus, and antiphospholipidal antibody syndrome (AAS), patients may require blood transfusions. In autoimmune disorders that affect the bones, joints, or muscle, such as multiple sclerosis (MS) and rheumatoid arthritis, patients often require assistance to maintain mobility or medication to suppress pain and reduce inflammation in affected areas.[63]

REFRENCES

- 1. Smith, D.A., Germolec, D.R. 1000. Introduction to Immunology and Autoimmunity. Environmental Health Perspectives. 107(5): 661-665.
- MultipleSclerosisGlossary(2010). Availab at http://www.ucsfhealth.org/education/multiple

 sclerosis_glossary/index.html (April 2016).
- 3. Invernizzi, P., Gershwin, M.E.. The Genetics of human autoimmune disease. Journal of Autoimmunity.2009; 33:303-308.
- 4. Questions & Answers . Available at http://www.aarda.org/qand_a.php(April 2016)
- 5. A. B. Notkins, A. Lernmark, J. Clin. Invest. 2001;9, 1247-1252
- 6. A nanthanarayanan R, jayram ck. Panikars text book of microbiology, 7th ed. 70-79.
- 7. De Lisa Fair-weather. Autoimmune disease mechanisms. Encyclopedia of life science;2007,p1-6.
- 8. Kasper, Braunwaldsanci, longo, jamesons. Harrison's principles of internal medicine. 16th ed. McGraw 'ill Medical 2003;2:471-477.
- 9. U. Walter, P. Santamaria, Curr. Opin. Immmunol. 2005;6, 624-631.
- 10. Davidson A, Diamond B General features of autoimmune disease. In: Rose NR, Mackay

- IR (eds) The Autoimmune Diseases. Elsevier, St Louis, 2006; 25-36.
- 11. von Mühlen CA, Tan EM.Autoantibodies in the diagnosis of systemic rheumatic diseases. Semin Arthritis Rheum,1995; 24: 323-358.
- 12. Rioux JD and Abbas AK (2005) Paths to understanding the genetic basis of autoimmune disease. Nature 435: 584-589.
- Bjorses P, Aaltonen J, Horelli-Kuitunen N, Yaspo ML, Peltonen L (1998) Gene defect behind APECED: a new clue to autoimmunity. Hum Mol Genet 7: 1547-1553.
- 14. Walker LS and Abbas AK The enemy within: keeping self-reactive T cells at bay in the periphery. Nat Rev Immunol,2002; 2: 11-19.
- 15. Münz C, Lünemann JD, Getts MT, Miller SD. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol; 2009;9: 246-258.
- 16. Dang H, Geiser AG, Letterio JJ, et al. SLE-like autoantibodies and Sjogren"s syndrome-like lymphoproliferation in TGF-beta knockout mice. J Immunol 1995; 155: 3205-12.
- 17. Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Moroy T. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet 2000; **25**: 177-81.
- 18. Botto M. C1q knock-out mice for the study of complement deficiency in autoimmune disease. Exp Clin Immunogenet 1998; **15**: 231-4
- 19. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999; 11: 141-51.
- 20. Bhan AK, Mizoguchi E, Smith RN, Mizoguchi A. Colitis in transgenic and knockout animals as models of human

- inflammatory bowel disease. Immunol Rev 1999: 169: 195-207.
- 21. Blumberg RS, Saubermann LJ, Strober W. Animal models of mucosal inflammation and their relation to human inflammatory bowel disease. Curr Opin Immunol 2000; 12: 226.
- 22. Selgrade MK, Cooper GS, Germolec DR, Heindel JJ. Linking environmental agents and autoimmune disease: an agenda for future research. Environ Health Perspect; 1999;107 (Suppl. 5): 811-813.
- 23. Autoimmune Diseas. Available at http://www.nlm.nih.gov/medlineplus/ autoimmunediseases.html (April 2016).
- 24. K. McCoy, Women and Autoimmune Disorders, Every Day Health (2009). Available at http://www.everydayhealth.com/autoimmune_disorders/ understanding/women andautoimmune- diseases.aspx (April 2016)
- 25. Rose NR. Autoimmune diseases: tracing the shared threads. Hosp Pract. 1997;15:147–54...
- 26. Jacobson DL, Gange SJ, Rose NR, Graham NMH. Epidemiology and estimated population burden of selected autoimmune disease in the United States. Clin Immunol Immunopathol. 1997;84:223–43.
- 27. Whitacre, CC. Sex differences in autoimmune disease. Nature Immunol. 2001;2:777–80.
- 28. Autoimmune Disease (2011). Available at http://www.nlm.nih.gov/medlineplus/ autoimmunediseases.html (April 2016).
- 29. AutoimmuneDiseaes:Overview,frequentlyask ed question, http://www.womenhealth.gov.in
- 30. Ray S, Sonthalia N, Kundu S, Ganguly S. Autoimmune Disorders: An Overview of Molecular and Cellular Basis in Today's Perspective. J Clin Cell Immuno,l, 2012;.2215-2230.
- 31. Ortonne JP. Recent developments in the understanding of pathogenesis of psoriasis. Br J Dermatol 1999; 140: Suppl 54: 1-7.
- 32. Kukreja A, Maclaren NK. Autoimmunity and diabetes. J Clin Endocrinol Metab 1999; 84: 4371-8.

- 33. Gregersen PK. Genetic analysis of rheumatic diseases. In: Kelley WN, Harris ED Jr, Ruddy S, Sledge CN, eds. Textbook of rheumatology. 5th ed. Vol. 1. Philadelphia: W.B. Saunders, 1997: 209-211.
- 34. Encinas JA, Kuchroo VK. Mapping and identification of autoimmunity genes. CurrOpin Immunol 2000; 12: 691-697.
- 35. Becker KG. Comparative genetics of type I diabetes and autoimmune disease: common loci, common pathways? Diabetes 1999; 48: 1353-1358.
- Klein J, Sato A. The HLA system. N Engl J Med 2000; 343: 782-786.
- 37. Alarcon-Riquelme M, Alarcon-Segovia D. Shared Autoimmunity: The concept and introduction. Autoimmunity 2005; 38(3): 199
- 38. Autoimmune Disease. Available at http://www.nlm.nih.gov/medlineplus/ autoimmunediseases.html (April 2016).
- 39. Rose NR and Bona C. Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol Today,1993; 14: 426-430.
- 40. Oldstone MBA Molecular mimicry and immune mediated diseases. FASEB J,1998; 12: 1255-1265
- 41. Theofilopoulos AN, and Kono DH. Mechanisms and genetics of autoimmunity. Ann NY Acad Sci 1998;841: 225-235
- 42. Lori JA and Inman RD. Molecular mimicry and autoimmunity. N Engl J Med 1999;341: 2068-2074.
- 43. Benoist C and Mathis D. Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol 2001;2: 797-801
- 44. Wucherpfennig KW . Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest 2001;108: 1097-1104.
- 45. Benoist C and Mathis D. Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol,2001; 2: 797-801

- 46. Wucherpfennig KW. Mechanisms for the induction of autoimmunity by infectious agents. J Clin Invest, 2001; 108: 1097-1104.
- 47. Bachmaier K, Neu N, de la Maza LM, Pal S, Hessel A, Penninger JM. Chlamydia infections and heart disease linked through antigenic mimicry. Science,1999; 283: 1335-1339
- 48. Rose NR and Mackay IR. Molecular mimicry: a critical look at exemplary instances in human diseases. Cell Mol Life Sci ,2001;57: 542-551
- 49. Hemmer B, Gran B, Zhao Y, Marques A, Pascal J, Tzou A, Kondo T, Cortese I, Bielekova B, Straus SE, McFarland HF, Houghten R, Simon R, Pinilla C, Martin R.Identification of candidate T-cell epitopes and molecular mimics in chronic Lyme disease. Nat Med,1999; 5: 1375-1382.
- 50. Martin R, Gran B, Zhao Y, Markovic-Plese S, Bielekova, B, Marques A, Sung MH, Hemmer B, Simon R, McFarland HF, Pinilla C. Molecular mimicry and antigen-specific T cell responses in multiple sclerosis and chronic CNS Lyme disease. J Autoimmun.2001; 16: 187-192.
- 51. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky J, Ahmed R. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity.1998; 8: 177-187.
- 52. Lehmann PV, Forsthuber T, Miller A, Sercarz EE. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature, 1992; 358: 155-157
- 53. Miller SD, Vanderlugt CL, Begolka WS, Pao W, Yauch RL, Neville KL, Katz-Levy Y, Carrizosa A, Kim BS. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nat Med,1997;3: 1133-1136
- 54. Schrer MT, Ignatowicz L, Winslow GM, Kappler JW, Marrack P. Superantigens: bacterial and viral proteins that manipulate

- the immune system. Annu Rev Cell Biol. 1993:9: 101-128.
- 55. Ishii KJ, Koyama S, Nakagawa A, Coban C, Akira S. Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe.2008; 3: 352-363.
- 56. Marrack P, Scott-Browne JP, Dai S, Gapin L, Kappler JW. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu Rev Immunol, 2008; 26: 171-203.
- 57. Fujinami RS, Oldstone MB, Wroblewska Z, Frankel ME, Koprowski H. Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc Natl Acad Sci USA,1983; 80: 2346-2350.
- 58. Wucherpfennig KW and Strominger JL. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell,1998;80: 695-705.
- 59. Lang HL, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, Hjorth P, Sondergaard L, Svejgaard A, Wucherpfennig K, Stuart DI, Bell JI, Jones EY, Fugger L. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol, 2002; 3: 940-943.
- 60. Gregersen JW, Kranc KR, Ke X, Svendsen P, Madsen LS, Thomsen AR, Cardon LR, Bell JI, Fugger L. Functional epistasis on a

- common MHC haplotype associated with multiple sclerosis. Nature,2006; 443: 574-577.
- 61. Delogu et a Infectious diseases and autoimmunity 1 J Infect Dev Ctries 2011; 5(10):679-687.
- 62. Autoimmune Disease. Available at http://www.nlm.nih.gov/medlineplus/ autoimmunediseases.html (April 2016).
- 63. Autoimmune Disorders. Available at http://health.nytimes.com/health/guides/ disease/autoimmune-disorders/overview. html#Treatment (April 2016)

Table 1(A): Organ-Specific Autoimmune Diseases

Organ	Diseases	Self-antigen	Major Autoimmune Mechanism
Adrenal cells	Addison's disease	Cytochrome P-450 antigens	Autoantibodies
Blood cells	Autoimmune hemolytic anemia	Red blood cell membrane proteins	Autoantibodies
Pleatlets	Idiopathic thrombocytopenic purpura	Platelet antigens (GP IIb/IIIa)	Autoantibodies
Stomach	Pernicious anemia	Gastric parietal cell antigens (H+/ATPase, intrinsic factor)	Autoantibodies /T cells
Small bowl	Celiac sprue (gluten enteropathy)	Transglutaminase	Autoantibodies /T cells
Thyroid	Hashimoto's thyroiditis	Thyroid cell antigens (e.g., thyroglobulin)	Autoantibodies
	Graves' disease	Thyroid-stimulating hormone receptor	Autoantibodies /T cells
Muscle	Myasthenia gravis	Acetylcholine receptors	Autoantibodies /T cells
Pancreatic islets	Type 1 diabetes	Beta cell antigens (glutamic acid decarboxylase, insulin)	Autoantibodies /T cells
Hepatocytes	Autoimmune hepatitis	Hepatocyte antigens (cytochrome P450 2D6)	Autoantibodies
Bile duct cells	Primary biliary cirrhosis	Intrahepatic bile duct (pyruvate dehydrogenase complex protein)	Autoantibodies
Heart	Rheumatic heart disease	Myocardial antigens	Autoantibodies
Kidney/lungs	Goodpasture's syndrome	Basement membrane antigens (type IV collagen α3 chain)	Autoantibodies

Table 1(B): Systemic Autoimmune Diseases

Table 1(D). Systemic Autominium Diseases				
Disease(s)	Self antigen	Major Autoimmune Mechanism		
Ankylosing sponkylitis	Vertebrae	Immune complexes		
Multiple sclerosis	Brain or white matter	TH1 cells and TC cells, auto- antibodies		
Rheumatoid arthritis	Connective tissue, IgG	Auto-antibodies, immune complexes		
Systemic lupus erythematosus	DNA, nuclear protein, RBC and platelet membranes	• •		
Scleroderma	Nuclei, heart, lungs, gastrointestinal tract, kidney	Auto-antibodies		

Table 2 Types of Autoimmune Diseases & Their Symptoms

Disease	Symtoms
Alopecia areata (Al-uh-PEE-shuh AR-ee-AYT-uh)	Patchy hair loss on the scalp, face, or other areas of
The immune system attacks hair follicles (the structures	your body
from which hair grows). It usually does not threaten health,	
but it can greatly affect the way a person looks.	
Autoimmune hepatitis	Fatigue, Enlarged liver, Yellowing of the skin or
The immune system attacks and destroys the liver cells.	whites of eyes, Itchy skin, Joint pain, Stomach pain
This can lead to scarring and hard-ening of the liver, and	or upset
possibly liver failure	
Antiphospholipid (an-teye-FOSS-foh-lip-ihd) antibody	Blood clots in veins or arteries, Multiple
syndrome (aPL) A disease that causes problems in the	miscarriages, Lacy, net-like red rash on the wrists

Constitution of the description of the delete	1 V
inner lining of blood vessels resulting in blood clots	and Knees
in arteries or veins.	
Celiac disease: A disease in which people can't tolerate	Abdominal bloating and pain, Diarrhea or
gluten, a substance found in wheat, rye, and barley, and	constipation., Weight loss or weight gain, Fatigue,
also some medicines. When people with celiac disease eat	Missed menstrual periods, Itchy skin rash, Infertility
foods or use products that have gluten, the immune system	or miscarriages
responds by damaging the lining of the small intestines	
Diabetes type 1	Being very thirsty, Urinating often, Feeling very
A disease in which your immune system attacks the cells	hungry or tired, Losing weight without trying,
that make insulin, a hormone needed to control blood sugar	Having sores that heal slowly, Dry, itchy skin,
levels. As a result, your body cannot make insulin. Without	Losing the feeling in your feet or having tingling in
insulin, too much sugar stays in your blood. Too high	your feet, Having blurry eyesight
blood sugar can hurt the eyes, kidneys, nerves, and gums	
and teeth. But the most serious problem caused by diabetes	
is heart disease.	Towns in Large Eller Weight Loss Hard and Cale
Graves' disease (overactive thyroid)	Insomnia, Irritability, Weight loss, Heat sensitivity,
A disease that causes the thyroid to make too much thyroid	Sweating, Fine brittle hair, Muscle weakness, Light
hormone.	menstrual periods, Bulging eyes, Shaky hands,
Cuillain Danna (CEE yahn bab DAV) ann duan	Sometimes there are no symptoms Weekness or tingling feeling in the legs that might
Guillain-Barre (GEE-yahn bah-RAY) syndrome The immune system attacks the nerves that connect your	Weakness or tingling feeling in the legs that might spread to the upper body, Paralysis in severe cases
brain and spinal cord with the rest of your body. Damage	Symptoms often progress relatively quickly, over a
to the nerves makes it hard for them to transmit signals. As	period of days or weeks, and often occur on both
a result, the muscles have trouble responding to the brain	sides of the body.
Hashimoto's (hah-shee-MOH-tohz) disease	Fatigue, Weakness, Weight gain, Sensitivity to cold,
(underactive thyroid)	Muscle aches and stiff joints, Facial swelling,
A disease that causes the thyroid to not make enough	Constipation
thyroid hormone	
Hemolytic anemia (HEE-moh-lit-ihk uh-NEE-mee-uh)	Fatigue, Shortness of breath, Dizziness, Headache,
The immune system destroys the red blood cells. Yet the	Cold hands or feet, Paleness, Yellowish skin or
body can't make new red blood cells fast enough to meet	whites of eyes, Heart problems, including heart
the body's needs. As a result, your body does not get the	failure
oxygen it needs to function well, and your heart must work	
harder to move oxygen-rich blood throughout the body.	
Idiopathic thrombocytopenic purpura (id-ee-oh-PATH-	Very heavy menstrual period, Tiny purple or red
ihk throm-boh-seye-toh-PEE-nik PUR-pur-uh) (ITP)	dots on the skin that might look like a rash, Easy
A disease in which the immune system destroys blood	bruising, Nosebleed or bleeding in the mouth
platelets, which are needed for blood to clot.	
Inflammatory bowel disease (IBD)	Abdominal pain, Diarrhea, which may be bloody,
A disease that causes chronic inflammation of the digestive	Some people also have:
tract. Crohn's (krohnz) disease and ulcerative colitis	• Rectal bleeding • Fever • Weight loss • Fatigue
(UHL-sur-uh-tiv koh-LEYE-tuhss) are the most common	• Mouth ulcers (in Crohn's disease) • Painful or
forms of IBD	difficult bowel movements (in ulcerative colitis)
Inflammatory myopathies (meye-OP-uh-theez)	• Slow but progressive muscle weakness beginning in
A group of diseases that involve muscle inflammation and	the muscles closest to the trunk of the body.
muscle weakness. Polymyositis (pol-ee-meye-uh-SYT-	Polymyositis affects muscles involved with making
uhss) and dermatomyositis (dur-muh-toh-meye-uh-SYT-	movement on both sides of the body. With dermato-
uhss) are 2 types more common in women than men.	myositis, a skin rash comes before or at the same time as muscle weakness.
	May also have: • Fatigue after walking or standing
	Tripping or falling • Difficulty swallowing or
	breathing
Multiple sclerosis (MUHL-tip-uhl sklur-OH-suhss)	Weakness and trouble with coordination, balance,
(MS)	speaking, and walking
(/	1 -T

A disease in which the immune system attacks the	• Paralysis • Tremors • Numbness and tingling feeling
protective coating around the nerves. The damage affects	in arms, legs, hands, and feet • Symptoms vary
the brain and spinal cord.	because the location and extent of each attack vary
Myasthenia gravis (meye-uhss-THEEN-ee-uh GRAV-	Double vision, trouble keeping a steady gaze, and
uhss) (MG)	drooping eye, Trouble swallowing, with frequent
A disease in which the immune system attacks the nerves	gagging or choking
and muscles throughout the body	Weakness or paralysis • Muscles that work better
	after rest • Drooping head • Trouble climbing stairs or
	lifting things • Trouble talking
Primary biliary cirrhosis (BIL-ee-air-ee sur-ROH-	Fatigue
suhss)	• Itchy skin
The immune system slowly destroys the liver's bile ducts.	Dry eyes and mouth
Bile is a substance made in the liver. It travels through the	Yellowing of skin and whites of eyes
bile ducts to help with digestion. When the ducts are	
destroyed, the bile builds up in the liver and hurts it. The	
damage causes the liver to harden and scar, and eventually	
stop working.	
Psoriasis (suh-REYE-uh-suhss)	Thick red patches, covered with scales, usually
A disease that causes new skin cells that grow deep in your	appearing on the head, elbows, and knees
skin to rise too fast and pile up on the skin surface.	• Itching and pain, which can make it hard to sleep,
	walk, and care for yourself
	May have: • A form of arthritis that often affects the
	joints and the ends of the fingers and toes. Back pain
	can occur if the spine is involved
Rheumatoid arthritis (ROO-muh-toid ar-THREYE-	Painful, stiff, swollen, and deformed joints
tuhss)	Reduced movement and function
A disease in which the immune system attacks the lining of	May also have: • Fatigue • Fever • Weight loss • Eye
the joints throughout the body	inflammation • Lung disease • Lumps of tissue under
	the skin, often the elbows • Anemia

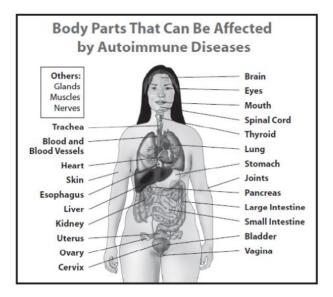


Figure 1: Possible body part affected with Autoimmune disease

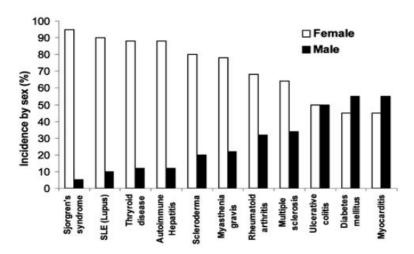


Figure 2: Autoimmune diseases comparison in Male and Female

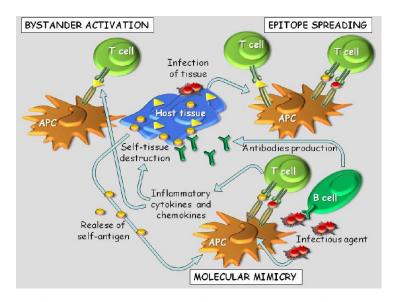


Figure 3: Autoimmune diseases Pathophysiology