Supply Chain

Learning Objectives

1. Understand the role of transportation in a supply chain
2. Evaluate the strengths and weaknesses of different modes of transportation
3. Discuss the role of infrastructure and policies in transportation
4. Identify the relative strengths and weaknesses of various transportation network design options
5. Identify trade-offs that shippers need to consider when designing a transportation network

The Role of Transportation in a Supply Chain

- Movement of product from one location to another
- Products rarely produced and consumed in the same location
- Significant cost component
- Shipper requires the movement of the product
- Carrier moves or transports the product

Modes of Transportation and their Performance Characteristics

- Air
- Package carriers
- Truck
- Rail
- Water
- Pipeline
- Intermodal

Modes of Transportation and their Performance Characteristics

	Freight Value (\$ billions) in 2002	Freight Tons (billions) in 2002	Freight Ton-Miles (millions) in 2002	Value Added to GNP (billion \$) in 2009
Mode	563	6	13	61.9
Air (includes				
truck and air)	9,075	11,712	1,515	113.1
Truck	392	1,979	1,372	30.8
Rail	673	1,668	485	14.3
Water	896	3,529	688	12.0
Pipeline	1,121	229	233	
Multimodal				

Table 14-1

Air

- Cost components
- Fixed infrastructure and equipment
- Labor and fuel
- Variable - passenger/cargo
- Key issues
- Location/number of hubs
- Fleet assignment
- Maintenance schedules
- Crew scheduling
- Prices and availability

Package Carriers

- Small packages up to about 150 pounds
- Expensive
- Rapid and reliable delivery
- Small and time-sensitive shipments
- Provide other value-added services
- Consolidation of shipments a key factor

Truck

- Significant fraction of the goods moved
- Truckload (TL)
- Low fixed cost
- Imbalance between flows
- Less than truckload (LTL)
- Small lots
- Hub and spoke system
- May take longer than TL

Rail

- Move commodities over large distances
- High fixed costs in equipment and facilities
- Scheduled to maximize utilization
- Transportation time can be long
- Trains 'built' not scheduled

Water

- Limited to certain geographic areas
- Ocean, inland waterway system, coastal waters
- Very large loads at very low cost
- Slowest
- Dominant in global trade
- Containers

Pipeline

- High fixed cost
- Primarily for crude petroleum, refined petroleum products, natural gas
- Best for large and stable flows
- Pricing structure encourages use for predicable component of demand

Intermodal

- Use of more than one mode of transportation to move a shipment
- Grown considerably with increased use of containers
- May be the only option for global trade
- More convenient for shippers - one entity
- Key issue - exchange of information to facilitate transfer between different modes

Transportation Infrastructure and Policies

- Governments generally take full responsibility or played a significant role in building and managing infrastructure elements
- Without a monopoly, deregulation and market forces help create an effective industry structure
- Pricing should reflect the marginal impact on the cost to society

Transportation Infrastructure and Policies

Figure 14-1

Design Options for a Transportation Network

- When designing a transportation network

1. Should transportation be direct or through an intermediate site?
2. Should the intermediate site stock product or only serve as a cross-docking location?
3. Should each delivery route supply a single destination or multiple destinations (milk run)?

Direct Shipment Network to Single Destination

Figure 14-2

Direct Shipping with Milk Runs

Figure 14-3

All Shipments via Intermediate Distribution Center with Storage

Suppliers
Buyer Locations

Figure 14-4

All Shipments via Intermediate Transit Point with Cross-Docking

- Suppliers send their shipments to an intermediate transit point
- They are cross-docked and sent to buyer locations without storing them

Shipping via DC Using Milk Runs

Figure 14-5

Tailored Network

Network Structure	Pros	Cons
Direct shipping	No intermediate warehouse Simple to coordinate	High inventories (due to large lot size) Significant receiving expense
Direct shipping with milk runs	Lower transportation costs for small lots All shipments via central	Increased coordination complexity
DC with inventory storage	Lower inbound transportation cost through consolidation	Increased inventory cost Increased handling at DC
All shipments via central	Low inventory requirement DC with cross-dock	Lower transportation cost through consolidation
Shipping via DC using	Lower outbound transportation cost for small lots	Increased coordination complexity
milk runs		

Table 14-2

Selecting a Transportation Network

- Eight stores, four supply sources
- Truck capacity $=40,000$ units
- Cost \$1,000 per load, \$100 per delivery
- Holding cost = \$0.20/year

Selecting a Transportation Network

$$
\text { Annual sales }=960,000 / \text { store } \quad \text { Direct shipping }
$$

Batch size shipped from each
supplier to each store $=40,000$ units
Number of shipments/yr from
each supplier to each store $=960,000 / 40,000=24$
Annual trucking cost
for direct network $=24 \times 1,100 \times 4 \times 8=\$ 844,800$
Average inventory at each
store for each product $=40,000 / 2=20,000$ units
Annual inventory cost
for direct network $=20,000 \times 0.2 \times 4 \times 8=\$ 128,000$
Total annual cost of
direct network $=\$ 844,800+\$ 128,000=\$ 972,800$

Selecting a Transportation Network

$$
\text { Annual sales }=960,000 / \text { store } \quad \text { Milk runs }
$$

Batch size shipped from each supplier to each store

$$
=40,000 / 2=20,000 \text { units }
$$

Number of shipments/yr from each supplier to each store $\quad=960,000 / 20,000=48$
Transportation cost per shipment per store (two stores/truck) $\quad=1,000 / 2+100=\$ 600$
Annual trucking cost for direct network
$=48 \times 600 \times 4 \times 8=\$ 921,600$
Average inventory at each store for each product
$=20,000 / 2=10,000$ units
Annual inventory cost for direct network
Total annual cost of direct network
$=10,000 \times 0.2 \times 4 \times 8=\$ 64,000$
$=\$ 921,600+\$ 64,000=\$ 985,600$

Selecting a Transportation Network

$$
\text { Annual sales }=120,000 / \text { store } \quad \text { Direct shipping }
$$

Batch size shipped from each
supplier to each store $=40,000$ units
Number of shipments/yr from
each supplier to each store $=120,000 / 40,000=3$
Annual trucking cost
for direct network $=3 \times 1,100 \times 4 \times 8=\$ 105,600$
Average inventory at each
store for each product $=40,000 / 2=20,000$ units
Annual inventory cost
for direct network $=20,000 \times 0.2 \times 4 \times 8=\$ 128,000$
Total annual cost of
direct network $=\$ 105,600+\$ 128,000=\$ 233,600$

Selecting a Transportation Network

$$
\text { Annual sales }=120,000 / \text { store } \quad \text { Milk runs }
$$

Batch size shipped from each supplier to each store
$=40,000 / 4=10,000$ units
Number of shipments/yr from
each supplier to each store $\quad=120,000 / 10,000=12$
Transportation cost per shipment
per store (two stores/truck) $\quad=1,000 / 4+100=\$ 350$
Annual trucking cost for direct network
$=12 \times 350 \times 4 \times 8=\$ 134,400$
Average inventory at each store for each product
$=10,000 / 2=5,000$ units
Annual inventory cost for direct network
Total annual cost of direct network
$=5,000 \times 0.2 \times 4 \times 8=\$ 32,000$
$=\$ 134,400+\$ 32,000=\$ 166,400$

Trade-offs in Transportation Design

- Transportation and inventory cost trade-off
- Choice of transportation mode
- Inventory aggregation
- Transportation cost and responsiveness trade-off

Trade-offs in Transportation Design

Mode	Cycle Inventory	Safety Inventory	In-Transit Cost	Transportation Time	Transportation Cost
Rail	5	5	5	2	5
TL	4	4	4	3	3
LTL	3	3	3	4	4
Package	1	1	1	6	1
Air	2	2	2	5	2
Water	6	6	6	1	6

Table 14-3

Trade-offs When Selecting Transportation Mode

Demand = 120,000 motors, Cost = \$120/motor,
Weight = $10 \mathrm{lbs} /$ motor, Lot size $=3,000$,
Safety stock $=50 \%$ ddlt

Carrier	Range of Quantity Shipped (cwt)	Shipping Cost (\$/cwt)
AM Railroad	$200+$	6.50
Northeast Trucking	$100+$	7.50
Golden Freightways	$50-150$	8.00
Golden Freightways	$150-250$	6.00
Golden Freightways	$250+$	4.00

Trade-offs When Selecting Transportation Mode

$$
\text { Cycle inventory }=Q / 2=2,000 / 2=1,000 \text { motors }
$$

Safety inventory $=L / 2$ days of demand $=(6 / 2)(120,000 / 365)=986$ motors
In-transit inventory $=120,000(5 / 365)=1,644$ motors
Total average inventory $=1,000+986+1,644$
$=3,630$ motors
Annual holding cost

$$
\text { using AM Rail }=3,630 \times \$ 30=\$ 108,900
$$

Annual transportation cost using AM Rail $=120,000 \times 0.65=\$ 78,000$
The total annual cost for inventory and transportation
using AM Rail = \$186,900

Trade-offs When Selecting Transportation Mode

	Lot Size	Transpor- tation Cost	Cycle Inventory	Safety Inventory	In-Transit Inventory	Inventory Cost	Total Cost
Alternative	Motors)	AM Rail	2,000	$\$ 78,000$	1,000	986	1,644
Northeast	1,000	$\$ 90,000$	500	658	986	$\$ 64,320$	$\$ 154,320$
Golden	500	$\$ 96,000$	250	658	986	$\$ 56,820$	$\$ 152,820$
Golden	1,500	$\$ 96,000$	750	658	986	$\$ 71,820$	$\$ 167,820$
Golden	2,500	$\$ 86,400$	1,250	658	986	$\$ 86,820$	$\$ 173,220$
Golden	3,000	$\$ 80,000$	1,500	658	986	$\$ 94,320$	$\$ 174,320$
Golden (old	4,000	$\$ 72,000$	2,000	658	986	$\$ 109,320$	$\$ 181,320$
Groposal) Golden (new proposal)	4,000	$\$ 67,000$	2,000	658	986	$\$ 109,320$	$\$ 176,820$

Table 14-5

Tradeoffs When

Aggregating Inventory

Highval - weekly demand $\Gamma_{H}=2, \int_{H}=5$, weight $=0.1 \mathrm{lbs}$, cost $=\$ 200$
Lowval - weekly demand $\Gamma_{L}=20, \int_{L}=5$, weight $=0.04 \mathrm{lbs}$, cost $=\$ 30$
$C S L=0.997$, holding cost $=25 \%, L=1$ week, $T=4$ weeks
UPS lead time $=1$ week, $\$ 0.66+0.26 x$
FedEx lead time $=$ overnight, $\$ 5.53+0.53 x$

- Option A. Keep the current structure but replenish inventory once a week rather than once every four weeks
- Option B. Eliminate inventories in the territories, aggregate all inventories in a finished-goods warehouse at Madison, and replenish the warehouse once a week

Tradeoffs When

 Aggregating Inventory1. HighMed inventory costs (current scenario, HighVal)

Average lot size, $Q_{H}=$ expected demand during T weeks

$$
=T_{H}=4 \quad 2=8 \text { units }
$$

Safety inventory, $s s_{H}=F^{-1}(C S L) \quad{ }_{T+L}=F^{-1}(C S L) \quad \sqrt{T+L}$

$$
=F^{-1}(0.997) \quad \sqrt{4+1} \quad 5=30.7 \text { units }
$$

Total HighVal inventory $=Q_{H} / 2+s s_{H}=(8 / 2)+30.7=34.7$ units

All 24 territories, HighVal inventory $=24 \times 34.7=832.8$ units

Tradeoffs When

 Aggregating Inventory1. HighMed inventory costs (current scenario, LowVal)

Average lot size, $Q_{L}=$ expected demand during T weeks

$$
=T_{H}=4 \quad 20=80 \text { units }
$$

Safety inventory, $s s_{L}=F^{-1}(C S L) \quad{ }_{T+L}=F^{-1}(C S L) \quad \sqrt{T+L}$

$$
=F^{-1}(0.997) \quad \sqrt{4+1} \quad 5=30.7 \text { units }
$$

Total LowVal inventory $=Q_{L} / 2+s s_{L}=(80 / 2)+30.7=70.7$ units

All 24 territories, LowVal inventory $=24 \times 70.7=1696.8$ units

Tradeoffs When

 Aggregating InventoryAnnual inventory
holding cost

$$
\begin{aligned}
\text { for HighMed }= & (\text { average HighVal inventory } \times \$ 200 \\
& + \text { average LowVal inventory } \times \$ 30) \times \\
& 0.25 \\
= & (832.8 \times \$ 200+169.8 \times \$ 30) \times 0.25 \\
= & \$ 54,366(\$ 54,395 \text { without rounding })
\end{aligned}
$$

Tradeoffs When

Aggregating Inventory

2. HighMed transportation cost (current scenario)

Average weight of each replenishment order

$$
=0.1 Q_{H}+0.04 Q_{L}=0.1 \times 8+0.04 \times 80=4 \text { pounds }
$$

Shipping cost per replenishment order

$$
=\$ 0.66+0.26 \times 4=\$ 1.70
$$

Annual transportation cost $=\$ 1.70 \times 13 \times 24=\$ 530$
3. HighMed total cost (current scenario)

Annual inventory and transportation cost at HighMed

$$
\begin{aligned}
& =\text { inventory cost }+ \text { transportation cost } \\
& =\$ 54,366+\$ 530=\$ 54,896
\end{aligned}
$$

Tradeoffs When Aggregating Inventory

	Current Scenario	Option A	Option B
Number of stocking locations	24	24	1.2 units
Reorder interval	4 weeks	1 week	1 week
HighVal cycle inventory	96 units	24 units	24 units
HighVal safety inventory	737.3 units	466.3 units	95.2 units
HighVal inventory	833.3 units	490.3 units	119.2 units
LowVal cycle inventory	960 units	240 units	240 units
LowVal safety inventory	737.3 units	466.3 units	95.2 units
LowVal inventory	$1,697.3$ units	706.3 units	335.2 units
Annual inventory cost	$\$ 54,395$	$\$ 29,813$	$\$ 8,473$
Shipment type	Replenishment	Replenishment	Customer order
Shipment size	8 HighVal +80 LowVal	2 HighVal + 20 LowVal	1 HighVal + 10 LowVal
Shipment weight	4 lbs.	1 lb.	0.5 lb.
Annual transport cost	$\$ 530$	$\$ 1,148$	$\$ 13,464$
Total annual cost	$\$ 54,926$	$\$ 30,961$	$\$ 22,938$

Table 14-6

Tradeoffs When

Aggregating Inventory

Average weight of each customer order

$$
=0.1 \times 0.5+0.04 \times 5=0.25 \text { pounds }
$$

Shipping cost per customer order

$$
=\$ 5.53+0.53 \times 0.25=\$ 5.66
$$

Number of customer orders per territory per week $=4$
Total customer orders per year $=4 \times 24 \times 52=4$
Annual transportation cost $=4,992 \times \$ 5.66=\$ 28,255$
Total annual cost = inventory cost + transportation cost

$$
=\$ 8,474+\$ 28,255=\$ 36,729
$$

Tradeoffs When Aggregating Inventory

	Aggregate	Disaggregate
Transport cost	Low	High
Demand uncertainty	High	Low
Holding cost	High	Low
Customer order size	Large	Small

Table 14-7

Trade-off Between Transportation Cost and Responsiveness

Steel shipments LTL $=\$ 100+0.01 x$

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Week 1	19,970	17,470	11,316	26,192	20,263	8,381	25,377
Week 2	39,171	2,158	20,633	23,370	24,100	19,603	18,442

Table 14-8

Trade-off Between Transportation Cost and Responsiveness
 Table 14-9

		Two-Day Response		Three-Day Response		Four-Day Response	
Day	Demand	Quantity Shipped	Cost $(\$)$	Quantity Shipped		Cost $(\$)$	Quantity Shipped
1	19,970	19,970	299.70	0		Cost (\$)	
2	17,470	17,470	274.70	37,440	474.40	0	
3	11,316	11,316	213.16	0		48,756	586.56
4	26,192	26,192	361.92	37,508	475.08	0	
5	20,263	20,263	302.63	0		0	
6	8,381	8,381	183.81	28,644	386.44	54,836	648.36
7	25,377	25,377	353.77	0		0	
8	39,171	39,171	491.71	64,548	745.48	0	
9	2,158	2,158	121.58	0		66,706	767.06
10	20,633	20,633	306.33	22,791	327.91	0	
11	23,370	23,370	333.70	0		0	
12	24,100	24,100	341.00	47,70	574.70	68,103	781.03
13	19,603	19,603	296.03	0		0	
14	18,442	18,442	284.42	38,045	480.45	38,045	480.45
			$\$ 4,164.46$		$3,464.46$		$3,264.46$

Tailored Transportation

- The use of different transportation networks and modes based on customer and product characteristics
- Factors affecting tailoring
- Customer density and distance
- Customer size
- Product demand and value

Tailored Transportation

	Short Distance	Medium Distance	Long Distance
High density	Private fleet with	Cross-dock with	Cross-dock with
	milk runs	milk runs	milk runs
Medium density	Third-party milk runs	LTL carrier	LTL or package
Low density	Third-party milk	LTL or package	Package carrier
	runs or LTL carrier	carrier	

Table 14-10

Tailored Transportation

Product Type	High Value	Low Value
High demand	Disaggregate cycle inventory. Aggregate safety inventory. Inexpensive mode of transportation for replenishing cycle inventory and fast mode when using safety inventory.	Disaggregate all inventories and use inexpensive mode of transportation for replenishment.
Low demand	Aggregate all inventories. If needed, use fast mode of transportation for filling customer orders.	Aggregate only safety inventory. Use inexpensive mode of transportation for replenishing cycle inventory.

Role of IT in Transportation

- The complexity of transportation decisions demands use of IT systems
- IT software can assist in:
- Identification of optimal routes by minimizing costs subject to delivery constraints
- Optimal fleet utilization
- GPS applications

Risk Management in Transportation

- Three main risks to be considered in transportation are

1. Risk that the shipment is delayed
2. Risk of disruptions
3. Risk of hazardous material

- Risk mitigation strategies
- Decrease the probability of disruptions
- Alternative routings
- In case of hazardous materials the use of modified containers, low-risk transportation models, modification of physical and chemical properties can prove to be effective

Making Transportation Decisions in Practice

1. Align transportation strategy with competitive strategy
2. Consider both in-house and outsourced transportation
3. Use technology to improve transportation performance
4. Design flexibility into the transportation network

Summary of Learning Objectives

1. Understand the role of transportation in a supply chain
2. Evaluate the strengths and weaknesses of different modes of transportation
3. Discuss the role of infrastructure and policies in transportation
4. Identify the relative strengths and weaknesses of various transportation network design options
5. Identify trade-offs that shippers need to consider when designing a transportation network

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Printed in the United States of America.

