Determining the Optimal Level of Product Availability

PowerPoint presentation to accompany

Learning Objectives

1. Identify the factors affecting the optimal level of product availability and evaluate the optimal cycle service level
2. Use managerial levers that improve supply chain profitability through optimal service levels
3. Understand conditions under which postponement is valuable in a supply chain
4. Allocate limited supply capacity among multiple products to maximize expected profits

Importance of the Level of Product Availability

- Product availability measured by cycle service level or fill rate
- Also referred to as the customer service level
- Product availability affects supply chain responsiveness
- Trade-off:
- High levels of product availability $\boldsymbol{\rightarrow}$ increased responsiveness and higher revenues
- High levels of product availability $\boldsymbol{\rightarrow}$ increased inventory levels and higher costs
- Product availability is related to profit objectives and strategic and competitive issues

Factors Affecting the Optimal Level of Product Availability

- Cost of overstocking, C_{o}
- Cost of understocking, C_{u}
- Possible scenarios
- Seasonal items with a single order in a season
- One-time orders in the presence of quantity discounts
- Continuously stocked items
- Demand during stockout is backlogged
- Demand during stockout is lost

L.L. Bean Example

Table 13-1

Demand D_{i} (in hundreds)	Probability $\boldsymbol{p}_{\boldsymbol{i}}$	Cumulative Probability of Demand Being $\boldsymbol{D}_{\boldsymbol{i}}$ or Less $\left(\boldsymbol{P}_{\boldsymbol{i}}\right)$	Probability of Demand Being Greater than $\boldsymbol{D}_{\boldsymbol{i}}$
4	0.01	0.01	0.99
5	0.02	0.03	0.97
6	0.04	0.07	0.93
7	0.08	0.15	0.85
8	0.09	0.24	0.76
9	0.11	0.35	0.65
10	0.16	0.51	0.49
11	0.20	0.71	0.29
12	0.11	0.82	0.18
13	0.10	0.92	0.08
14	0.04	0.96	0.04
15	0.02	0.98	0.02
16	0.01	0.99	0.01
17	0.01	1.00	0.00

L.L. Bean Example

Expected demand $=\quad D_{i} p_{i}=1,026$

10

Expected profit
from extra 100 parkas $=5,500 \times \operatorname{Prob}($ demand $\geq 1,100)-500$ $x \operatorname{Prob}($ demand $<1,100$)
$=\$ 5,500 \times 0.49-\$ 500 \times 0.51=\$ 2,440$
Expected profit from
ordering 1,300 parkas $=\$ 49,900+\$ 2,440+\$ 1,240+\$ 580$
$=\$ 54,160$

L.L. Bean Example

Additional Hundreds	Expected Marginal Benefit	Expected Marginal Cost	Expected Marginal Contribution
11th	$5,500 \times 0.49=2,695$	$500 \times 0.51=255$	$2,695-255=2,440$
12th	$5,500 \times 0.29=1,595$	$500 \times 0.71=355$	$1,595-355=1,240$
13th	$5,500 \times 0.18=990$	$500 \times 0.82=410$	$990-410=580$
14th	$5,500 \times 0.08=440$	$500 \times 0.92=460$	$440-460=-20$
15th	$5,500 \times 0.04=220$	$500 \times 0.96=480$	$220-480=-260$
16th	$5,500 \times 0.02=110$	$500 \times 0.98=490$	$110-490=-380$
17th	$5,500 \times 0.01=55$	$500 \times 0.99=495$	$55-495=-440$

Table 13-2

L.L. Bean Example

Figure 13-1

$f r=1 \quad \operatorname{Prob}($ demand $\quad 1,300)+$
 $\left(1,300 / D_{i}\right) p_{i}=0.99$
 $$
D_{i}>1,300
$$

Optimal Cycle Service Level for Seasonal Items - Single Order

C_{o} : Cost of overstocking by one unit, $C_{o}=c-s$
C_{u} : Cost of understocking by one unit, $C_{u}=p-c$
CSL*: Optimal cycle service level
O^{*} : Corresponding optimal order size
Expected benefit of purchasing extra unit $=\left(1-C S L^{*}\right)(p-c)$
Expected cost of purchasing extra unit $=C S L^{*}(c-s)$
Expected marginal
contribution of raising $=\left(1-C S L^{*}\right)(p-c)-\operatorname{CSL}^{*}(c-s)$ order size

Optimal Cycle Service Level for Seasonal Items - Single Order

$$
\begin{gathered}
C S L^{*}=\operatorname{Prob}\left(\operatorname{Demand} O^{\star}\right)=\frac{p-c}{p-s}=\frac{C_{u}}{C_{u}+C_{o}}=\frac{1}{1+\left(C_{o} / C_{u}\right)} \\
O^{*}=F^{-1}\left(C S L^{*},,\right)=\operatorname{NORMINV}\left(C S L^{*},,\right)
\end{gathered}
$$

Expected profit $=(p-s) F_{s} \xrightarrow{O-} \div-(p-s) \quad f_{s} \xrightarrow{O-} \div$

$$
-O(c-s) F(O,,)+O(p-c) 1-F(O,,)
$$

Optimal Cycle Service Level for Seasonal Items - Single Order

Expected profits $=(p-s)$ NORMDIST $(O-) /, 0,1,1$

$$
\begin{aligned}
& -(p-s) \operatorname{NORMDIST}(O-) /, 0,1,0 \\
& -O(c-s) \operatorname{NORMDIST}(O,,, 1) \\
& +O(p-c) 1-\operatorname{NORMDIST}(O,,, 1
\end{aligned}
$$

Evaluating the Optimal Service Level for Seasonal Items

Demand $\mu=350, \sigma=100, c=\$ 100, p=\$ 250$, disposal value $=\$ 85$, holding cost $=\$ 5$

Salvage value $=\$ 85-\$ 5=\$ 80$
Cost of understocking $=C_{u}=p-c=\$ 250-\$ 100=\$ 150$ Cost of overstocking $=C_{o}=c-s=\$ 100-\$ 80=\$ 20$

$$
\begin{gathered}
C S L^{*}=\operatorname{Prob}\left(\text { Demand } \quad O^{*}\right)=\frac{C_{u}}{C_{u}+C_{o}}=\frac{150}{150+20}=0.88 \\
O^{*}=\operatorname{NORMINV}\left(C S L^{*}, \quad\right)=\operatorname{NORMINV}(0.88,350,100)=468
\end{gathered}
$$

Evaluating the Optimal Service Level for Seasonal Items

Expected profits $=(p-s)$ NORMDIST $(O-) /, 0,1,1$
-($p-s$) NORMDIST $(O-) /, 0,1,0$
$-O(c-s) \operatorname{NORMDIST}(O, \quad, 1)$
$+O(p-c) 1-\operatorname{NORMDIST}(O, \quad, 1$
$=59,500$ NORMDIST $(1.18,0,1,1)$
-17,000NORMDIST (1.18,0,1,0)
$-9,360$ NORMDIST $(468,350,100,1)$
+70,200 1-NORMDIST(468,350,100,1)
$=\$ 49,146$

Evaluating the Optimal Service Level for Seasonal Items

$\begin{aligned} & \text { Expected } \\ & \text { overstock }\end{aligned}=(O-) F_{S} \underline{O-} \div+f_{S} \underline{O-} \div$
$\begin{aligned} & \text { Expected }=(O-) \text { NORMDIST }(O-) /, 0,1,1 \\ & \text { overstock } \\ &+\operatorname{NORMDIST}(O-) /, 0,1,0\end{aligned}$
$\begin{aligned} & \text { Expected } \\ & \text { understock }\end{aligned}=(-O) 1-F_{S} \xrightarrow{O-} \div+f_{S} \underline{O-} \div$
$\begin{aligned} & \text { Expected }=(-O) 1-\operatorname{NORMDIST}(O-) /, 0,1,1 \\ & \text { understock } \\ &+ \text { NORMDIST }(O-) /, 0,1,0\end{aligned}$

Evaluating Expected Overstock and Understock

$$
\mu=350, \quad \sigma=100, \quad O=450
$$

$$
\begin{aligned}
\begin{array}{l}
\text { Expected } \\
\text { overstock }= \\
\\
\\
\\
\\
= \\
= \\
\\
\\
\\
\end{array}(450-350 \text { NORMDIST }(O-) /, 0,1,0 \text { NORMDIST }(450-350) / 100,0,1,0=108
\end{aligned}
$$

Expected
understock

$$
\begin{aligned}
= & (-O) 1-\text { NORMDIST }(O-) /, 0,1,1 \\
& + \text { NORMDIST }(O-) /, 0,1,0 \\
= & (350-450) 1-\text { NORMDIST }(450-350) / 100,0,1,1 \\
& +100 \text { NORMDIST }(450-350) / 100,0,1,0=8
\end{aligned}
$$

One-Time Orders in the Presence of Quantity Discounts

1. Using $C_{o}=c-s$ and $C_{u}=p-c$, evaluate the optimal cycle service level CSL* and order size O^{*} without a discount

- Evaluate the expected profit from ordering O^{*}

2. Using $C_{o}=c_{d}-s$ and $C_{u}=p-c_{d}$, evaluate the optimal cycle service level $C S L_{d}{ }_{d}$ and order size $O_{d}{ }_{d}$ with a discount

- If $O_{d}^{*} \geq K$, evaluate the expected profit from ordering O_{d}^{*}
- If $O_{d}^{*}<K$, evaluate the expected profit from ordering K units

3. Order O^{*} units if the profit in step 1 is higher

- If the profit in step 2 is higher, order O_{d}^{*} units if $O_{d}^{*} \geq K$ or K units if $O_{d}^{*}<K$

Evaluating Service Level with Quantity Discounts

- Step 1, $c=\$ 50$

Cost of understocking $=C_{u}=p-c=\$ 200-\$ 50=\$ 150$ Cost of overstocking $=C_{o}=c-s=\$ 50-\$ 0=\$ 50$

$$
\begin{gathered}
C S L^{\star}=\operatorname{Prob}\left(\text { Demand } O^{\star}\right)=\frac{C_{u}}{C_{u}+C_{o}}=\frac{150}{150+50}=0.75 \\
O^{\star}=\operatorname{NORMINV}\left(C S L^{*}, \quad, \quad\right)=\operatorname{NORMINV}(0.75,150,40)=177
\end{gathered}
$$

Expected profit from ordering 177 units $=\$ 19,958$

Evaluating Service Level with Quantity Discounts

- Step 2, $c=\$ 45$

Cost of understocking $=C_{u}=p-c=\$ 200-\$ 45=\$ 155$
Cost of overstocking $=C_{o}=c-s=\$ 45-\$ 0=\$ 45$
$C S L^{*}=\operatorname{Prob}\left(\right.$ Demand $\left.\quad O^{*}\right)=\frac{C_{u}}{C_{u}+C_{o}}=\frac{150}{150+45}=0.775$
$O^{*}=\operatorname{NORMINV}\left(C S L^{*},,\right)=\operatorname{NORMINV}(0.775,150,40)=180$

Expected profit from ordering 200 units $=\$ 20,595$

Desired Cycle Service Level for Continuously Stocked Items

- Two extreme scenarios

1. All demand that arises when the product is out of stock is backlogged and filled later, when inventories are replenished
2. All demand arising when the product is out of stock is lost

Desired Cycle Service Level for Continuously Stocked Items

Q: Replenishment lot size
S : Fixed cost associated with each order ROP: Reorder point
D : Average demand per unit time
/: Standard deviation of demand per unit time
ss: Safety inventory ($s s=R O P-D_{L}$)
CSL: Cycle service level
C: Unit cost
h : Holding cost as a fraction of product cost per unit time
H : Cost of holding one unit for one unit of time. $H=h C$

Demand During Stockout is Backlogged

Increased cost per replenishment cycle of additional safety inventory of 1 unit $=(Q>D) H$
Benefit per replenishment cycle of additional safety inventory of 1 unit
$=(1-C S L) C_{u}$

$$
C S L^{*}=1-\frac{H Q}{D C_{u}}
$$

Demand During Stockout is Backlogged

> Lot size, $Q=400$ gallons
> Reorder point, $R O P=300$ gallons
> Average demand per year, $D \quad=100 \times 52=5,200$

Standard deviation of demand per week, $\sigma_{D}=20$
Unit cost, $C=\$ 3$
Holding cost as a fraction of product cost per year, $h=0.2$
Cost of holding one unit for one year, $H=h C=\$ 0.6$
Lead time, $L=2$ weeks
Mean demand over lead time, $D_{L}=200$ gallons
Standard deviation of demand over lead time, $\sigma_{L}={ }_{D} \sqrt{L}$
$=20 \sqrt{2}=28.3$

Demand During Stockout is Backlogged

$\operatorname{CSL}=F\left(R O P, D_{L},{ }_{L}\right)=\operatorname{NORMDIST}(300,200,28.3,1)=0.9998$

$$
C_{u}=\frac{H Q}{(1-C S L) D}=\frac{0.6 \quad 400}{0.0002 \quad 5,200}=\$ 230.8 \text { per gallon }
$$

Evaluating Optimal Service Level When Unmet Demand Is Lost

$$
\text { Lot size, } Q=400 \text { gallons }
$$

Average demand per year, $D=100 \times 52=5,200$
Cost of holding one unit for one year, $H=\$ 0.6$
Cost of understocking, $C_{u}=\$ 2$

$$
\begin{aligned}
C S L^{*} & =1-\frac{H Q}{H Q+D C_{u}} \\
& =1-\frac{0.6 \quad 400}{0.6 \quad 400+2 \quad 5,200}=0.98
\end{aligned}
$$

Managerial Levers to Improve Supply Chain Profitability

- "Obvious" actions

1. Increase salvage value of each unit
2. Decrease the margin lost from a stockout

- Improved forecasting
- Quick response
- Postponement
- Tailored sourcing

Managerial Levers to Improve Supply Chain Profitability

Figure 13-2

Improved Forecasts

- Improved forecasts result in reduced uncertainty
- Less uncertainty results in
- Lower levels of safety inventory (and costs) for the same level of product availability, or
- Higher product availability for the same level of safety inventory, or
- Both

Impact of Improved Forecasts

Demand: $\mu=350, \sigma=150$
Cost: $c=\$ 100$, Price: $p=\$ 250$, Salvage: $s=\$ 80$

Cost of understocking $=C_{u}=p-c=\$ 250-\$ 100=\$ 150$
Cost of overstocking $=C_{o}=c-s=\$ 100-\$ 80=\$ 20$

$$
C S L^{*}=\operatorname{Prob}\left(\text { Demand } \quad O^{*}\right) \quad \frac{150}{150+20}=0.88
$$

Impact of Improved Forecasts

Standard Deviation of Forecast Error $\boldsymbol{\rho}$	Optimal Order Size \boldsymbol{O}^{\star}	Expected Overstock	Expected Understock	Expected Profit
150	526	186.7	8.6	$\$ 47,469$
120	491	149.3	6.9	$\$ 48,476$
90	456	112.0	5.2	$\$ 49,482$
60	420	74.7	3.5	$\$ 50,488$
30	385	37.3	1.7	$\$ 51,494$
0	350	0	0	$\$ 52,500$

Table 13-3

Impact of Improved Forecasts

Quick Response: Impact on Profits and Inventories

- Set of actions taken by managers to reduce replenishment lead time
- Reduced lead time results in improved forecasts
- Benefits
- Lower order quantities thus less inventory with same product availability
- Less overstock
- Higher profits

Quick Response: Multiple Orders Per Season

- Ordering shawls at a department store
- Selling season $=14$ weeks
- Cost per shawl $=\$ 40$
- Retail price $=\$ 150$
- Disposal price $=\$ 30$
- Holding cost = \$2 per week
- Expected weekly demand $D=20$
- Standard deviation $\sigma_{D}=15$

Quick Response: Multiple Orders Per Season

- Two ordering policies

1. Supply lead time is more than 15 weeks

- Single order placed at the beginning of the season
- Supply lead time is reduced to six weeks

2. Two orders are placed for the season

- One for delivery at the beginning of the season
- One at the end of week 1 for delivery in week 8

Single Order Policy

Expected demand $==14 D=14 \quad 20=280$
Standard deviation $==\sqrt{14}{ }_{D}=\sqrt{14} \quad 15=56.1$

$$
C S L^{*}=\frac{p-c}{p-s}=\frac{150-40}{150-30}=0.92
$$

$O^{*}=\operatorname{NORMINV}(C S L *, \quad)=\operatorname{NORMINV}(0.92,280,56.1)=358$

Single Order Policy

Expected profit with a single order $=\$ 29,767$

$$
\begin{aligned}
\text { Expected overstock } & =79.8 \\
\text { Expected understock } & =2.14 \\
\text { Cost of overstocking } & =\$ 10 \\
\text { Cost of understocking } & =\$ 110
\end{aligned}
$$

Expected cost of overstocking $=79.8 \times \$ 10=\$ 798$
Expected cost of understocking $=2.14 \times \$ 110=\$ 235$

Two Order Policy

Expected demand $=_{7}=7 \quad 20=140$
Standard deviation $=_{7}=\sqrt{7} \quad 15=39.7$
$O_{1}=\operatorname{NORMINV}\left(C S L^{*},{ }_{7},{ }_{7}\right)=\operatorname{NORMINV}(0.92,140,39.7)=195$
Expected profit from seven weeks $=\$ 14,670$
Expected overstock $=56.4$
Expected understock $=1.51$
Expected profit from season $=\$ 14,670+56.4$ x $\$ 10+\$ 14,670$
= \$29,904

Quick Response: Multiple Orders Per Season

- Three important consequences

1. The expected total quantity ordered during the season with two orders is less than that with a single order for the same cycle service level
2. The average overstock to be disposed of at the end of the sales season is less if a follow-up order is allowed after observing some sales
3. The profits are higher when a follow-up order is allowed during the sales season

Quick Response: Multiple Orders Per Season

Figure 13-4
Number of Order Cycles per Season

Quick Response: Multiple Orders Per Season

Two Order Policy with Improved Forecast Accuracy

$$
\text { Expected demand }={ }_{7}=7 \quad 20=140
$$

Standard deviation first 7 weeks $={ }_{7}=\sqrt{7} \quad 15=39.7$
Standard deviation second 7 weeks $={ }_{7}^{2}=\sqrt{7} \quad 3=7.9$
$O_{2}=\operatorname{NORMINV}\left(C S L^{*}, \quad 7,{ }_{7}^{2}\right)=\operatorname{NORMINV}(0.92,140,7.9)=151$
Expected profit from second order $=\$ 15,254$

$$
\begin{aligned}
\text { Expected overstock } & =11.3 \\
\text { Expected understock } & =0.30
\end{aligned}
$$

Expected profit from season $=\$ 14,670+56.4$ $x \$ 10+\$ 15,254$
$=\$ 30,488$

Postponement: Impact on Profits

and Inventories

- Delay of product differentiation until closer to the sale of the product
- Activities prior to product differentiation require aggregate forecasts more accurate than individual product forecasts
- Individual product forecasts are needed close to the time of sale
- Results in a better match of supply and demand
- Valuable in online sales
- Higher profits through better matching of supply and demand

Value of Postponement: Benetton

For each of four colors
Demand $\mu=1,000, \quad \sigma=50$,
Sale price $p=\$ 50$, Salvage value $s=\$ 10$
Production cost Option 1 (no postponement) = \$20
Production cost Option 2 (postponement) $=\$ 22$

Value of Postponement: Benetton

- Option 1, for each color

$$
C S L^{*}=\frac{p-c}{p-s}=\frac{30}{40}=0.75
$$

$O^{\star}=\operatorname{NORMINV}\left(C S L^{*}, \quad, \quad\right)=\operatorname{NORMINV}(0.75,1000,500)=1,337$
Expected profits $=\$ 23,664$
Expected overstock $=412$
Expected understock $=75$
Total production $=4 \times 1,337=5,348$
Expected profit $=4 \times 23,644=\$ 94,576$

Value of Postponement: Benetton

- Option 2, for all sweaters

$$
\begin{gathered}
C S L^{*}=\frac{p-c}{p-s}=\frac{28}{40}=0.70 \\
O_{A}^{*}=4 \quad 1,000=4,000 \quad{ }_{A}=\sqrt{4} \quad 500=1,000 \\
\operatorname{NORMINV}\left(0.7,{ }_{A},{ }_{A}\right)=\operatorname{NORMINV}(0.7,4000,1000)=4,524
\end{gathered}
$$

Expected profits $=\$ 98,092$
Expected overstock $=715$
Expected understock $=190$

Value of Postponement: Benetton

- Postponement is not very effective if a large fraction of demand comes from a single product
- Option 1

Red sweaters demand $\mu_{\text {red }}=3,100, \sigma_{\text {red }}=800$
Other colors $\mu=300, \sigma=200$

$$
\begin{aligned}
& O_{\text {red }}^{*}=\operatorname{NORMINV}\left(C S L^{*}, \quad \text { red }, \quad \text { red }\right) \\
&=\operatorname{NORMINV}(0.75,3100,800)=3,640 \\
& \text { Expected profits }_{\text {red }}=\$ 82,831 \\
& \text { Expected overstock }=659 \\
& \text { Expected understock }=119
\end{aligned}
$$

Value of Postponement: Benetton

Other colors $\mu=300, \sigma=200$
$O^{\star}=\operatorname{NORMINV}\left(C S L^{*},,\right)=\operatorname{NORMINV}(0.75,300,200)=435$

$$
\begin{aligned}
\text { Expected profits }_{\text {other }} & =\$ 6,458 \\
\text { Expected overstock } & =165 \\
\text { Expected understock } & =30
\end{aligned}
$$

Total production $=3,640+3 \times 435=4,945$
Expected profit $=\$ 82,831+3 \times \$ 6,458=\$ 102,205$
Expected overstock $=659+3 \times 165=1,154$
Expected understock $=119+3 \times 30=209$

Value of Postponement: Benetton

- Option 2

$$
\begin{aligned}
& A_{A}=3,100+3 \quad 300=4,000 \\
& { }_{A}=\sqrt{800^{2}+3 \quad 200^{2}}=872
\end{aligned}
$$

Total production $=4,475$
Expected profit = \$99,872
Expected overstock $=623$
Expected understock $=166$

Tailored Postponement: Benetton

- Use production with postponement to satisfy a part of demand, the rest without postponement
- Produce red sweaters without postponement, postpone all others
Profit = \$103,213
- Tailored postponement allows a firm to increase profits by postponing differentiation only for products with uncertain demand

Tailored Postponement: Benetton

- Separate all demand into base load and variation
- Base load manufactured without postponement
- Variation is postponed

Four colors
Demand mean $/=1,000, \Gamma=500$

- Identify base load and variation for each color

Tailored Postponement: Benetton

Manufacturing Policy

$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$	Average Profit	Average Overstock	Average Understock
0	4,524	$\$ 97,847$	510	210
1,337	0	$\$ 94,377$	1,369	282
700	1,850	$\$ 102,730$	308	168
800	1,550	$\$ 104,603$	427	170
900	950	$\$ 101,326$	607	266
900	1,050	$\$ 101,647$	664	230
1,000	850	$\$ 100,312$	815	195
1,000	950	$\$ 100,951$	803	149
1,100	550	$\$ 99,180$	1,026	211
1,100	650	$\$ 100,510$	1,008	185

Tailored Sourcing

- A firm uses a combination of two supply sources
- One is lower cost but is unable to deal with uncertainty well
- Second more flexible but is higher cost
- Focus on different capabilities
- Increase profits, better match supply and demand
- May be volume based or product based

Setting Product Availability for Multiple Products Under Capacity Constraints

- Two styles of sweaters from Italian supplier

High end
$\mu_{1}=1,000$
$\sigma_{1}=300$
$p_{1}=\$ 150$
$c_{1}=\$ 50$
$s_{1}=\$ 35$
CSL $=0.87$
$O=1,337$

Mid-range
$\mu_{2}=2,000$
$\sigma_{2}=400$
$p_{2}=\$ 100$
$c_{2}=\$ 40$
$s_{2}=\$ 25$
CSL $=0.80$
$O=2,337$

Setting Product Availability for Multiple Products Under Capacity Constraints

- Supplier capacity constraint, 3,000 units

Expected marginal contribution high-end $=M C_{1}(1,000)$

$$
\begin{aligned}
& =p_{1} 1-F_{1}(1,000)+s_{1} F_{1}(1,000)-c_{1} \\
& =150 \quad(1-0.5)+350.5-50 \\
& =\$ 42.50
\end{aligned}
$$

Expected marginal contribution mid-range

$$
\begin{aligned}
& =p_{2} 1-F_{2}(1,999)+s_{2} F_{2}(1,999)-c_{2} \\
& =100 \quad(1-0.499)+25 \quad 0.499-40 \\
& =\$ 22.57
\end{aligned}
$$

Setting Product Availability for Multiple Products Under Capacity Constraints

$$
M C_{i}\left(Q_{i}\right)=p_{i} 1-F_{i}\left(Q_{i)}+s_{i} F_{i}\left(Q_{i}\right)-c_{i}\right.
$$

1. Set quantity $Q_{i}=0$ for all products i
2. Compute the expected marginal contribution $M C_{i}\left(Q_{i}\right)$ for each product i
3. If positive, stop, otherwise, let j be the product with the highest expected marginal contribution and increase Q_{j} by one unit
4. If the total quantity is less than B, return to step 2, otherwise capacity constraint are met and quantities are optimal

Setting Product Availability for Multiple Products Under Capacity Constraints

	Expected Marginal Contribution		Order Quantity	
Capacity Left	High End	Mid Range	High End	Mid Range
3,000	99.95	60.00	0	0
2,900	99.84	60.00	100	0
2,100	57.51	60.00	900	0
2,000	57.51	60.00	900	100
800	57.51	57.00	900	1,300
780	54.59	57.00	920	1,300
300	42.50	43.00	1,000	1,700
200	42.50	36.86	1,000	1,800
180	39.44	36.86	1,020	1,800
40	31.89	30.63	1,070	1,890
30	30.41	30.63	1,080	1,890
10	29.67	29.54	1,085	1,905
1	29.23	29.10	1,088	1,911
0	29.09	29.10	1,089	1,911

Setting Optimal Levels of
 Product Availability in Practice

1. Beware of preset levels of availability
2. Use approximate costs because profitmaximizing solutions are quite robust
3. Estimate a range for the cost of stocking out
4. Tailor your response to uncertainty

Summary of Learning Objectives

1. Identify the factors affecting the optimal level of product availability and evaluate the optimal cycle service level
2. Use managerial levers that improve supply chain profitability through optimal service levels
3. Understand conditions under which postponement is valuable in a supply chain
4. Allocate limited supply capacity among multiple products to maximize expected profits

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Printed in the United States of America.

