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ARTICLE INFO ABSTRACT
ArtiC{e history: We show how a layered Cloud service model of software (SaaS), platform (PaaS), and
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the providers. The layered architecture leads naturally to a design in which inter-Cloud
federation takes place at each service layer, mediated by a broker specific to the concerns
of the parties at that layer. Federation increases consumer value for and facilitates

Keywords: providing IT services as a commodity. This business model for the Cloud is consistent
Cloud computing with broker mediated supply and service delivery chains in other commodity sectors such
Service layers as finance and manufacturing. Concreteness is added to the federated Cloud model by
SaaS considering how it works in delivering the Weather Research and Forecasting service (WRF)
Aaa$ as SaaS using PaaS and laaS support. WRF is used to illustrate the concepts of delegation
Paas and federation, the translation of service requirements between service layers, and inter-
laas . Cloud broker functions needed to achieve federation.

Interoperability

. . © 2012 Elsevier Inc. All rights reserved.
Service delegation

Federation of Clouds

1. Introduction

With the aid of Cloud computing technology, businesses and institutions make compute resources available to customers
and partners to create more capable, scalable, flexible, and cost effective environments for application development and
hosting. Cloud computing continues the trend started with on-demand, strategic outsourcing, and grid computing, to provide
IT resources as a standardized commodity, targeting real-time delivery of infrastructure and platform services. A next step
in this evolution is to have cooperating providers of Cloud services in which a customer request submitted to one Cloud
provider is fulfilled by another, under mediation of a brokering structure (e.g., [1]). This latter idea invokes a federation of
Cloud domains providing a service analogous to that of interoperating grid resources created for a similar goal by research
institutions using grid brokers in the grid computing framework.

Fig. 1 is an example of what is meant by a federated Cloud structure mediated by brokers. The figure shows two
independent Clouds, each supporting a vertical stack of service layer offerings from the software or application layer (SaaS
or AaaS) at the top, through the middleware or platform layer (PaaS), to the operating system and infrastructure layer (IaaS).
At each layer a choice is made to fulfill a service request through local resources using delegation, or by a partner Cloud
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Fig. 1. Federation and delegation in Cloud application support.

through federation. A key feature of our model, is that federation occurs between Cloud providers at matching layers of the
service stack.

To illustrate how this works, consider a business providing a SaaS offering from a private or public Cloud. Users submit
requests to the application layer which assesses if sufficient local resources are available to service the requests within
a specified time. If the application layer cannot meet its service goals it can optionally fulfill the requests through an
independent SaaS layer provider of the same service as indicated by the horizontal (federation) line connecting Cloud A to B.
Results are returned to the user as if locally produced by the application executing in Cloud A. Federation at the SaaS layer
is analogous to the use in traditional business of ‘sub’ or ‘peer’ contractors who supply equivalent final parts or services to
the primary provider facilitating elasticity to support a dynamic market. While this approach is common in industry sectors
that produce goods or services such as manufacturing or publishing, it is not as common in software due to lack of standard
interfaces and insufficient market forces to motivate sharing at the service layer.

An application layer under stress also has a second option to increase capacity through delegation. In this service abstrac-
tion, the application layer works together with its underlying layers to provide the required computing needs. In delegation,
the application layer asks the PaaS layer in the local Cloud for additional resources. The request for more resources may be
fulfilled in multiple ways depending on availability in the current Cloud. The PaaS layer can delegate to the local IaaS layer
a request for more raw virtual machines and then provision the necessary platform software. If sufficient resources are not
available locally the PaaS layer can attempt to acquire them from another Cloud in the federation through brokering at the
PaaS layer.

In a typical scenario, the PaaS layer represents executing middleware such as web application containers and other ap-
plication execution platforms, or distributed data applications. Here a more general view of federation is needed in which
these support programs and environments form the federations between the Clouds in a way that isolates them from the
underlying infrastructure layer. Some current middleware products, such as web application servers (e.g., IBM WebSphere
Application Server or Oracle Fusion Middleware), provide isolation or lightweight virtualization from the underlying hard-
ware and allow applications to dynamically expand across machines increasing capacity. The middleware or PaaS layer is
both very interesting and complex and detailed treatment is deferred to Section 2.

While attractive from a business perspective, this federated Cloud model requires new technologies to work efficiently.
Because it is a layered model, an important part of the design is to maintain isolation of concerns between layers. For exam-
ple, the SaaS application delivers a result to the customer in a certain response time. It is aware of the aggregate processing
and network transmissions necessary to meet the delivery time. But the application does not need to know the details of
the underlying infrastructure. Thus, it is necessary to translate requirements at the application to those understood by the
PaaS and IaaS layers. This is accomplished through empirical modeling and experiments that map metrics of application
performance such as response time onto the middleware and compute resource requirements understood by the PaaS or
[aaS layer.

One challenge to making the operation of delegation work is to introduce a standardized form of expressing inter-layer
mappings. Some work along this line is contained in the manifest approach used by the Reservoir project [2]. In Section 5, we
discuss some parameters that need to be translated across layers, in the context of the application we use as a case study.
A related issue is how to choose between delegation and federation when both options are available. Selection criteria such
as the mapping of performance metrics may be combined with policies as discussed in Sections 2 and 5. Another challenge
is defining the protocols and policies for the inter-Cloud brokering required to join each layer in a federation. Section 4
considers brokering at different Cloud service layers and then proceeds to the inner workings and policy issues by which
brokers expose and share Cloud services and resources.

It is difficult to fully understand the federation model of Fig. 1 without a concrete example. Because of our experience
with parallel and distributed computing, we choose for this purpose the Weather Research and Forecasting (WRF) software
as a service (SaaS). WRF is a batch mode service in which customers request weather forecasts over a region with a
specified level of detail/resolution. It provides a good case study for Cloud hosting as it is a high performance computing
application for which the private and government agencies that use it would like to leverage their joint resources through
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Fig. 2. An alternative model of federation.

Application

Cloud services. Section 5 is devoted to how to implement the model of Fig. 1 within the context of providing WRF as a
service. This study offers the opportunity for interesting contrasts with our previous work [3], which considered federation
of grid infrastructure. In those experiments, multiple HPC sites can accept a WRF job submission and a distributed system of
peer brokers routes customer WRF requests input to any of the sites to the one providing the best response. Here, a single
site hosts the WRF interface to the customer at the SaaS layer, and additional PaaS or IaaS resources are brought under the
control of that site when needed to meet performance requirements.

2. Cloud service stack architecture

There is an extensive list of works in the literature classifying the services offered by Cloud providers in various ways.
A common feature of these Cloud models is the layered service model where each layer provides an increasing abstraction
and isolation from its underlying layer, progressing from raw hardware to software and ending at the application layer.
For example, [4] shows the Cloud architecture as layers of Hardware as a Service (HaaS), Infrastructure as a Service (IaaS),
Platform as a Service (PaaS), and Software as a Service (SaaS). [5] categorizes the Cloud as a stack of service types, namely
[aaS, PaaS, SaaS, Human as a Service (HuaaS), and Support Services. The Reservoir architecture [2] uses three layers, the
Virtual Execution Environment Host (VEEH), Virtual Execution Environment Manager (VEEM), and Service Manager. While
the names are different, there is a close functional correspondence of the Reservoir layers to IaaS, PaaS and SaaS.

The reference Cloud model presented here adopts the three service layer model of Fig. 1. This model defines layers
according to clearly specified principles such as isolation, abstraction, elasticity, runtime and fault tolerance. More details
will be presented in Section 2.1.

One significant idea of this paper is that inter-Cloud federation is constrained to occur only at corresponding layers of
the reference model. Section 2.3 argues for this point of view and leads to the discussion of how federations are created
and brokered in Section 4. The layered federation model contrasts with the Aneka Federation [1] and Reservoir Federated
Cloud [2]. For Aneka Federation, each Cloud site instantiates a service component called Aneka Coordinator which basically
implements the resource discovery and management functions. It is our view that the Aneka Coordinator is responsible for
the federation functions at the IaaS layer. For the Reservoir model, the federation function is supported through VEEM-to-
VEEM communication, thus supported at the PaaS layer only. Delegation involves a request translation mechanism in order
to convert the requirements from one layer to another. Translation is a complex and layer dependent function explored
more in Section 2.2.

There are several implications in our model when comparing it to existing work or other possible approaches to resource
sharing. It can be argued that layered, peer-to-peer federation adds additional complexity to the negotiation and execution
of tasks among different providers, since each site needs to implement different protocols and translation mechanisms.
However, we believe that the added flexibility justifies this additional work. First, by defining different federation methods
at each layer, we allow elastic and fault-tolerant behavior at different stages of the process. Second, providers can focus on
concrete aspects without having to implement the full layer stack (for example, we could imagine specialized providers that
only offer functionality at one layer). This aspect expands the possible interaction with other systems, not restraining them
to a given model. Finally, the decentralized, distributed federation model is very applicable to the current Cloud model,
where new providers rapidly appear and need to easily join other working systems.

As an alternative, a federation architecture would allow a layer to offload work to underlying layers either in the local
or in different providers, as shown in Fig. 2. In this example, the Platform needs to handle two variations of delegation
protocols — both on and off site -, instead of one delegation and one federation protocols. The shortcoming of this model
is the lack of elasticity of platform resources through federation of platforms. In contrast, the federation of analogous
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layers eliminates the need of different types of delegation and enables elastic capacity at the platform and infrastructure
layers.

We further sharpen the differentiation of layers by studying how they function to support Cloud applications. In partic-
ular, how layers work together within a Cloud to support an application, while inter operating with peer Clouds to provide
additional elasticity to application capacity.

Fig. 3 demonstrates the WRF application example. In the figure we can see three different layers at a given provider that
implement distinct capabilities. Each of the layers is in charge of managing its corresponding input data, assessing whether
the request can be processed locally through delegation or if it should be sent to another site through federation. In the
first case, the request needs to be translated so that it matches the expected input of the next layer in the stack. In the
second case, a brokering module at the federated layer needs to establish a connection to another provider and negotiate
the terms for which the tasks will be accomplished. Choosing the optimal run time option is a non-trivial problem requiring
that requires taking into account the cost and computational requirements of the desired service. In Section 5, we discuss
our vision for addressing this problem using application performance modeling.

2.1. Alayered model of Cloud services

The top layer is the software layer, which deals with requirements in executing the application within the context of the
key performance metrics (KPM) of the application offering in addition to application execution environment. For WRF this
exemplary KPM is completion time for a weather forecast of a user specified geographic region with a certain resolution.
The application service layer is aware of the KPMs and software and how they translate into resources at the PaaS. The
information for this mapping from KPM at SaaS to PaaS resources is developed through off line experiments and input from
online results.

The next layer in the stack corresponds to the Platform as a Service layer. This is traditionally the most overloaded term
in the Cloud. Specifically, we define the intrinsic characteristics of a PaaS provider in this paper:

Development library. A PaaS offering allows a developer to build the target application by using a defined library.
Runtime environment. The platform has a runtime component that manages the application’s underlying aspects.
Layer decoupling. It is decoupled from the upper and lower layers. This means that, first, the platform layer does not
have any knowledge of the application specific details. Second, it is agnostic to the underlying infrastructure.

Elasticity and Fault tolerance. Finally, the platform layer needs to support operations that will result in the Cloud’s
elastic behavior. This means that it needs to allow scalable resource allocation and have mechanisms to deal with
failures.

The PaaS layer corresponds to the traditional concept of middleware and represents the bridge between application
requirements and elastic infrastructure resource management. This layer does not consider the actual infrastructure - e.g.,
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how many Virtual Machines need to be provisioned -, but rather a higher representation of execution units such as tasks,
processes, threads, etc.

Well-known examples of PaaS offerings in the Cloud are Google App Engine and Microsoft Azure. However, this layer
can be implemented by different means. An example of this in the WRF application stack would be MPI [6]. MPI is both a
development library and a runtime environment, it does not consider either application specific details nor make assump-
tions about the underlying resources, can be executed for a varying number of processes, and offers a simple fault tolerant
behavior (by terminating a job when one of the processes fails). The newer specification of MPI-2 [7] includes further fea-
tures to dynamically add and remove MPI tasks to/from running applications and thus would be useful in exploiting the
elasticity capability of Cloud resources.

Finally, the laaS layer represents the resources of infrastructures on top of which the rest of the stack is supported.
The concepts managed at the IaaS layer correspond to Virtual Machines, disk images, network connectivity and number of
processors, for example.

2.2. Inter-layer delegation

Cloud provider sites can support different layers of functionality, and not all uses of the Cloud need to traverse all pos-
sible layers. However, if we consider an application hosted in the Cloud, it is useful to study all stages involved in the
process, since they will have an impact on different aspects such as price, performance, fault tolerance, etc. The lifecy-
cle of a Cloud application includes all layers, either implicit or explicitly. Policies are transferred from one layer to the
next one, and failing to fulfill them on a single layer is likely to affect the capability of other layers to offer the required
service.

The user of such an application initiates the interaction at the Software as a Service layer. Requirements at this point are
described from an application domain perspective, and can be expressed by the user. Examples of requirements at the SaaS
layer can be a web application’s response time, the maximum desired price for the execution of a set of batch jobs, or the
level of security required for the application’s communication.

Translation between the SaaS and PaaS layer begins with the user request and produces a definition understandable by
the platform layer. This implies that some domain specific translation needs to take place, for example to convert execution
time or price requirements to number of tasks. Performance prediction models can be used to determine how tasks can be
parallelized; workflows can be generated to ensure that execution deadlines are met.

Translation to the IaaS layer map into instantiated VMs with the appropriate image software so the PaaS layer can
execute on top of it; also, task mapping decisions need to be made in order to accomplish the original requests from the
user.

2.3. Federation of Clouds

The previous section considers the communication flow inside a single provider in order to fulfill an application’s request.
Information is passed down across the stack to realize the contracts among layers and translate higher layer restrictions to
the actual resources executing the request. However, this scenario only holds if infinite resources are assumed on a single
site. Since this is not the case, providers need to collaborate to be able to fulfill requests during peak demands and negotiate
the use of idle resources with other peers. This is the goal of federation.

Rather than only considering federation as a matter of two heterogeneous sites, we propose an approach in which it is
defined for concrete layers with analogous capabilities. This mode of communication allows inter-site negotiation at common
grounds for well understood protocols and policies. One of the benefits of this model is that we can assume that not all
providers implement every layer, and therefore multiple service suppliers can be joined to fulfill one single application
request. This fact also results in the possibility of specialized, single layer providers that can be leveraged by other sites.
In fact, a site does not need to provide a full implementation of a layer to be able to be part of a federation: it only
needs to be able to “speak” the appropriate protocol. No assumptions are made about how a service is fulfilled, or what
additional layers are involved in realizing the agreement. Some providers may internally require of other layers to complete
the request, although that is not part of the federation process.

This approach is akin to the well-established open systems protocol stack model of OSI [8], where different protocols are
employed at each layer to implement a concrete functionality. Communication can happen between two identical layers, or
between consecutive layers (either lower or higher in the stack). In the context of the Cloud, we have identified the layers
already discussed - SaaS, PaaS and laaS - as the building blocks for federation. Different communication models among
layers have consequent implications, that we analyze next.

3. Inter-layer delegation

In previous sections we describe our focus on the three service layers of the Cloud. We also observe that not all Cloud
providers would support services at all the SaaS, PaaS and laaS layers. Therefore, they usually only expose the service
interfaces of the layers that they support. For example, when a Cloud provider supports only services at the upper level
(i.e., SaaS), it rarely exposes the delegation protocols beneath said layer. It is also possible that there is no layer separation
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Table 1
Exemplary information flow for delegation.
Layer Step ID Input Transformation or action Results
SaaS S1 Requester identification Authentication and Fail or proceed
authorization
S2 Requesting application Verification of available Fail or proceed
software application software catalog
S3 User QoS specifications Transform request to a Fail or plausible software &
possible set of resources for resources list with platform
specific platform QoS using specific QoS
service domain knowledge
S4 Requesting plausible software Interact with Platform Service Fail or obtain PaaS token
& resources from S3 and evaluate Platform service from P4
offers
S5 PaasS token from P4 Instantiate service Fail or return SaaS token to
requester
PaaS P1 Requesting software with Assess available software in Fail or return software token
platform specific QoS from S3 plausible list
P2 Requesting resource with Transform request to Fail or return infrastructure
platform specific QoS from S3 plausible infrastructure resource list
resources
P3 Requesting infrastructure Contact Infrastructure Service Fail or laaS token for
resources from P2 and evaluate infrastructure resources from 12
resources
P4 [aaS token of 12 Provision infrastructure Fail or return PaaS token to
resource with platform SaaS
software
[aaS I Requesting infrastructure Access and select necessary Fail or return resource token
resources from P3 infrastructure resources
12 Resource token of I1 Provision infrastructure Fail or return laaS token for

resource with infrastructure
software

resources to PaaS

in providers’ implementations. Furthermore, all service interfaces are currently provider-specific and standardization is yet
to be matured and adopted by the Cloud community. There are multiple organizations which have standard activities that
mainly focus on the l[aaS layer. One effort is the OCCI-WorkGroup.! Another effort is the Distributed Management Task
Force (DMTF), whose activities include defining the open Cloud architecture? and describing some exemplary use cases.?
Participant vendors of DMTF may submit their standard specifications and reference implementation for evaluation (e.g.,
Oracle’s resource model). However, these two set of standard activities do not yet address the protocols at the SaaS and
PaaS layers.

As an open collaborative effort, the Reservoir project [2] provides their service designs between layers as well as ex-
emplary information flow. In their model, “service manifesto” are created by the Service layer, the Service Manager, and
passed to the lower layers. The transformation of an application service requirement is done at the Service layer into
detailed platform specific requirements (middleware packages for application execution platform) and also infrastructure
information (CPU, memory, disk, network, etc.). The delegation between layers has defined specific interfaces as the Service
Management Interface (SMI), VEE Management Interface (VMI) and VEE Host Interface (VHI).

Similar to Reservoir project and instead of exploring service definitions for standardization, we explore the delegation
information flow between the SaaS, PaaS and laaS layers. Table 1 shows how exemplary requests are sent to a layer, trans-
formed and acted upon, and then delegated to another layer for fulfillment.

The information flow illustrates the functional differentiation of the layers. Simply, on the request forward path, SasS
transforms a service request to a platform request, PaaS transforms the platform service to infrastructure request for neces-

T http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.occi-wg/docman.root.workspace/doc15612.
2 http://dmtf.org/sites/default/files/standards/documents/DSP-1S0102_1.0.0.pdf.
3 http://dmtf.org/sites/default/files/standards/documents/DSP-IS0103_1.0.0.pdf.
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Table 2
Summary of brokering goals at different layers of Cloud federation.
Parameters Objectives
Saas User requirements Maximize QoS delivered
Service level agreements Minimize cost
Software licensing Functionality/availability
PaaS Compiling requirements Functionality
Runtime requirements Optimize applications’ execution
Runtime licensing Fault tolerance
laaS Resource characteristics Maximize cost-effectiveness
Monitoring data Acceleration
(hardware/VMs) Conservation
Modeling/benchmarking data Resiliency
Constraints/requirements Maximize energy efficiency

(deadline, budget, etc.)

sary resources fulfilled by laaS. As part of the transformation, each layer will interpret the QoS specification and translate
key performance metrics. On the request return path, IaaS provisions the resources with infrastructure services, returns to
PaaS; PaaS further instantiates the resources with platform services such as middleware and clustering, and then returns the
platform resources to SaaS; eventually, SaaS will return a service token to the requester. While the descriptions in Table 1
are high level, a concrete example will be illustrated with the WRF service request in Section 5.

4. Federation of Clouds

As in traditional scheduling, where most systems try to achieve the best trade-off between the users’ demands and the
system policies and objectives, there are conflicting performance goals between the end users and the Cloud providers.
While users focus on optimizing the performance of a single application or workflow, such as application throughput and
user perceived response time, Cloud providers aim to obtain the best system throughput, use resources efficiently, or con-
sume less energy. Efficient brokering policies will try to satisfy the user requirements and Clouds’ global performance at the
same time. Thereby, Cloud federation introduces new avenues of research into brokering policies such as those techniques
based on ensuring the required QoS level (e.g., through advance reservation techniques) or those aiming at optimizing the
energy efficiency. Furthermore, the layered service model proposed in this paper enables the isolation between brokering
policies in federated Clouds at different layers which can be implemented following different approaches.

Existing work in Cloud brokering focuses on the federation of Clouds mainly at the laaS layer such as those strate-
gies based on match-making on top of Clouds [9], advanced reservations [10,11] or energy efficiency [12]. More detailed
information of these strategies can be found in Section 6.

Table 2 summarizes the main objectives and parameters of brokering at different layers of Cloud federation. Some ob-
jectives, such as cost-effectiveness, are desired across all layers, though with different pricing methods. In the following
subsections we discuss in more detail the possibilities and characteristics of brokering at different layers of federation,
starting from SaaS layer that is the closest layer to the users.

4.1. Brokering at the SaasS layer

Brokering at the SaaS layer is mainly based on the user’s requirements and Service Level Agreements (SLA) between
different Cloud providers. As mentioned in Section 2, a Cloud provider that implements the SaaS layers should guarantee a
given level of service for a set of application requirements. The application’s requirements can be generic and/or specific.
Generic requirements do not depend on the characteristics of the application and can be used for many types of applications.
Some examples are: response time (or completion time), cost (cost of running the application), and level of security. Specific
requirements deal with the characteristics and input parameters of the application. Taking WRF as a use case, some specific
application requirements are: application version, geographic region, or resolution of the simulation.

Table 2 overviews the main objectives of brokering in the SaaS federated Cloud, which are on three different dimensions:
QoS, cost and functionality/availability. However, the actual brokering policies should address more concrete objectives that
would consider different goals and also both generic and specific application requirements/input parameters. Possible opti-
mization goals include:

e Using only generic application requirements: lowest price for a given completion time, shortest completion time for a
given budget, highest security level for a given budget.

e Using both generic and specific applications requirements (WRF): shortest completion time for a given simulation reso-
lution, higher simulation resolution for a given budget and completion time.
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In order to achieve the objectives listed above, federated Clouds will have to handle and exchange information at the
SaaS layer such as: estimated application completion time, cost of running the application, cost of software licenses, available
software/versions or limitations (e.g., for the use case of WRF, the maximum simulation resolution). Based on information
and the objectives described above, different strategies can be considered. Some examples are:

e Forwarding: if the originator Cloud cannot accommodate the request or another Cloud can provide better cost-
effectiveness, the request can be forwarded to another Cloud domain of the federated Cloud. Benchmarking or modeling
the applications on the Clouds’ resources may be used to estimate the cost/completion time for a given application, but
this is a transparent process at the federation level (each Cloud can have its own mechanisms).

e Negotiation: one Cloud may take care of jobs from another Cloud upon agreement. The negotiation can be based on
information from both past and future events. For example, a job request might be forwarded to a Cloud at higher cost
but doing so may significantly optimize the energy efficiency (e.g., switching down servers and/or CRAC units). Other
considerations could be taken into account during the negotiation such as the Cloud reputation (e.g., based on SLA
violation rate).

4.2. Brokering at the Paas layer

Brokering at the PaaS layer is mainly based on the application’s requirements in terms of deployment (e.g., compiler
framework) and runtime support (e.g., libraries). Since compiling tools, libraries and runtime environments can be from
different vendors and with different characteristics, they can have different licensing conditions, prices and even different
functionality and performance. Furthermore, additional characteristics such as fault tolerance or platform security issues can
be considered in brokering policies at the PaaS layer. Given the use case of WRF the parameters are based on MPI, such as
the MPI compiler characteristics, runtime environment for MPI applications and their associated costs and limitations (e.g.,
licenses for specific MPI runtime).

The main goals of brokering a federated Cloud at the PaaS layer are focused on improving the applications’ environments,
including:

e Functionality/availability: brokering over multiple Clouds increases the probability of provisioning with more specialized
compilers or execution environments.

e Optimize applications: in some sense, the objective is maximizing the potential of the applications to obtain better
performance. Policies can decide using specific compilers or runtime in order to obtain, for example, more efficient
binaries for a given Cloud.

e Fault tolerance and security: when choosing a specific execution environment from different Clouds, fault tolerance and
security are attractive secondary goals that may add value to a given decision or they can be primary goals if the nature
of the application requires of them.

In order to meet the objectives such as those described above, different Clouds must handle and exchange information
related to the compiling frameworks such as vendor, capabilities, versions, compatibility or licensing costs, and information
related to the runtime characteristics and limitations such as MPI implementation version, vendor, specific libraries or
number of MPI processes supported.

Brokering policies at the PaaS layer will try to find the best trade off between the optimization goals discussed above
and the limitations from the other layers such as the cost. As a matter of example, a brokering policy may decide to compile
the WRF application using an expensive compiling framework if the possible optimizations may result in lower completion
time in the associated execution framework. Also, the decision can be using a higher number of MPI processes in order to
maintain the QoS delivered to the users.

4.3. Brokering at the laaS layer

When addressing federation at the IaaS layer, we consider Cloud infrastructures to be hybrid, integrating different types
of resource classes such as public and private Clouds from distributed locations. As the infrastructure is dynamic and can
contain a wide array of resource classes with different characteristics and capabilities, it is important to be able to dynami-
cally provision the appropriate mix of resources based on the objectives and requirements of the application. Furthermore,
application requirements and resource state may change, for example, due to workload surges, system failures or emer-
gency system maintenance, and as a result, it is necessary to adapt the provisioning to match these changes in resource and
application workload.

Brokering functions in federated Clouds at the laaS layer can be decomposed into two aspects: resource provisioning and
resource adaptation. In resource provisioning, the most appropriate mix of resource classes and the number of nodes of each
resource class are estimated so as to match the requirements of the application and to ensure that the user objectives (e.g.,
throughput) and constraints (e.g., precision) are satisfied. Note that re-provisioning can be expensive in terms of time and
other costs, and as a result, identifying the best possible initial provisioning is important. For example, if the initial estimate
of required resources is not sufficient, additional nodes can be launched. However, this would involve additional delays
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due to, for example, time spent to create and configure new instances. At runtime, delays can be caused by, for example,
failures, premature job termination, performance fluctuation, performance degradation due to increasing user requests, etc.
As a result, it is necessary to continuously monitor the application execution and adapt resources to ensure that user
objectives and constraints are satisfied. Resource adaption is, therefore, responsible for provisioning resources dynamically
and on runtime. Examples are assigning more physical CPUs to a given VM to speed up an application, or migrating VMs in
order to reduce the resource sharing or optimize the energy efficiency.

The goals of brokering methods and policies in federated Clouds at the laaS layer can be found in different domains.
Some examples are listed as follows:

e Cost-effectiveness: federated Clouds provide a larger amount of resources, which may help improve cost-effectiveness.
This include improvement for both the user and the provider such as, for a given cost, reducing the time to completion,
increasing the system throughput or optimizing the resource utilization.

e Acceleration: federated Clouds can be used as accelerators to reduce the application time to completion by, for example,
using Cloud resources to exploit an additional level of parallelism by offloading appropriate tasks to Cloud resources,
given budget constraints.

e Conservation: federated Clouds can be used to conserve allocations, within the appropriate runtime and budget con-
straints.

e Resilience: federated Clouds can be used to handle unexpected situations such as an unanticipated downtime, inade-
quate allocations or failures of working nodes. Additional Cloud resources can be requested to alleviate the impact of
the unexpected situations and meet user objectives.

e Energy efficiency: federated Clouds can facilitate optimizing the energy efficiency of Clouds by, for example, workload
consolidation, thermal-aware placement or delegating part of the workload to external Clouds in order to optimize the
energy-efficiency of a given Cloud.

Multiple objectives can be combined as needed. An obvious example is combining an acceleration objective with a
resilience objective. Different kinds of information will be required to be handled and exchanged across different Clouds in
order to implement brokering policies with the aim of meeting the objectives presented above on top of a Cloud federation.
At the I[aaS level the information is lower level and include:

e Monitoring information from the hardware/OS: includes hardware and OS characteristics (static information, such as
CPU vendor or OS type) and dynamic information such as CPU load, CPU frequency, RAM memory utilization, free stor-
age, type/quality of the interconnection networks (e.g., bandwidth and latency). Monitoring systems may also provide
measures of power dissipated or even sensing information from the environment such as temperature or airflow.

e VM information: includes information related to the virtualization level such as hypervisor type, available VM classes,
number of running VMs, and characteristics of the VMs (e.g., memory assigned to VMs, number of virtual CPUs or CPU
affinity).

e Application benchmarking/modeling: it is responsible for estimating important metrics such as execution time or re-
quired number of VMs for the application. Since it depends on the actual execution platform this will be exchanged
across different Clouds.

e Cost: includes the costs for provisioning and VM allocation (e.g., the cost of a VM/hour, server/hour or a set of re-
sources/hour) or data transfer cost (e.g., GB transferred).

e Other information such as data locality (e.g., VM images or actual user data) or security issues can be useful for imple-
menting policies at the IaaS layer.

Brokering policies make decisions during resource provisioning and resource adaptation depending on the user objectives
as well as information exchanged between Clouds, as described above, and on the metrics used. Considering WRF as a use
case, important metrics for policies are, for example, deadline and budget. For the deadline metric, the brokering decision
is to select the fastest resource class for each task and to decide the Cloud and the number of nodes per resource class
based on the deadline. When an application needs to be completed as soon as possible, regardless of cost and budget, the
largest useful number of nodes can be allocated in the Cloud(s) that estimate shortest completion time. This estimation is
usually based on representative benchmarking or modeling on all resource classes from all Clouds. If the budget metric is
enforced on the application, the type and number of allocatable nodes is restricted by the budget. If the budget is violated
with the fastest resource class from the different Clouds, then the next fastest and cheaper resource class is selected until
the expected cost falls within the budget limit. After the initial resource provisioning, the allocated resources and tasks
are monitored. The framework continually updates the metrics used by the brokering policies. If the user objective might
be violated (for example, the updated cost is larger than the initially estimated cost), then additional, possibly different,
resources will be provisioned and the remaining tasks will be rescheduled.

Cloud federation at the IaaS layer offers many opportunities for energy optimization, which is another important metric
that is becoming crucial in large-scale distributed system such as Clouds. Different techniques such as VM migration com-
bined with switching on/off servers or workload consolidation/placement (including thermal-aware approaches) can be used
for brokering since the resources belong to multiple Clouds that may be in different operational states. Even techniques such
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Table 3
WREF as a Service workflow.
Layer Input parameters Transformation from upper layer Output from lower layer
SaaS Region data files, software version, number - Total execution cost,
of parallel runs, deadline, budget Total execution time
PaaS Number of tasks, software packages Prediction model to calculate number of VM execution costs,
tasks, list of required software packages VM execution time
laaS Number of VMs, VM image (OS, filesystem) Mapping of tasks to VMs, VM image -

handles, VM parameters

as DVFS can take advantage Cloud federation when, for example, Cloud providers’ policies are not exceeding a given peak
of power dissipated or energy consumed. Furthermore, the price differences of the electricity based on the geographical
location and time during the day can be leveraged to implement energy-aware polices or even the source/class of electricity
used for the Clouds [13] can be taken into account in order to implement environmental-friendly policies.

5. Weather Research and Forecasting (WRF) as a service

We present the WRF application [14] as a use case for the federated cloud architecture of Section 2. WRF is paral-
lel scientific application which performs mesoscale weather simulations of user-selectable geographic areas, with a given
resolution for each area. Due to the nature of certain weather phenomena such as hurricanes or tornadoes, performing
accurate predictions in very short time spans is vital to make appropriate preparations involving business operations man-
agement and government and human related logistics. Thus, sharing of resources between institutions to provide elasticity
and dynamic capacity in extreme situations is key. In [15], an effort to enable the execution of WRF on shared resources is
described, mostly focusing on Grid technologies.

WREF benefits from a hosted service architecture since it is a cross-domain application, requiring extensive IT administra-
tion and setup expertise in addition to scientific and meteorological knowledge to run it. Establishing WRF as a SaaS using
the layer model separates the concerns of the scientists from the underlying platform and infrastructure issues. Efforts to
separate these domains of expertise are ongoing, and at the service level a web portal has been developed as one approach?
to hide IT concerns from users.

The subsequent sections show how the architecture of Section 2 is applied to support federation and delegation while
separating the WRF end user concerns from those of the compute layer software and infrastructure at the PaaS and laaS
layers. Table 3 summarizes the key application parameters at each layer as discussed below. As alluded to earlier, specific
details about the implementation of the translation is beyond the scope of this work. While the implementation of such
a translation mechanism specifically for WRF would not be too complex, a translator would need to account for different
kinds of goals. For example, a web application service needs to reliably service a certain number of requests per unit time,
whereas a scientific application like WRF needs to finish executing an entire program before a given deadline. It would also
need to distinguish between soft and hard deadlines.

5.1. Software as a Service layer

We propose a SaaS solution where users can request WRF executions by providing high level requirements. When these
requirements are entered via a GUI on a web portal the portal generates underlying files that are needed by the WRF
executable. An example are the region files that contain geographic and weather related data.

The input parameters are:

o Input files: Files that need to be processed during the experiment. These include a namelist file and its corresponding
region files. The namelist file specifies all the runtime options desired by the user. The region files are binary files that
describe the geographical area.

e WRF version: Users may need results for a specific version of the software

e Parallel executions: How many ensemble runs to execute in parallel. (The service allows users to specify ensemble runs,

where the multiple experiments on the data are executed, but with different inputs. In the end, the results from all

runs are averaged. This may achieve more accurate results.)

Deadline: When should the experiment finish.

e Cost: How much is the user willing to pay for the service.

The user specifies the listed parameters to define the execution of the tasks without needing to consider PaaS and laaS
details such as machine architecture or virtualization platform.

4 http://www.wrfportal.org.
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For inter-cloud federation the SaaS layer implementation has the option to forward this input to a partner WRF SaaS
layer provider accepting these parameters and files. The decision whether to ‘sub-contract’ this particular job to a partner
is based on a policy with one or more of the considerations presented in Section 4. Also note:

e The target provider must be able to access the experiment’s input files, either by transferring them or retrieving them
from a catalog.

e In the case of an ensemble run (when the number of parallel executions is higher than 1), a site may choose to transfer
one or more instances of the experiment, given that the total cost is not higher than the cost defined by the user and
that no instance will fail to satisfy the deadline.

Instead of federating, the SaaS layer can delegate the execution to the PaaS layer. In order to transfer control down in
the stack, the user’s request is translated to PaaS layer parameters as discussed next.

5.2. Platform as a Service layer

In our architecture, the PaaS layer is constructed by wrapping the MPI libraries and making them available as a service.
The motivation for this is discussed in Section 2.1. Additionally, the PaaS layer is in charge of providing and managing the
middleware that allows execution of WRF. In this case, we consider the following items as part of this layer:

e WREF executables and required libraries: The PaaS layer needs to ensure that the required software will be available at the
provider side. It needs to guarantee that the required operating system and appropriate library versions can be accessed
at the site.

e Software licenses: In the case of libraries or software that requires licenses, such as certain compilers or operating
systems, the PaaS layer needs to certify that the required number of them will be available during execution.

e Task decomposition: Another job of this layer is to manage MPI execution, in terms of running the appropriate number
of tasks to meet higher level requirements. The user that interacts with the SaaS interface does not need to specify how
the experiment has to be decomposed in tasks, but that mapping needs to be resolved at the middleware management
level.

Delegation from the SaaS layer to the PaaS layer needs to be managed by a translator that ensures the original request
objectives are maintained. Some input criteria need to be converted to the appropriate input for this layer, while others are
passed down the stack. A key challenge in this case is satisfying the quality of service or completion deadline requirement.
We consider the use of a prediction model in order to calculate possible costs and task decomposition that can meet the
requested deadline. However, in a federation of Clouds, the compute resources are heterogeneous, so the predictor needs
to be able to determine performance numbers for different combinations of resource requirements. The predictor needs to
determine the resources needed given execution deadline, cost, and application input parameters. Aprof [15] is an example
of a predictor capable of calculating runtime values in a cluster environment given a list of arbitrary resource requirements.
A key difference between the usage of a prediction model for traditional cluster computing and in the federated cloud
model we propose in this work is that the resource selection process is more complex in the latter. This is because there
can be a much larger pool of heterogeneous resources. Also, there can be competing constraints, such as time, cost, and
availability. In this case, we can consider a couple of options. One is to use a feedback mechanism in which users are given
different options, e.g. different costs for different execution times that satisfy the time and cost constraints. The other is to
give priorities to different constraints. For example, a user may not mind waiting slightly longer for a program to complete
as long as it finishes before the deadline, so they will give priority to cost, such that the amount they spend is minimized.
An important consideration for users with hard deadlines is that the error of the prediction model must be accounted for.
This is particularly true for statistical models that rely on historical execution data, which are desirable in our case for their
performance, but tend to have prediction error ranging from 5-30%, depending on the application, run time configuration,
number of available data points, and number of parameters being modeled.

The PaaS layer receives the number of desired tasks from the prediction model used to translate user requirements to
this layer’s input. Fig. 4 shows some of the run times of WRF under different execution parameters, according to the aprof
predictor. Using this tool, we can determine the approximate time of the requested execution for different types of resources.
The figure shows two predicted systems, which have the same characteristics as Abe, one of Teragrid’s® computing clusters,
and Marenostrum, the supercomputer at Barcelona Supercomputing Center. The plots were generated for simulation areas of
15000 square kilometers with resolution of 10 and 15 kms. This data can be used to calculate the approximate execution
time of a WRF request for any number of systems.

The second task of the translation from SaaS to PaaS layer is to compile a list of required software packages and operating
system images that will be requested when the execution VM is instantiated. This is accomplished by using a mapping
from the user input to a set of predefined software (e.g., Linux kernel version, Fortran compilers and runtime libraries

> http://www.teragrid.org.
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Fig. 4. Prediction models for different areas and resolutions.

and MPI version). Additionally, the translator needs to account for the appropriate licenses needed to run the required
software.

Again, the PaaS layer may decide to either off-load the work to another peer through an appropriate federation protocol,
or fulfill the request with local resources by delegating it to the IaaS layer, in which case the request needs to be translated
to the corresponding input values.

5.3. Infrastructure as a Service layer

The IaaS layer provisions the execution environment to run the application. This layer’s interface needs to publish which
resources it supports and the associated cost. Also, the [aaS component needs to consider staging-in of data and application
binaries - e.g., in the form of Virtual Machine images.

Delegation from the PaaS layer again needs to happen through a translation component. First, the different combinations
of resources produced by the prediction model are compared with what the virtualization manager can provide to calculate
execution costs, then those parameters (amount of RAM, number of virtual processors, etc.) are passed to the [aaS manager
to be used during VM instantiation. Next, the list of software needs to be retrieved by the IaaS layer to provision the VMs.
There are different methods to do this, one example would be by associating a virtual disk image located in a file repository
with the list of software components; another example would require creating the virtual disk image on demand before
execution by aggregating the software packages from a repository.

Once the resources have been provisioned, the IaaS layer instantiates the required VMs and control is given back to
the PaaS component, which orchestrates the provisioning of VMs and the execution of the software on them. The platform
layer is in charge of issuing MPI calls to define which virtual hosts will take place in the execution, spawning the required
number of processes, and ensuring the application is run successfully.

However, in the cases where the infrastructure layer does not have the necessary resources, or when the site’s policies
mandate it, the request issued by the platform component can be forwarded to another site via a federation protocol. In
this case, laaS providers need to be able to publish their resources, to which disk image repositories they have access and
their execution costs. Based on the user’s requirements, the site may acquire external resources to answer a request after
employing the federation protocol.

6. Related work

We define federation as a collaborative network of Clouds that facilitate resource sharing with different service layers or
models in order to achieve increased dynamic scalability, and effective resource utilization while provisioning during peak
demand. In principle, federation can be achieved using various types of Clouds such as public, private and hybrid Clouds,
which are defined as:

e Public Clouds: Cloud providers that follow a utility based pricing model, offer services that are dynamically scalable and
available to general public users. An example of a public Cloud is Amazon EC2.

e Private Clouds: Clouds that provide services that are available to a specific set of customers and not the general pub-
lic [16].
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e Hybrid Clouds: Clouds that encompass aspects of both public and private Clouds. The common usage model of hybrid
Cloud is that the most sensitive aspects of the service offering is processed in a private Cloud and less sensitive aspects
are carried out in a public Cloud.

Many organizations provide their definitions of different Cloud service models. For example, [17]® defines Software as a
Service (SaaS), Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). In the following, we focus on providing
very brief definitions but citing exemplary service providers:

e Software as a Service (SaaS) provides a highly specialized, single-purpose software to be offered over the Internet and
managed by the Cloud provider. This allows the consumer to delegate the task to the Cloud without having much
knowledge about the software or the need to allocate resources to maintain the software locally [18]. Some examples
of SaaS providers include Gmail and Salesforce.com [16].

e Platform as a Service (PaaS) provides a scalable, fault-tolerant and self-managing development environment for con-
sumers to build applications on. A PaaS provider should allow developers to build applications utilizing the necessary
libraries, provide runtime management for the applications being hosted and enable the platform to be application
and infrastructure agnostic. Google App Engine is a good example of a PaaS offering. Other examples of PaaS providers
include Force.com, Sun’s Caroline and Microsoft’s Azure.

e Infrastructure as a Service (IaaS) provides capacities of storage, network and servers that are dynamically scalable
on-demand in the form of a highly customizable environment which consumers can modify to fit consumer require-
ments [18]. The best example of an IaaS provider is Amazon with its Elastic Compute Cloud (EC2) and Simple Storage
Service (S3).

6.1. Cloud federation technologies

There are some technologies that provide mechanisms which support Cloud services and even federation. In this section,
we will briefly review those which can be utilized in the federation of Clouds.

OpenNebula’ [19] provides an open-source and extensible architecture that can be modified to fit an individual Cloud.
OpenNebula manages virtualization, storage, network and monitoring resources thus combining data centers into a unified
Cloud. For example, in addition to local infrastructure, OpenNebula can obtain resources from Amazon EC2 in order to
meet peak demands. The extensibility of OpenNebula and its interoperability can be leveraged by adding APIs and plug-ins
to the existing OpenNebula architecture in order to facilitate inter-Cloud communication at different layers of the service
stack.

Eucalyptus® [20] is an open-source framework that uses storage and computational infrastructure to provide a Cloud
computing platform. Like OpenNebula, Eucalyptus allows for modifications to the existing APIs for different requirements.
Eucalyptus implements the Amazon Web Service (AWS) API which facilitates interoperability with existing tools and ser-
vices compatible with the AWS API. Eucalyptus provides a modular, extensible framework with an Amazon EC2 compatible
interface which can be utilized for federation at the [aaS layer.

The Aneka Coordinator [1] is a resource management and resource discovery tool used in an Aneka Enterprise Cloud
to communicate and share resources with other Aneka sites. The Aneka Coordinator is composed of the Aneka Services
and Aneka Peer components which provide the Cloud’s core ability to interact with other services. Aneka Services provides
functional peer-to-peer scheduling and peer-to-peer execution while the Aneka Peer facilitates resource sharing and load
balancing among the distributed Aneka Enterprise Clouds thus providing a decentralized laaS federation.

CometCloud [21] is an autonomic computing engine that enables the dynamic and on-demand federation of Clouds
as well as the deployment and execution of applications on these federated environments. It supports heterogeneous and
dynamic Cloud infrastructures, enabling the integration of public/private Clouds and autonomic Cloud bursts, i.e., dynamic
scale-out to Clouds to address dynamic workloads. Conceptually, CometCloud is composed of a programming layer, service
layer, and infrastructure layer. The service layer provides a range of services to support autonomics at the programming
and application level. The programming (e.g., master/worker/BOT) layer supports the dynamic addition or removal of master
and/or worker nodes from any of the federated environments to enable on-demand scale up/down or out/in. CometCloud
also provides autonomic management services driven by user-defined policies [22,23].

6.2. Cloud brokering strategies

Celesti et al. [9] propose an architecture to enable Cloud federation based on a three-phase model (namely, discovery,
match-making and authentication). The brokering functionality in their architecture is provided by a match-making agent,
whose task is choosing the more convenient Cloud(s) wherewith to establish a federation based on information collected

6 http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc.
7 http://www.opennebula.org/.
8 http://open.eucalyptus.com/.
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both at the laaS layer (e.g., CPU or RAM memory) and higher layers (e.g., QoS level). Sotomayor et al. [10,11] propose the
Haizea lease manager, which is utilized as an Open Nebula integration to schedule advance reservation leases during peak
resource usage can be leveraged in a Cloud federation. The Haizea manager provisions resources and executes OpenNebula
commands to start, stop or migrate VMs in order to ensure advance reservation requirements are upheld. These types of
leases can be used in Cloud federations during situations where advance reservations in one Cloud are affected by incoming
resource requests from federated Clouds. Buyya et al. [12] utilize reallocation heuristics that migrates VMs before a threshold
(e.g., CPU usage) breach occurs. The authors evaluate the energy consumption of four policies, which include Non-Power
Aware (NPA), Dynamic Voltage and Frequency Scaling (DVFS), Single Threshold (ST) and Minimization of Migrations (MM)
using the CloudSim toolkit. Their results have shown that implementing a reallocation policy consistently uses less energy
than implementing the NPA or DVFS policies.

7. Conclusion and future work

In this paper we have presented an initial approach to the Cloud federation problem by considering a layered model
where negotiation is constrained to well-defined sets of parameters. We have discussed the benefits of decoupling the
different layers - Infrastructure, Platform and Software as a Service - so that the execution of an application can be sup-
ported by diverse providers implementing different parts of the functionality. Additionally, we explain how user and site
policies can be used to negotiate federation between partners, or translated to delegate tasks to other layers of a single
site.

We have also introduced a motivational scenario to illustrate this layered model. We described a “WRF as a service”
application for domain experts which accepts high level parameters relating to user requirements such as cost or time
of execution. We then showed how these requirements are either used in the negotiation process or transformed to new
arguments to lower levels in the Cloud stack by using prediction models and inter-layer translation mechanisms. Moreover,
we discussed different brokering strategies for providers to consider assigning parts of the execution workflow to other
partners while enforcing user policies.

We plan to incorporate the ideas presented in this paper to our existing interoperability framework so that it can take
advantage of the additional benefits of the layered model. More work will be done in the area of brokering policies and
federation protocols, as well as further experiments on the advantages and drawbacks of delegation versus federation.
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