

Network Design in the Supply Chain

Learning Objectives

- Understand the role of network design in a supply chain.
- Identify factors influencing supply chain network design decisions.
- Develop a framework for making network design decisions.
- Use optimization for facility location and capacity allocation decisions.

Network Design Decisions

Facility role

✤ What role, what processes?

Facility location

Where should facilities be located?

Capacity allocation

How much capacity at each facility?

Market and supply allocation

What markets? Which supply sources?

Factors Influencing Network Design Decisions

- Strategic factors
- Technological factors
- Macroeconomic factors
 - Tariffs and tax incentives
 - Exchange-rate and demand risk
 - Freight and fuel costs
- Political

Factors Influencing Network Design Decisions

- Infrastructure factors
- Competitive factors
 - Positive externalities between firms
 - Locating to split the market
- Customer response time and local presence
- Logistics and facility costs

• Phase I: Define a supply chain strategy/design

- Clear definition of the firm's competitive strategy
- Forecast the likely evolution of global competition
- Identify constraints on available capital
- Determine growth strategy

Socio Economic Factors in Choice of Facility Location

- What role do socio-economic factors play in the selection of the facility location?
- How do state policies aimed at promoting balanced regional development, shape the supply chain network designs?

Sunil Chopra, Peter Meindl and D. V. Kalra PEARSON

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

Phase II: Define the regional facility configuration

- Forecast of the demand by country or region
- ✤ Economies of scale or scope
- Identify demand risk, exchange-rate risk, political risk, tariffs, requirements for local production, tax incentives, and export or import restrictions
- Identify competitors

Phase III: Select a set of desirable potential sites

- Hard infrastructure requirements
- Soft infrastructure requirements
- Phase IV: Location choices

Models for Facility Location and Capacity Allocation

- Maximize the overall profitability of the supply chain network while providing customers with the appropriate responsiveness
- Many trade-offs during network design
- Network design models used to decide on locations and capacities and to assign current demand to facilities

Models for Facility Location and Capacity Allocation

- Important information
 - Location of supply sources and markets
 - Location of potential facility sites
 - Demand forecast by market
 - ✤ Facility, labor, and material costs by site
 - Transportation costs between each pair of sites
 - Inventory costs by site and as a function of quantity
 - Sale price of product in different regions
 - Taxes and tariffs
 - Desired response time and other service factors

Phase II: Network Optimization Models

	A	В	С	D	E	F	G	Н	1	J
1	Inputs - Costs,	Capacities, L	Demands							
		1999-12 INT 1995	Der	mand Regio	n	to state and	2000 V.	22		1000000 - 100
2		Production	and Transpo	ortation Cos	st per 1,000	,000 Units	Fixed	Low	Fixed	High
3	Supply Region	N. America	S. America	Europe	Asia	Africa	Cost (\$)	Capacity	Cost (\$)	Capacity
4	N. America	81	92	101	130	115	6,000	10	9,000	20
5	S. America	117	77	108	98	100	4,500	10	6,750	20
6	Europe	102	105	95	119	111	6,500	10	9,750	20
7	Asia	115	125	90	59	74	4,100	10	6,150	20
8	Africa	142	100	103	105	71	4,000	10	6,000	20
9	Demand	12	8	14	16	7				

Figure 5-3

- n = number of potential plant locations/capacity
- m = number of markets or demand points
- D_i = annual demand from market j
- K_i = potential capacity of plant *i*
- f_i = annualized fixed cost of keeping plant *i* open
- C_{ij} = cost of producing and shipping one unit from plant *i* to market *j* (cost includes production, inventory, transportation, and tariffs)

$$Min \bigotimes_{i=1}^{n} f_i y_i + \bigotimes_{i=1}^{n} \bigotimes_{j=1}^{m} c_{ij} x_{ij}$$

subject to
$$\bigotimes_{i=1}^{n} x_{ij} = D_j \text{ for } j = 1, \dots, m$$
$$\bigotimes_{j=1}^{m} x_{ij} = K_i y_i \text{ for } i = 1, \dots, n$$
$$y_i \widehat{1} \{0,1\} \text{ for } i = 1, \dots, n, x_{ij} \xrightarrow{3} 0$$

$$y_i = 1$$
 if plant *i* is open, 0 otherwise

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

	A	B	С	D	E	F	G	Н	1	J
1	Inputs - Costs,	Capacities, I	Demands							
			Der	nand Regio	n					
2		Production	and Transpo	ortation Cos	t per 1,000	,000 Units	Fixed	Low	Fixed	High
3	Supply Region	N. America	S. America	Europe	Asia	Africa	Cost (\$)	Capacity	Cost (\$)	Capacity
4	N. America	81	92	101	130	115	6,000	10	9,000	20
5	S. America	117	77	108	98	100	4,500	10	6,750	20
6	Europe	102	105	95	119	111	6,500	10	9,750	20
7	Asia	115	125	90	59	74	4,100	10	6,150	20
8	Africa	142	100	103	105	71	4,000	10	6,000	20
9	Demand	12	8	14	16	7				
10		lī)								
11	Decision Varia	bles								
12		Demand R	Region - Proc	luction Allo	cation (Milli	ion Units)	Plants	Plants		
13	Supply Region	N. America	S. America	Europe	Asia	Africa	(1=open)	(1=open)		
14	N. America	0	0	0	0	0	0	0		
15	S. America	0	0	0	0	0	0	0		
16	Europe	0	0	0	0	0	0	0		
17	Asia	0	0	0	0	0	0	0		
18	Africa	0	0	0	0	0	0	0		

Figure 5-4

	A	B	C	D	E	F	G	н	1	J
1	Inputs - Costs,	Capacities, I	Demands							
			Der	nand Regio	n	a contraction of the			24 12	- Side
2		Production	and Transpo	rtation Cos	st per 1,000	,000 Units	Fixed	Low	Fixed	High
3	Supply Region	N. America	S. America	Europe	Asia	Africa	Cost (\$)	Capacity	Cost (\$)	Capacity
4	N. America	81	92	101	130	115	6,000	10	9,000	20
5	S. America	117	77	108	98	100	4,500	10	6,750	20
6	Europe	102	105	95	119	111	6,500	10	9,750	20
7	Asia	115	125	90	59	74	4,100	10	6,150	20
8	Africa	142	100	103	105	71	4,000	10	6,000	20
9	Demand	12	8	14	16	7				
10									(
11	Decision Variat	bles								
12		Demand F	Region - Proc	luction Allo	cation (Milli	ion Units)	Plants	Plants		
13	Supply Region	N. America	S. America	Europe	Asia	Africa	(1=open)	(1=open)		
14	N. America	0	0	0	0	0	0	0		
15	S. America	0	0	0	0	0	0	0		
16	Europe	0	0	0	0	0	0	0		
17	Asia	0	0	0	0	0	0	0		
18	Africa	0	0	0	0	0	0	0		
19		ñ				1 2		1		
20	Constraints									
21	Supply Region	Excess Cap	pacity							
22	N. America	0								
23	S. America	0								
24	Europe	0								
25	Asia	0								
26	Africa	0								
27		N. America	S. America	Europe	Asia	Africa				
28	Unmet Demand	12	8	14	16	7				
29	Carson-Harrison	1								
30	Objective Func	tion								
31	Cost =	\$ -								

Figure 5-5

Cell	Cell Formula	Equation	Copied to
B28	=B9 - SUM(B14:B18)	5.1	B28:F28
B22	=G14*H4 + H14*J4 - SUM(B14:F14)	5.2	B22:B26
B31	=SUMPRODUCT(B14:F18,B4:F8) + SUMPRODUCT(G14:G18,G4:G8) + SUMPRODUCT(H14:H18,I4:I8)	Objective Function	

PEARSON

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

Phase III: Gravity Location Models

	A	В		С	D	E	F	G	Ĥ	1	J
1	Inputs - Costs,	Capacities,	Dema	nds						l	
		the call the	2244	Der	mand Regio	n	128812201122	1022207 W7	1195	849	1600007
2		Production	and 7	Transpo	ortation Cos	t per 1,000	000 Units	Fixed	Low	Fixed	High
3	Supply Region	N. America	S.A	merica	Europe	Asia	Africa	Cost (\$)	Capacity	Cost (\$)	Capacity
4	N. America	81		92	101	130	115	6,000	10	9,000	20
5	S. America	117		77	108	98	100	4,500	10	6,750	20
6	Europe	102		105	95	119	111	6,500	10	9,750	20
7	Asia	115		125	90	59	74	4,100	10	6,150	20
8	Africa	142		100	103	105	71	4,000	10	6,000	20
9	Demand	12		8	14	16	7	(-	
10											
11	Decision Varial	bles									
12		Demand F	Regior	1 - Proc	duction Allo	cation (Milli	ion Units)	Plants	Plants		
13	Supply Region	N. America	S. A	merica	Europe	Asia	Africa	(1=open)	(1=open)		
14	N. America	0		0	0	0	0	0	0		
15	S. America	0		0	0	0	0	0	0		
16	Europe	0		0	0	0	0	0	0		
17	Asia	0		0	0	0	0	0	0		
18	Africa	0	(Solver	Parameters						23
19		· · · · · · · · · · · · · · · · · · ·			rarameters						
20	Constraints			Set Ta	arget Cell:	\$8\$31	256			S	olve
21	Supply Region	Excess Ca	pacit	Equal	To: (D)		in Church		1		
22	N. America	0		By Cl	no. Ol	Max @ M		le or:		C	lose
23	S. America	0		EY C	langing cels.	0.					
24	Europe	0		\$8\$	14:\$H\$18			Ema	Guess		
25	Asia	0		Subie	act to the Cor	etrainte:					
26	Africa	0		500		to can rear				C QI	otions
27		N. America	S.A	\$8\$	14:\$H\$18 >=	0		1	Add	1	
28	Unmet Demand	12		\$85	\$8\$22:\$8\$26 >= 0 \$8\$28;\$F\$28 = 0						
29				\$G\$	\$G\$14:\$H\$18 = binary						set All
30	Objective Func	tion						- 1	Delete		
31	Cost =	\$ -		L						(t	jelp
32	www.	•									

Figure 5-6

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

 x_n , y_n : Coordinate location of either a market or supply source n

- F_n : Cost of shipping one unit for one mile between the facility and either market or supply source n
- D_n : Quantity to be shipped between facility and market or supply source n

(x, y) is the location selected for the facility, the distance d_n between the facility at location (x, y) and the supply source or market n is given by

$$d_n = \sqrt{\left(x - x_n\right)^2 + \left(y - y_n\right)^2}$$

ing.	A	В	С	D	E	F	G	Н	1	J
1	Inputs - Costs,	Capacities, I	Demands							
	12		Der	nand Regio	n	1.				
2		Production	and Transpo	ortation Cos	st per 1,000	,000 Units	Fixed	Low	Fixed	High
3	Supply Region	N. America	S. America	Europe	Asia	Africa	Cost (\$)	Capacity	Cost (\$)	Capacity
4	N. America	81	92	101	130	115	6,000	10	9,000	20
5	S. America	117	77	108	98	100	4,500	10	6,750	20
6	Europe	102	105	95	119	111	6,500	10	9,750	20
7	Asia	115	125	90	59	74	4,100	10	6,150	20
8	Africa	142	100	103	105	71	4,000	10	6,000	20
9	Demand	12	8	14	16	7				
10										
11	Decision Varial	bles								
12	()	Demand F	Region - Proc	luction Allo	cation (Mill	ion Units)	Plants	Plants		
13	Supply Region	N. America	S. America	Europe	Asia	Africa	(1=open)	(1=open)		
14	N. America	0	0	0	0	0	0	0		
15	S. America	12	8	0	0	0	0	1		
16	Europe	0	0	0	0	0	0	0		
17	Asia	0	0	4	16	0	0	1		
18	Africa	0	0	10	0	7	0	1		
19						1				
20	Constraints									
21	Supply Region	Excess Car	pacity							
22	N. America	0	-	_						
23	S. America	0								
24	Europe	0								
25	Asia	0								
26	Africa	3								
27		N. America	S. America	Europe	Asia	Africa				
28	Unmet Demand	0	0	0	0	0				
29										
30	Objective Func	tion								
31	Cost =	\$ 23,751								

Figure 5-7

	Transportation		Coord	linates
Sources/Markets	Cost \$/Ton Mile (F _n)	Quantity in Tons (D _n)	x _n	<i>y</i> _n
Supply sources				
Buffalo	0.90	500	700	1,200
Memphis	0.95	300	250	600
St. Louis	0.85	700	225	825
Markets				
Atlanta	1.50	225	600	500
Boston	1.50	150	1,050	1,200
Jacksonville	1.50	250	800	300
Philadelphia	1.50	175	925	975
New York	1.50	300	1,000	1,080
Total transport	ation cost $TC = 2$	$\sum_{n=1}^{k} d_n D_n F_n$		Table 5-1

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

	A	В	С	D	E	F	G	Н	1	
2	1000				510-5			1000		
3		Sources/	\$/Ton Mile	Tons	Coord	inates				
4		Markets	F _n	D_n	x_n	y n	dn			
5		Buffalo	0.90	500	700	1200	1389			
6	Sources	Memphis	0.95	300	250	600	650			
7		St. Louis	0.85	700	225	825	855			
8		Atlanta	1.50	225	600	500	781			
9		Boston	1.50	150	1050	1200	1595			
10	Markets	Jacksonville	1.50	250	800	300	854			
11		Philadelphia	1.50	175	925	975	1344			
12		New York	1.50	300	1000	1080	1472			
13			Solver Parame	eters						×
14	Facility Lo	cation	1	225022 245	denote a					_
15			Set Target Ce	ell:	\$8\$19	26	-		Solve	
16	x =	0.0	Equal To:	© <u>M</u> ax	Min	© ⊻al	ue of: 0		Close	
17	y =	0.0	By Changing	Cells:			(2001)			
18			\$8\$16:\$8\$1	17			1961	Guess		
19	Cost =	\$3,277,110	Subject to th	e Constrai	ints:				Options	
20								Add		
21							1	Change		
22								To see alor	Reset A	
23							-	Delete	Help	
24									(Teb	-
OF			-							

Figure 5-8

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

Cell	Cell Formula	Equation	Copied to
G5	=SQRT((\$B\$16-E5)^2+(\$B\$17-F5)^2)	5.1	G5:G12
B19	=SUMPRODUCT(G5:G12,D5:D12,C5: C12)	5.2	

Figure 5-8

- For each supply source or market n, evaluate d_n
- Obtain a new location (x', y') for the facility, where

$$x^{\ell} = \frac{\overset{k}{\bigcirc} \frac{D_n F_n x_n}{d_n}}{\overset{k}{\bigcirc} \frac{D_n F_n x_n}{d_n}} \text{ and } y^{\ell} = \frac{\overset{k}{\bigcirc} \frac{D_n F_n y_n}{d_n}}{\overset{k}{\bigcirc} \frac{D_n F_n}{d_n}}$$

If the new location (x', y') is almost the same as (x, y) stop. Otherwise, set (x, y) = (x', y') and go to step 1

Phase IV: Network Optimization Models

			Monthly Capacity (Thousand	Monthly Fixed Cost (Thousand				
Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	Units) K	(1118436114 \$) f
Baltimore	1,675	400	985	1,630	1,160	2,800	18	7,650
Cheyenne	1,460	1,940	970	100	495	1,200	24	3,500
Salt Lake City	1,925	2,400	1,450	500	950	800	27	5,000
Memphis	380	1,355	543	1,045	665	2,321	22	4,100
Wichita	922	1,646	700	508	311	1,797	31	2,200
Monthly demand (thousand units) D _j	10	8	14	6	7	11		

Table 5-2

Network Optimization Models

Allocating demand to production facilities

- n = Number of factory locations
- m = Number of markets or demand points

$$D_{i}$$
 = Annual demand from market j

$$K_i = \text{Capacity of factory } i$$

 c_{ii} = Cost of producing and shipping one unit from factory *i* to market *j*

$$Min\sum_{i=1}^{n}\sum_{j=1}^{m}c_{ij}x_{ij}$$

subject to

$$\sum_{i=1}^{n} x_{ij} = D_{j} \text{ for } j = 1,...,m$$
$$\sum_{i=1}^{m} x_{ij} = K_{i} \text{ for } i = 1,...,n$$

 x_{ii} = Quantity shipped from factory *i* to

market *i*

Network Optimization Models

Optimal demand allocation ۲

		Atlanta	Boston	Chicago	Denver	Omaha	Portland
TelecomOne	Baltimore	0	8	2			
	Memphis	10	0	12			
	Wichita	0	0	0			
HighOptic	Salt Lake				0	0	11
	Cheyenne				6	7	0

lable 5-3

PEARSON

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

- Merge the companies
- Solve using location-specific costs

 $y_i = 1$ if factory *i* is open, 0 otherwise

 x_{ij} = quantity shipped from factory *i* to market *j*

$$Min \overset{n}{\underset{i=1}{\overset{n}{\overset{}}}} f_{i}y_{i} + \overset{n}{\underset{i=1}{\overset{n}{\overset{}}}} \overset{m}{\underset{j=1}{\overset{m}{\overset{}}}} c_{ij}x_{ij}$$

PEARSON

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

1	A	В	С	D	E	F	G	Н	1
1	Inputs - Costs, C	apacities, De	mands (f	or Telecon	nOptic)				
				Deman	d City				
2		Produ	ction and	Transporta	ation Cost	per 1000 U	nits	Fixed	
3	Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	Cost (\$)	Capacity
4	Baltimore	1,675	400	685	1,630	1,160	2,800	7,650	18
5	Cheyenne	1,460	1,940	970	100	495	1,200	3,500	24
6	Salt Lake	1,925	2,400	1,425	500	950	800	5,000	27
7	Memphis	380	1,355	543	1,045	665	2,321	4,100	22
8	Wichita	922	1,646	700	508	311	1,797	2,200	31
9	Demand	10	8	14	6	7	11		
11	Decision Variab	les							
12		Dema	and City -	Production	n Allocatio	on (1000 Uni	its)	Plants	
13	Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	(1=open)	
14	Baltimore	0	0	0	0	0	0	0	
15	Cheyenne	0	0	0	0	0	0	0	
16	Salt Lake	0	0	0	0	0	0	0	
17	Memphis	0	0	0	0	0	0	0	
18	Wichita	0	0	0	0	0	0	0	

Figure 5-9

.1	A	В	С	D	E	F	G	H	1				
1	Inputs - Costs, (Capacities, De	mands (f	or Telecon	nOptic)								
	- 20	1.0. 		Deman	d City		2		50				
2		Produ	Production and Transportation Cost per 1000 Units										
3	Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	Cost (\$)	Capacity				
4	Baltimore	1,675	400	685	1,630	1,160	2,800	7,650	18				
5	Cheyenne	1,460	1,940	970	100	495	1,200	3,500	24				
5	Salt Lake	1,925	2,400	1,425	500	950	800	5,000	27				
1	Memphis	380	1,355	543	1,045	665	2,321	4,100	22				
3	Wichita	922	1,646	700	508	311	1,797	2,200	31				
9	Demand	10	8	14	6	7	11						
1	Decision Variat	oles											
2		Dema	and City -	Production	n Allocatio	n (1000 Uni	ts)	Plants					
3	Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	(1=open)					
4	Baltimore	0	0	0	0	0	0	0					
5	Cheyenne	0	0	0	0	0	0	0					
6	Salt Lake	0	0	0	0	0	0	0					
7	Memphis	0	0	0	0	0	0	0					
8	Wichita	0	0	0	0	0	0	0					
0	Constraints												
1	Supply City	Excess Capac	city										
2	Baltimore	0											
3	Cheyenne	0											
4	Salt Lake	0											
5	Memphis	0											
6	Wichita	0											
8		Atlanta	Boston	Chicago	Denver	Omaha	Portland						
9	Unmet Demand	10	8	14	6	7	11						
31	Objective Func	tion											
22	Cost =	S -											

Figure 5-10

18

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

Cell	Formula	Equation	Copied to
B22	= I4*H14 - SUM(B14:G14)	5.7	B23:B26
B29	= B9 - SUM(B14:B18)	5.6	C29:G29
B32	= SUMPRODUCT(B4:G8, B14:G18) + SUMPRODUCT(H4:H8, H14:H18)	Objective function	

Figure 5-10

Z	A	В	C	D	E	F	G	Н	1	J	K	6	L	13	М		N	0
1	Inputs - Costs, (Capacities, De	mands (f	or Telecor	nOptic)													
2		Demand City Production and Transportation Cost per 1000 Units				Fixed												
3	Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	Cost (\$)	Capacity									
4	Baltimore	1,675	400	685	1,630	1,160	2,800	7,650	18									
5	Cheyenne	1,460	1,940	970	100	495	1,200	3,500	24									
6	Salt Lake	1,925	2,400	1,425	500	950	800	5,000	27									
7	Memphis	380	1,355	543	1,045	665	2,321	4,100	22									
3	Wichita	922	1,646	700	508	311	1,797	2,200	31									
9	Demand	10	8	14	6	7	11											
1	Decision Variat	bles																
2		Dem	and City -	Production	n Allocatio	n (1000 Unit	s)	Plants										
3	Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	(1=open)										
4	Baltimore	0	0	0	0	0	0	0										
5	Cheyenne	0	0	0	0	0	0	0										
6	Salt Lake	0	0	0	0	0	0	0										
7	Memphis	0	0	0	0	0	0	0										
8	Wichita	0	0	0	0	0	0	0										
0	Constraints							Solver Pa	rameters									8
1	Supply City	Excess Capa	city					Theorem	1997 C		passage (_
2	Baltimore	0						Set Targ	et Cell:	\$8\$32	1941					1	Solve	2
3	Cheyenne	0						Equal To	: 🔿 Max	(i) Mr	0	Value of	. 0	6		6	-	
4	Salt Lake	0						By Char	naina Cells:	1. 2013	t. S.	400010	82. d e				Close	
5	Memphis	0																
6	Wichita	0						\$8\$14:	\$H\$18			1	341	Gues	\$5			
8		Atlanta	Boston	Chicago	Denver	Omaha	Portland	Subject	to the Constrain	nts:						1	Option	ns
9	Unmet Demand	10	8	14	6	7	11	\$8\$14:	\$G\$18 >= 0					Add	4			
31	Objective Func	tion						\$8\$22:	\$8\$26 >= 0									
2	Cost =	\$ - \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$								E	Reset							
3													- 1	Dele	te	1	Tener	
4																1	Help	
35																-		
6													_					

Figure 5-11

Capacitated Model with Single Sourcing

- Market supplied by only one factory
- Modify decision variables

 $y_i = 1$ if factory *i* is open, 0 otherwise

 $\begin{aligned} x_{ij} &= 1 \text{ if market } j \text{ is supplied by factory } i, 0 \text{ otherwise} \\ Min \overset{n}{\underset{i=1}{\overset{n}{\stackrel{}}}} f_i y_i + \overset{n}{\underset{i=1}{\overset{n}{\stackrel{}}}} \overset{m}{\underset{j=1}{\overset{n}{\stackrel{}}}} D_j c_{ij} x_{ij} \\ \text{subject to} \\ \overset{n}{\underset{i=1}{\overset{n}{\stackrel{}}}} x_{ij} &= 1 \text{ for } j = 1, \dots, m \\ \overset{n}{\underset{j=1}{\overset{n}{\stackrel{}}}} D_i x_{ij} \notin K_i y_i \text{ for } i = 1, \dots, n \\ x_{ii}, y_i \upharpoonright \{0,1\} \end{aligned}$

Capacitated Model with Single Sourcing

	A	B	С	D	E	F	G	Н	1				
1	Inputs - Costs, (Capacities, De	mands (fe	or Telecon	nOptic)								
		Demand City											
2		Produ	Production and Transportation Cost per 1000 Units										
3	Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	Cost (\$)	Capacity				
4	Baltimore	1,675	400	685	1,630	1,160	2,800	7,650	18				
5	Cheyenne	1,460	1,940	970	100	495	1,200	3,500	24				
6	Salt Lake	1,925	2,400	1,425	500	950	800	5,000	27				
7	Memphis	380	1,355	543	1,045	665	2,321	4,100	22				
8	Wichita	922	1,646	700	508	311	1,797	2,200	31				
9	Demand	10	8	14	6	7	11						
11	Decision Variat	bles											
12		Dema	and City -	Production	n Allocatio	on (1000 Uni	its)	Plants					
13	Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	(1=open)					
14	Baltimore	0	8	2	0	0	0	1					
15	Cheyenne	0	0	0	6	7	11	1					
16	Salt Lake	0	0	0	0	0	0	0					
17	Memphis	10	0	12	0	0	0	1					
18	Wichita	0	0	0	0	0	0	0					
20	Constraints							·					
21	Supply City	Excess Capac	city										
22	Baltimore	8	-				1						
23	Chevenne	0											
24	Salt Lake	0											
25	Memphis	0											
26	Wichita	0											
28		Atlanta	Boston	Chicago	Denver	Omaha	Portland						
29	Unmet Demand	0	0	0	0	0	0						
31	Objective Func	tion											
32	Cost =	\$ 47,401											

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

Figure 5-12

Capacitated Model with Single Sourcing

• Optimal network configuration with single sourcing

	Open/ Closed	Atlanta	Boston	Chicago	Denver	Omaha	Portland
Baltimore	Closed	0	0	0	0	0	0
Cheyenne	Closed	0	0	0	0	0	0
Salt Lake	Open	0	0	0	6	0	11
Memphis	Open	10	8	0	0	0	0
Wichita	Open	0	0	14	0	7	0

Table 5-4

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

Figure 5-13

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

Model inputs

- m = Number of markets or demand points
- n = Number of potential factory locations
- / = Number of suppliers
- t = Number of potential warehouse locations
- D_j = Annual demand from customer j
- $\vec{K_i}$ = Potential capacity of factory at site *i*
- S_h = Supply capacity at supplier h
- W_e = Potential warehouse capacity at site *e*
 - $\vec{F_i}$ = Fixed cost of locating a plant at site *i*
 - f_e = Fixed cost of locating a warehouse at site *e*
- c_{hi} = Cost of shipping one unit from supply source h to factory i
- c_{ie} = Cost of producing and shipping one unit from factory *i* to warehouse *e*
- c_{ej} = Cost of shipping one unit from warehouse e to customer j

 Goal is to identify plant and warehouse locations and quantities shipped that minimize the total fixed and variable costs

 $Y_i = 1$ if factory is located at site *i*, 0 otherwise

- $Y_e = 1$ if warehouse is located at site *e*, 0 otherwise
- x_{ej} = Quantity shipped from warehouse *e* to market *j*
- x_{ie} = Quantity shipped from factory at site *i* to warehouse *e*
- x_{hi} = Quantity shipped from supplier *h* to factory at site *i*

$$Min \overset{n}{\overset{n}{\underset{i=1}{\overset{n}{\overset{}}{a}}}} F_{i}y_{i} + \overset{t}{\overset{n}{\underset{e=1}{\overset{}{a}}}} f_{e}y_{e} + \overset{l}{\overset{n}{\underset{h=1}{\overset{n}{\overset{}}{a}}}} \overset{n}{\underset{i=1}{\overset{n}{\overset{}}{a}}} c_{hi}x_{ie} + \overset{t}{\overset{n}{\underset{e=1}{\overset{n}{\overset{}}{a}}}} \overset{m}{\underset{e=1}{\overset{n}{\overset{}}{a}}} c_{ej}x_{ej}$$

subject to

Accounting for Taxes, Tariffs, and Customer Requirements

- A supply chain network should maximize profits after tariffs and taxes while meeting customer service requirements
- Modified objective and constraint

$$Max \mathop{a}\limits^{m}_{j=1} r_{j} \mathop{a}\limits^{n}_{i=1} x_{ij} - \mathop{a}\limits^{n}_{i=1} F_{i}y_{i} - \mathop{a}\limits^{n}_{i=1} \mathop{a}\limits^{m}_{j=1} c_{ij}x_{ij}$$

$$\overset{"}{\underset{i=1}{\overset{n}{\overset{}}}} x_{ij} \notin D_j \text{ for } j = 1, \dots, m$$

Supply Chain Management: Strategy, Planning, and Operation, 5/e Authors: Sunil Chopra, Peter Meindl and D. V. Kalra

Making Network Design Decisions in Practice

- Do not underestimate the life span of facilities
- Do not gloss over the cultural implications
- Do not ignore quality-of-life issues
- Focus on tariffs and tax incentives when locating facilities

Summary of Learning Objectives

- Understand the role of network design in a supply chain
- Identify factors influencing supply chain network design decisions
- Develop a framework for making network design decisions
- Use optimization for facility location and capacity allocation decisions