

Sulfuric Acid

Sulfuric acid is one of the most important compounds made by the chemical industry.

It is used to make, literally, hundreds of compounds needed by almost every industry.

The Contact Process

Now a days, sulphuric acid is prepared by contact process all over the world.

Preparation of sulphuric acid by contact process is based upon the catalytic oxidation of SO_2 to SO_3

Details of the process

Step 1: Formation of SO₂

Step 2: Purification of SO₂

Step 3: Oxidation of SO₂ to SO₃

Step 4: Formation of H₂SO₄

Formation of SO₂

SO₂ is obtained by burning sulphur or by heating iron pyrite (FeS₂) in pyrite burner.

$$S + O_2 \rightarrow SO_2$$

 $4FeS_2 + 11O_2 \rightarrow 2Fe_2O_3 + 8SO_2$

Purification of SO₂

SO₂ contains a number of impurities such as dust particles, Arsenous oxide, vapours, sulphur etc.

These impurities must be removed otherwise catalyst loses its efficiency (catalyst poisoning).

a. Dust Chamber

SO₂ is first passed through the dust chamber where steam is spread over the gas to remove dust particles, which settle down. Fe(OH)₃ also sprayed over to remove oxides of Arsenic.

b. Washing Tower

SO₂ is then passed through a washing tower after cooling. Here it is sprayed by water to remove any other soluble impurities.

c. Drying Tower

The gas is now dried by passing through drying tower where conc. H₂SO₄ (dehydrating agent) is sprayed. H₂SO₄ removes moisture from SO₂.

d. Tyndall Box

Arsenic oxide is a poison for the catalyst. It is removed when the gas is passed over ferric hydroxide.

$$As_2O_3 + 2Fe(OH)_3 \rightarrow 2FeAsO_3 + 3H_2O$$

In order to remove traces of As_2O_3 , it is passed through a test box, where a strong beam of light is thrown against the gas. If there is no scattering of light in the box, it indicates that gas is free from As_2O_3 .

Oxidation of SO₂ to SO₃

Oxidation of SO_2 is carried out in contact tower where V_2O_5 is filled in different pipes. SO_2 here reacts with air (O_2) to produce SO_3 . Under above conditions 98% SO_2 is converted into SO_3 .

$$2SO_2 + 2O_2 \rightleftharpoons 2SO_3 \Delta H=-45 KCal/mol$$

The energy released in this reaction is utilized to produce enough electricity which can carry out the whole process

Conditions to increase yield of SO₃

Oxidation of SO₂ is a reversible and exothermic process. In order to obtain maximum amount of SO₃, according to Le-Chatelier's Principle following conditions are necessary

- Excess of O₂
- Temperature 450°C to 500°C
- Pressure 1.5 to 1.7 atm
- Catalyst V₂O₅

Formation of H₂SO₄

 SO_3 is not directly passed in water, because a dense fog of minute particles of H_2SO_4 is produced. It is therefore, dissolved in conc. H_2SO_4 to form pyrosulphuric acid (oleum).

$$SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$$

Oleum is now diluted with water to form H2SO4 of required concentration

$$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$$

Glass

- Definition
- Preparation
- Composition
- Variety
- Uses

