grample 20.1 Given the data below, test the hypothesis that the grample three populations are equal. Let $\alpha = 0.05$.

Sample 1	Sample 2	Sample 3		
40	70	45		
50	65	38 60		
60	66			
65	50	42		

We state our null and alternative hypotheses as

 $H_0: \mu_1 = \mu_2 = \mu_3$, i.e. all the three means are equal, and $H_1:$ Not all three means are equal.

- The significance level is set at $\alpha = 0.05$.
- The test-statistic to use is

Å,

-

ď

$$T = \frac{s_b^2}{s_w^2}$$

which, if H_0 is true, has an F-distribution with $v_1 = k-1$ and $v_2 = k - k$ degrees of freedom.

45 (202) 45 (202) 45 (202) 46 (360) 42 (176) 185 34225 8833 F. (651) ²	Sample 1 Sample 2	$_{i_1}\alpha_{i_1}^2$ $ \mathbf{x}_{i_2}($	40 (1600) 70 (4900) 50 (2500) 65 (4225) 60 (3600) 66 (4355) 65 (4225) 50 (2500)	215 251	46225 63001	11925 15981
8	Samp	X_{i2}^2 $X_{i3}(X_{i3}^2)$	42 88			
5) 4) 651 143451 36739		Total	: : : :	651	143451	36739

Correction Factor (C.F.) =
$$\frac{T_{...}^2}{n} = \frac{(651)^2}{12} = 35316.75$$

Total $SS = \sum_{i} \sum_{j} X_{ij}^2 - C.F.$

$$= 36739 - 35316.75 = 1422.25$$
Between $SS = \frac{\sum_{i} T_{...j}^2}{r} - C.F.$

$$= \frac{143451}{4} - 35316.75 = 546.00, \text{ and}$$
Within $SS = \text{Total } SS - \text{Between } SS = 1422.25 - 546.00 = 8763$

00.00 . 876₂

The Analysis of Variance table is:

Source of Variation	d.f.	Sum of Squares	Mean Square	Comp
Between Samples	2	546.00	273.00	273.00 97.36
Within Samples	9	876.25	97.36	
Total Variation	11	1422.25		

- (v) The critical region is $\Gamma \ge \Gamma_{0.05}(2, 9) = 4.26$
- (vi) Conclusion. Since the calculated value of F=2.80 does not in the critical region, so we accept our null hypothesis at conclude that all the three means are equal.