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any counting problems cannot be solved easily using the methods discussed in Chap-

ter 6. One such problem is: How many bit strings of length # do not contain two consec-
utive zerosT To solve this problem, let a, be the number of such strings of length &, An argument
can be given that shows that the sequence [a, | satisties the recurrence relation a,,, ; = a, +a,_,
and the initial conditions &, = 2 and a, = 3. This recurrence relation and the initial conditions
determine the sequence [a, }. Moreover, an explicit formula can be found for o, from the equa-
tiom relating the terms of the sequence. As we will see, a similar technigue can be used to solve
many different types of counting problems.

We will discuss two ways that recurrence relations play important roles in the study of
algorithms. First, we will introduce an important algorithmic paradigm known as dynamic
programming. Alporithms that follow this paradigm break down a problem into overlapping
subproblems. The solution to the problem is then found from the solutions to the subproblems
through the use of a recurrence relation. Second. we will study another important algorithmic
paradigm, divide-and-conguer. Algorithms that follow this paradigm can be used to solve a prob-
lem by recursively breaking it into a fixed number of nonoverlapping subproblems until these
problems can be solved directly. The complexity of such algorithms can be analyzed using a spe-
cial type of recurrence relation. In this chapter we will discuss a variety of divide-and-conguer
algorithms and analyze their complexity using recurrence relations.

We will also see that many counting problems can be solved using formal power series,
called generating functions, where the coefficients of powers of x represent terms of the sequence
we are interested in. Besides solving counting problems. we will also be able to use generating
functions to solve recurrence relations and to prove combinatorizl identities.

Many other kinds of counting problems cannot be solved using the techniques discussed in
Chapter 6, such as: How many ways are there to assign seven jobs to three employess so that
each employee is assigned at least one job? How many primes are there less than 10007 Both
of these problems can be solved by counting the number of elements in the union of sets. We
will develop a technigue, called the principle of inclusion—exclusion, that counts the number of
elements in a union of sets. and we will show how this principle can be used to solve counting
problems.

The techniques studied in this chapter, together with the basic techniques of Chapter &, can
be used to solve many counting problems.

m Applications of Recurrence Relations

8.1.1 Imntroduction

Recall from Chapter 2 that a recursive definition of a sequence specifies one or more initial terms
and a rule for determining subsequent terms from those that precede them. Also, recall that a
rule of the latter sort {whether or not it is part of a recursive definition) is called a recurrence
relation and that a sequence is called a solution of a recurrence relation if its terms satisfy the
recurrence relation.

In this section we will show that such relations can be used to study and to solve counting
problems. For example, suppose that the number of bacteria in a colony doubles every hour. If
acolony begins with five bacteriz, how many will be present in # hours? To solve this problem,
let &, be the number of bacteria at the end of » hours. Because the number of bacteria doubles
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every hour, the relationship a, = 2a,_, holds whenever # is a positive integer. This recurrence
relation, together with the initial condition &y = 3, uniguely determines a,, for all nonnegative
integers n. We can find a formula for a, using the iterative approach followed in Chapter 2,
namely that a, = 5 - 2" for all nonnegative integers n.

Some of the counting problems that cannot be solved using the technigues discussed in
Chapter 6 can be solved by finding recurrence relations involving the terms of a sequence, as
was done in the problem involving bacteria. In this section we will study a variety of counting
problems that can be modeled using recurrence relations. In Chapter 2 we developed methods
for solving certain recurrence relation. In Section 8.2 we will study methods for finding explicit
formulae for the terms of sequences that satisfy certain types of recurrence relations.

We conclude this section by introducing the algorithmic paradigm of dynamic program-
ming. After explaining how this paradigm works, we will illustrate its use with an example.

8.1.2 Modeling With Recurrence Relations

We can use recurrence relations to model a wide variety of problems, such as finding compound
interest (see Example 11 in Section 2.4), counting rabbits on an island, determining the number
of moves in the Tower of Hanoi puzzle, and counting bit strings with certain properties.

Example | shows how the population of rabbits on zn island can be modeled using a recur-
rence relation.

Rabbits and the Fibonacci Numbers  Consider this problem, which was originally posed by
Leonardo Pisano, also known as Fibonacci, in the thirteenth century in his book Liber abaci. A
young pair of rabbits (one of each sex) is placed on an island. A pair of rabbits does not breed
until they are 2 months old. After they are 2 months old, each pair of rabbits produces another
pair each month, as shown in Figure 1. Find a recurrence relation for the number of pairs of
rabbits on the island after » months, assuming that no rabbits ever die.
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FIGURE 1 Rabbits on an island.
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Sedution: Denote by f, the number of pairs of rabbits after n months. We will show that £,
n=1273,..., are the terms of the Fibonacci sequence.

The rabbit population can be modeled using a recurrence relation. At the end of the first
month, the number of pairs of rabbits on the island is f; = |. Because this pair does not
breed during the second month, §; = 1 also. To find the number of pairs after n months, add
the number on the island the previous month, £, ;. and the number of newborn pairs, which
equals f,_,, because each newborn pair comes from a pair at least 2 months old.

Consequently, the sequence {f, | satisfies the recurrence relation

-'ﬁ! =-ﬁn—l +fr|:—2

for i = 3 together with the initial conditions f; = 1 and f; = 1. Because this recurrence relation
and the initial conditions uniquely determine this sequence, the number of pairs of rabbits on
the island after n months is given by the nth Fibonacci number, -

Example 2 involves a famous puzzle.

The Tower of Hanoi Puzzle A popular puzzle of the late nineteenth century invented by
the French mathematician Edouard Lucas, called the Tower of Hanoi, consists of three pegs
mounted on a board together with disks of different sizes. Initially these disks are placed on the
first peg in order of size, with the largest on the bottom (as shown in Figure 2). The rules of the
puzzle allow disks to be moved one at a time from one peg to another as long as a disk is never
placed on top of a smaller disk. The goal of the puzzle is to have all the disks on the second peg
in order of size, with the largest on the bottom.

Let M, denote the number of moves needed to solve the Tower of Hanoi puzzle with n disks.
Set up a recurrence relation for the sequence [H, }.

Serlwiivn: Begin with n disks on peg 1. We can transfer the top n — 1 disks, following the rules
of the puzzle, to peg 3 using H,_, moves (see Figure 3 for an illustration of the pegs and disks at
this point). We keep the largest disk fixed during these moves. Then, we use one move to transfer
the largest disk to the second peg. Finally, we transfer the n — 1 disks on peg 3 to peg 2 using
H__, moves, placing them on top of the largest disk, which always stays fixed on the bottom
of peg 2. This shows that we can solve the Tower of Hano puzzle for » disks using 2H__, + 1
moves.

We now show that we cannot solve the purzle for # disks using fewer that 2H,_, + | mowves.
Note that when we move the largest disk, we must have already moved the n — 1 smaller disks
onto a peg other than peg 1. Doing so requires at least H__; moves. Another move is needed to

L -
Peg 2 Pep 3

FIGURE I The initial position in the Tower of Hanoi.
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Pap 2 Pep 3

FIGURE ¥  An intermediate position in the Tower of Hanoi.

transfer the largest disk. Finally, at least H,_, more moves are needed to put the # — 1 smallest
disks back on top of the largest disk. Adding the number of moves required gives us the desired
lower bound.

We conclude that

H =2H_ +1.

The initial condition is &, = I, because one disk can be transferred from peg 1 to peg 2, ac-
cording to the rules of the puzzle, in one move.
We can use an iterative approach to solve this recurrence relation. Note that

H =23 _,+1
=22H, ,+ 1)+ 1=2"H, _,+2+1
=220, 3+ ) +2+1=2H, ;+2" +2+1

n=3

=2H + 2" 2" e 24 ]
=242t p 4241
=g

We have used the recurrence relation repeatedly to express H, in terms of previous terms of
the sequence. In the next to last equality, the initial condition H; = | has been used. The last
equality is based on the formula for the sum of the terms of a geometric series, which can be
tound in Theorem 1 in Section 2.4

The iterative approach has produced the solution to the recurrence relation H, = 2H,__, + 1
with the initial condition H, = 1. This formula can be proved using mathematical induction.
This is left for the reader as Exercise 1.

A myth created to accompany the puzzle tells of a tower in Hanoi where monks are trans-
terring &4 gold disks from one peg to another, according to the rules of the puzzle. The myth
says that the world will end when they finish the puzzle. How leng after the monks started will
the world end if the monks take one second to move a disk?

From the explicit formula, the monks require

2% _ | = 18,446,744,073,709,551,615
moves to transfer the disks. Making one move per second, it will take them more than 500

billion years to complete the transfer, so the world should survive a while longer than it already
has. 4
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Mumber of bit strings

ol lenpth = with oo

twi consecutive (s
Any bit string of lengih v — 1 with | I

e fwi consscutive s T

Any bit string of length » -2 with 10
no two consecalive Ds -2

Tatal: a,=a,  +a, .

FIGURE 4 Counting bit strings of length » with no two consecutive 0s.

Remark: Wany people have studied variations of the original Tower of Hanoi puzzle discussed
in Example 2. Some variations use more pegs, some allow disks to be of the same size, and some
restrict the types of allowable disk moves. One of the oldest and most interesting variations is
the Reve's puzzle,* proposed in 1907 by Henry Dudeney in his book The Canterbury Puzzles.
The Reve’s puzzle involves pilgrims challenged by the Reve to move a stack of cheese wheels
of varying sizes from the first of four stools to another stool without ever placing a cheese wheel
on one of smaller diameter. The Reve's puzzle, expressed in terms of pegs and disks, follows the
same rules as the Tower of Hanoi puzzle, except that four pegs are used. Similarly, we can gener-
alize the Tower of Hanoi puzzle where there are p pegs, where p is an integer greater than three.
You may find it surprising that no one has been able to establish the minimum number of moves
required to solve the peneralization of this puzzle for p pegs. (Note that there have been some
published claims that this problem has been solved, but these are not accepted by experts.) How-
ever, in 2014 Thierry Bousch showed that the minimum number of moves required when there
are four pegs equals the number of moves used by an algorithm invented by Frame and Stewart
in 1939, {See Exercizes 38—45 and [St94] and [Bol4] for more information.)

Example 3 illustrates how recurrence relations can be used to count bit strings of a specified
length that have a certain property.

Find a recurrence relation and give initial conditions for the number of bit sirings of length n
that do not have two consecutive Os. How many such bit strings are there of length five?

Seluiivn: Let g, denote the number of bit strings of length » that do not have two consecutive Os.
We assume that n = 3, so that the bit string has at least three bits. Strings of this sort of length n
can be divided into those that end in 1 and those that end in 0. The bit strings of length n ending
with 1 that do not have two consecutive 0s are precisely the bit strings of length » — 1 with no
two consecutive Os with a 1 added at the end. Consequently, there are a,_; such bit strings.

Bit strings of length » ending with a 0 that do not have two consecutive 0s must have
1 as their (n — 1)st bit; otherwise they would end with a pair of Os. Hence, the bit strings
of length n ending with a O that have no two consecutive 0s are precisely the bit strings of
length n — 2 with no two consecutive Os with 10 added at the end. Conseguently, there are «,_,
such bit strings.

We conclude, as illustrated in Figure 4, that

iy, =

n—1 + -1

forn = 3.

* Beve, more commaonly spelled reeve, i 2n archaic word for govermor.
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The initial conditions are &, = 2, because both bit strings of length one, 0 and | do not have
consecutive 0s, and «, = 3, because the valid bit strings of length two are 01, 10, and 11. To
obtain a;, we use the recurrence relation three times to find that

iy =ty +a =3+2=15
iy =ty +a,=5+3=8§,
ay =ay +ay;=8+5=13.

Remark: MNote that {a, | satisfies the same recurrence relation as the Fibonacei sequence. Be-
cause a; = f; and a, = f; it follows that a, = £ ,1-

Example 4 shows how a recurrence relation can be used to model the number of codewords
that are allowable using certain validity checks.

Codeword Enumeration A computer system considers a string of decimal digits a valid
codeword if it contains an even number of 0 digits. For instance. 1230407869 is wvalid,
whereas 120987045608 is not valid. Let o be the number of valid »-digit codewords. Find
a recurrence relation for a,.

Swlution: Note that a; = 9 because there are 10 one-digit strings, and only one, namely, the
string 0, is not valid. A recurrence relation can be derived for this sequence by considering how
a valid n-digit string can be obtained from strings of n — 1 digits. There are two ways to form a
vilid string with » digits from a string with one fewer digit.

First, a valid string of » digits can be obtained by appending a valid string of » — | dig-
its with a digit other than 0. This appending can be done in nine ways. Hence, a valid string
with n digits can be formed in this manner in 9a,,_; ways.

Second, a valid string of i digits can be obtained by appending a 0 to a string of length
# — 1 that is not valid. {This produces a string with an even number of 0 digits because the in-
vilid string of length » — 1 has an odd number of 0 digits.) The number of ways that this can
be done equals the number of invalid (n — 1)-digit strings. Because there are 107! strings of
length n — 1, and &,_, are valid, there are 107! — a,_, valid n-digit strings obtained by append-
ing an invalid string of length n — 1 with a 0.

Because all valid strings of length » are produced in one of these two ways, it follows that
there are

ﬂu = gﬂm_l + I:lﬂn_] _ﬂﬂ—l}
=8a,__, + 10"

valid strings of length n.

Example 5 establishes a recurrence relation that appears in many different contexts.

Find a recurrence relation for C,,, the number of ways to parenthesize the product of n + | num-
bers, x - x) -x7 -+ - x,, to specify the order of multiplication. For example, C; = 5 because
there are five ways to parenthesize x; - x; - x; - x; to determine the order of multiplication:

(lxg - %)) - x3) - x5 BRI ETRECY RS Y (xg - x ) - (7 - x3)
g+ (x) " x7) + x3) xp  (xy v (xg - x3)).
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FIGURE 4 Counting bit strings of length » with no two consecutive 0s.

Remark: Many people have studied variations of the original Tower of Hanoi puzzle discussed
in Example 2. Some variations use more pegs, some allow disks to be of the same size, and some
restrict the types of allowable disk moves. One of the oldest and most interesting variations is
the Reve’s puzzle,* proposed in 1907 by Henry Dudeney in his book The Canterbury Puzzles.
The Reve’s puzzle involves pilgrims challenged by the Reve to move a stack of cheese wheels
of varying sizes from the first of four stools to another stool without ever placing a cheese wheel
on one of smaller diameter. The Reve's puzzle, expressed in terms of pegs and disks, follows the
same rules as the Tower of Hanoi puzzle, except that four pegs are used. Similarly, we can pener-
alize the Tower of Hanoi puzzle where there are p pegs, where p is an integer greater than three.
You may find it surprising that no one has been able to establish the minimum number of moves
required to solve the generalization of this puzzle for p pegs. (Note that there have been some
published claims that this problem has been solved, but these are not accepted by experts.) How-
ever, in 2014 Thierry Bousch showed that the minimum number of moves required when there
are four pegs equals the number of moves used by an algorithm invented by Frame and Stewart
in 1939, (See Exercizes 38—435 and [5t94] and [Bol4] for more information.)

Example 3 illustrates how recurrence relations can be used to count bit strings of a specified
length that have a certain property.

Find a recurrence relation and give initial conditions for the number of bit strings of length #
that do not have two consecutive Os. How many such bit strings are there of length five?

Seution: Let g, denote the number of bit strings of length # that do not have two consecutive 0s.
We assume that i = 3, so that the bit string has at least three bits. Strings of this sort of length n
can be divided into those that end in 1 and those that end in 0. The bit strings of length n ending
with | that do not have two consecutive 0s are precisely the bit strings of length » — 1 with no
two consecutive Os with a 1 added at the end. Consequently, there are «,_, such bit strings.

Bit strings of length n ending with a 0 that do not have two consecutive 0s must have
| as their {n — 1)st bit; otherwise they would end with a pair of Os. Hence, the bit strings
of length n ending with a 0 that have no two consecutive 0s are precisely the bit strings of
length 1 — 2 with no two consecutive Os with 10 added at the end. Consequently, there are a,_;
such bit strings.

We conclude, as illustrated in Figure 4, that

Ly =y + pz

form = 3.

* Beve, more commonly spelled reeve, i 2n archaic word for govermor.
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The initial conditions are a, = 2, because both bit strings of length one, 0 and | do not have
consecutive 0s, and «, = 3, because the valid bit strings of length two are 01, 10, and 11. To
obtain a5, we use the recurrence relation three times to find that

iy =dy+ay =3+2=35
ay=ay;+ta;, =3+3=8§
a; =ay+a; =8+5=13

Remark: Note that {a, | satisfies the same recurrence relation as the Fibonacei sequence. Be-
cause g = f; and a; = f it follows that a, = f, ;1.

Example 4 shows how a recurrence relation can be used to model the number of codewords
that are allowable using certain validity checks.

Codeword Enumeration A computer system considers a string of decimal digits a valid
codeword if it contains an even number of 0 digits. For instance, 1230407869 is valid,
whereas 120987045608 is not valid. Let a_ be the number of valid n-digit codewords. Find
a recurrence relation for a,.

Solution: Note that a; = 9 because there are 10 one-digit strings, and only one, namely, the
string 0, is not valid. A recurrence relation can be derived for this sequence by considering how
a valid n-digit string can be obtained from strings of n — | digits. There are two ways to form a
valid string with » digits from a string with one fewer digit.

First, a valid string of » digits can be obtained by appending a valid string of # — 1 dig-
its with a digit other than 0. This appending can be done in nine ways. Hence, a valid siring
with n digits can be formed in this manner in 9a,_; ways.

Second, a valid siring of # digits can be obtained by appending a 0 to a string of length
#— 1 that is not valid. {This produces a string with an even number of 0 digits because the in-
valid string of length » — 1 has an odd number of 0 digits.) The number of ways that this can
be done equals the number of invalid {n — 1)-digit strings. Because there are 107" strings of
lengthn — 1, and a,_, are valid, there are 107! — &, _, valid n-digit strings obtained by append-
ing an invalid string of length # — 1 with a 0.

Becazuse all valid strings of length » are produced in one of these two ways, it follows that
there are

a, =%, + (10" —a, )
=Ba,_, + 107

vilid strings of length #.

Example 5 establishes a recurrence relation that appears in many different contexts.

Find a recurrence relation for C,,, the number of ways to parenthesize the product of n + | num-
bers, x - x) - x5 - -+ - x,. to specify the order of multiplication. For example, C; = 5 because
there are five ways to parenthesize x; - x| - x; - x3 to determine the order of multiplication:

lxg -3} %) x5 ERNE SRR R =Y (xg 3} (3 - x3)
xg * ({x) " x7) - x3) xg  (xy ~ (xg - x3)).




Links )

Links )

.1 Applications of Recurrence Relations 533

Soluiion: To develop a recurrence relation for C,, we note that however we insert parentheses
in the product x; - x, - x5 - - - x,, one - operator remains outside all parentheses, namely,
the operator for the final multiplication to be performed. [For example, in (x - (x; - %)) - x5,
it is the final *", while in (x5 -2} - (x5 - x7) it is the second “-.] This final operator ap-
pears between two of the n + | numbers, say, x; and x,,,. There are C,C,_,_, ways to in-
sert parentheses to determine the order of the # + 1 numbers to be multiplied when the final
operator appears between x; and x,, ., because there are C ways to insert parentheses in the
product x - x; - - - x; o determine the order in which these & + | numbers are to be multi-
plied and C__,_, ways to insert parentheses in the product x,_; - x, 2 + ++ » x, to determine the
order in which these n — & numbers are to be multiplied. Because this final operator can appesr
between any two of the n + 1 numbers, it follows that

E‘n = '::]Cn_| +C|_Cn_1 + e Cﬂ—EC] + Cn_|c-“
n—1
= Z CiCoi1-
k=0

Mote that the initial conditions are Oy = 1 and C), = 1. -«

The recurrence relation in Example 5 can be solved using the method of generating func-
tions, which will be discussed in Section 8.4, It can be shown that C, = C(2n, m)fin + 1) (see
Exercise 43 in Section £.4) and that C, ~ n”‘i—u (see [GrEnPa%4]). The sequence [C,} is the

*y
sequence of Catalan numbers, named after Eugéne Charles Catalan. This sequence appears
as the solution of many different counting problems besides the one considered here (see the

chapter on Catalan numbers in [MiRo91] or [RoTed3] for details).

8.1.3 Algorithms and Recurrence Relations

Recurrence relations play an important role in many aspects of the study of algorithms and their
complexity. In Section 8.3, we will show how recurrence relations can be used to analyze the
complexity of divide-and-conguer algorithms, such as the merge sort algorithm introduced in
Section 5.4. As we will see in Section 8.3, divide-and-conguer algorithms recursively divide a
problem into a fixed number of nonoverlapping subproblems until they become simple enough
to solve directly. We conclude this section by introducing another algorithmic paradigm known
as dynamic programming, which can be used to solve many optimization problems efficiently.

An algorithm follows the dynamic programming paradigm when it recursively breaks down
a problem into simpler overlapping subproblems, and computes the solution using the solutions
of the subproblems. Generally, recurrence relations are used to find the overall solution from the
solutions of the subproblems. Dynamic programming has been used to solve important problems
in such diverse areas as economics, compater vision, speech recognition, artificial intelligence,
computer graphics, and bivinformatics. In this section we will illustrate the use of dynamic pro-
gramming by constructing an algorithm for solving a scheduling problem. Before doing so, we
will relate the amusing origin of the name dyiamic programming, which was introduced by the
mathematician Richard Bellman in the 1950s. Bellman was working at the RAND Corporation
on projects for the U.S. military, and at that time, the U.S. Secretary of Defense was hostile
to mathematical research. Bellman decided that to ensure funding, he needed a name not con-
taining the word mathematics for his method for solving scheduling and planning problems.
He decided to use the adjective dynariic because, as he said “it's impossible to use the word
dynamic in a pejorative sense” and he thought that dynamic programming was “something not
even a Congressman could object to.”
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®57. Dynamic progromming can be uwsed o develop

an algorithm for solving the matrix-chain  multi-
plication problem introduced in Section 3.3, This
is the problem of determining how the product
AA; A, can be computed using the fewest
integer multiplications, where A A, ... A, ame
My WM, MRy XMy, o W R matrices, respectively,
and each matrix has integer entries. Recall that by the
associstive law, the product does not depend on the order
in which the matrices sre multiplied.

a) Show that the brute-force method of determining the
minimum number of integer multiplications needed to
solve a matrix-chain multiplication problem has expo-
nential worst-case complexity. [Hint: Do this by first
showing that the order of multiplication of matrices
is specified by parenthesizing the product. Then, use
Example 5 and the result of part (o) of Exercise 43 in
Section B.4.]

b) Denote by Ay the product AA,, . AL
and M(i, j} the minimum number of integer mul-
tiplications required to find Ar}. Show that if the

lzast number of integer multiplications are used to
compute Ay, where i< f, by splitting the product
into the product of A, through A, and the prod-
uct of A, through A then the first k terms must
be parenthesized =0 that Ay is computed in the
optimal way using ML k) integer multiplications,
and A“_I:l must be parenthesized so that 'a"J.-HJ is
computed in the optimal way using Mk + 1, j) inte-
ger multiplications,

€) Explain why part (b) leads w the recurrence
relation ML) = min,, (MU0 &)+ Mk + L J) +
mymg o m Vifl i €f<j<n

d} Use the recurrence relation in part {c) to construct
an efficient algorithm for determining the onder
the n matrices should be multiplied to use the min-
imum number of integer multiplications. Store the
partial results M, /) as you find them so that your
algorithm will not have exponential complexity.

€) Show that your algorithm from part (d} has in')
worst-case complexity in terms of multiplications of
integers.

——n
8.2 Solving Linear Recurrence Relations

8.2.1 Introduction

Links ) A wide variety of recurrence relations occur in models. Some of these recurrence relations
can be solved using iteration or some other ad hoc technique. However, one important class of
recurrence relations can be explicitly solved in a systematic way. These are recurrence relations
that express the terms of a sequence as linear combinations of previous terms.

Definition 1 A linear homogeneous recurrence relation of degree & with constant coefficients is a recur-

rence relation of the form

a =ca _,toa ,+--+coa

where ¢, ¢, ..., ¢, are real numbers, and ¢, £ 0.

The recurrence relation in the definition is linear because the right-hand side is a sum of pre-
vious terms of the sequence each multiplied by a function of n. The recurrence relation is ho-
mogeneous because no terms occur that are not multiples of the as. The coefficients of the
terms of the sequence are all constants, rather than functions that depend on #. The degree
is k because a, is expressed in terms of the previous k terms of the sequence.

A consequence of the second principle of mathematical induction is that a sequence satis-
fying the recurrence relation in the definition is uniguely determined by this recurrence relation

and the & initial conditions

HD = E,:,. Hl = E‘|.. aaa g HE—| = CJ.—['

EXAMPLE 1 The recurrence relation P, = (1.11)P,_, is a linear homogeneous recurrence relation of degree
one. The recurrence relation f, = f,_, +f,_5 is 2 linear homogeneous recurrence relation of



EXAMPLE 2

8.2 Solving Linear Recurrence Relations 541

degree two. The recurrence relation a, = a,_s is a linear homogeneous recurrence relation of
degree five. L

To help clarify the definition of linear homogeneous recurrence relations with constant co-
efficients, we will now provide examples of recurrence relations each lacking one of the defining

properties.

The recurrence relation a, = a,_, +a._, is not linear. The recurrence relation H, = 2H,_, +1
is not homogeneous. The recurrence relation B, = nB,_, does not have constant coefficients. <

Linear homogeneous recurrence relations are studied for two reasons. First, they often occur
in modeling of problems. Second, they can be systematically solved.

8.2.2 Solving Linear Homogeneous Recurrence Relations
with Constant Coefficients

Recurrence relations may be difficult to solve, but fortunately this is not the case for linear
homogenous recurrence relations with constant coefficients. We can use two key ideas to find
all their solutions. First, these recurrence relations have solutions of the form a, = ", where
r is a constant. To see this, observe that a, = /" is a solution of the recurrence relation a, =
€1, F oty o+ e+ e, if and only if

M=o e e g

When both sides of this equation are divided by F** (when r # 0) and the right-hand side is
subtracted from the left, we obtzin the equation

rk—L‘..rt_] _fz.r*_z_"“ _ft_lr_f*.:u.

Consequently, the sequence {a, |} with a, = r" where » # 0 is a solution if and only if r is a
solution of this last equation. We call this the characteristic equation of the recurrence relation.
The solutions of this equation are called the characteristic roots of the recurrence relation. As
we will see, these characteristic roots can be used to give an explicit formula for all the solutions
of the recurrence relation.

The other key observation is that a linear combination of two solutions of a linear homoge-
neous recurrence relation is also a solution. To see this, suppose that s, and ¢ are both solutions
Dfﬂ.u =0y, Fopdy o+ Foga . Then

L T R o e TR ol -
and
[N B = PR RTUE SN S
Now suppose that b, and b, are real numbers. Then
by s, + byty = byey sy + eaSp g o TS ) Fholegt, ) F ooty g+ o oty )

=cybys,_ ) + oty ) oalbys, o + baty Q)+ e+ oy(By s, + Bty )

This means that byx, + b, is also a solution of the same linear homogeneous recurrence rela-
tion.

Using these key observations, we will show how to solve linear homogeneous recurrence
relations with constant coefficients.
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THE DEGREE TWD CASE We now turn our attention to linear homogeneous recurrence
relations of degree two. First, consider the case when there are two distinct characteristic roots.

Let ¢, and ¢, be real numbers. Suppose that ~ — ¢;r —¢; = 0 has two distinct roots ry
and r,. Then the sequence [a, ] is a solution of the recurrence relation a, = cja,_ + ca, 5
it and only if a, = ay /] + ayrf form =10, 1, 2, ..., where a; and a, are constants.

Proof: We must do two things to prove the theorem. First, it must be shown that if r; and »
are the roots of the characteristic equation, and «; and «, are constants, then the sequence [a, )
with a, = @ s} + ayr} is a solution of the recurrence relation. Second, it must be shown that if
the sequence {a, |} is a solution, then a, = a;r| + a,r} for some constants a; and a;.

We now show that if o = oyl g, then the sequence [a,] is a solution of
the recurrence relation. Because r, and r, are roots of - er—c, =0, it follows
that 7 = eyr) + ez and 7 = ¢y + 65

From these equations, we see that

O ket g = [ T b apfa T T
= ay e ry + )+ apry ey + o)
=i ¢ a2
=@y + gy
=ay,.
This shows that the sequence [a, | witha, = a,r7 + a,r] is a solution of the recurrence relation.
To show that every solution [a,] of the recurrence relation a, = eja,_; +cp,_0
has a, = ayr] +ayrf forn=10,1,2, ..., for some constants a, and a,, suppose that {a,] is a
solution of the recurrence relation, and the initial conditions a; = C; and a; = C, hold. It will
be shown that there are constants a and a, such that the sequence [a, } with a, = a s + ayr}
satisfies these same initial conditions. This requires that
ay = Cp = ay + i,
ﬂ| = C| = |'.'|'|r-| +ﬂzr1.

We can solve these two equations for o, and a,. From the first equation it follows that
iy = O, — a;. Inserting this expression into the second equation gives

Hence,

€y = ay(r, — 1)) + Cyry.

This shows that
[
@ = 1 of2
F1 =43
and
C -G _Gn—G
=G —m =G — = !

n—n Fp—
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where these expressions for a; and «, depend on the fact that ry # r;. (When r; = ry, this the-
orem is not true.) Hence, with these values for a; and «;, the sequence {a, | with a;r] + a0}
satisfies the two initial conditions.

We know that [a,] and {oyr} +ayry] are both solutions of the recurrence relation
g, = ¢4, +¢pa,_; and both satisfy the initial conditions when »n =0 and n = 1. Because
there is a unique solution of a linear homogeneous recurrence relation of degree two with two
initial conditions, it follows that the two solutions are the same, that is, a, = a;r] +a;r] for
all nonnegative integers n. We have completed the proof by showing that a solution of the lin-
ear homogeneous recurrence relation with constant coefficients of degree two must be of the
form a, = a,r} + ayrf, where &, and «, are constants. <]

The characteristic roots of a linear homogeneous recurrence relation with constant coef-
ficients may be complex numbers. Theorem 1 (and also subsequent theorems in this section)
still applies in this case. Recurrence relations with complex characteristic roots will not be dis-
cussed in the text. Readers familiar with complex numbers may wish to solve Exercises 38

and 39.
Examples 3 and 4 show how to use Theorem 1 to solve recurrence relations.

What is the solution of the recurrence relation

=gy + Zﬂn—z
with ay = 2 and &y =77
Selwiion: Theorem 1 can be used to solve this problem. The characteristic equation of the re-
currence relation is r* — r — 2 = 0. Its roots are r = 2 and r = — 1. Hence, the sequence {a, | is
a solution to the recurrence relation if and only if

a, = a 2" + ax{-1)",

for some constants «; and «,. From the initial conditions, it follows that

ay=T=a -2+a,-(—1)

Solving these two equations shows that ¢, = 3 and @, = —1. Hence, the solution to the recur-
rence relation and initial conditions is the sequence {«, | with

a,=3-2"—(—1}". «

Find an explicit formula for the Fibonacei numbers.

Selwtion: Recall that the sequence of Fibonacci numbers satisfies the recurrence relation f, =
a1 + £,z and also satisfies the initial conditions f, = 0 and f; = 1. The roots of the character-

istic equation P —r—1=0are n=(l+ ﬁ}jz and r; = (1 - ﬁ}jl Therefore, from The-
orem | it follows that the Fibonacci numbers are given by

e (1Y e (158Y’
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for some constants &, and &,. The initial conditions f; = 0 and §;, = | can be used to find these
constants. We have

fh=o +a, =0,

1+ /5 1 -5
fi=m ""Ir + @ "'Ir =L
2 2
The solution to these simultaneous equations for «; and o, is
ulzlf‘.E, uzz—]l.l"‘.n"IE.

Consequently, the Fibonacci numbers are given by

w5385 .

Theorem | does not apply when there is one characteristic root of multiplicity two. If this
happens, then a, = arj is another solution of the recurrence relation when r, is a root of multi-
plicity two of the characteristic equation. Theorem 2 shows how to handle this case.

Let ¢, and ¢, be real numbers with ¢, # 0. Suppose that »* — ¢;r — ¢, = 0 has only one root
rg- A sequence {a, ] is a solution of the recurrence relation a, = ¢ya,_| + ca,_; if and only
ifa, = ey +aype forn=0,1,2 ..., where a; and a; are constants.

The proof of Theorem 2 is left as Exercise 10. Example 5 illustrates the use of this theorem.

What is the solution of the recurrence relation
i, = E'ﬂn'—li e 9‘“.11—2
with initial conditions ap = | and «, = 67

Solution: The only root of #* — 6r +9 = 0 is r = 3. Hence, the solution to this recurrence rela-
tion is

a, = i 3" + @,nd"
for some constants &, and ;. Using the initial conditions, it follows that

ﬂl:':l:u']-

gy =6=ay-3+um;-3.

Solving these two equations shows that &, = | and «, = 1. Conseguently, the solution to this
recurrence relation and the initial conditions is

g, = 3"+ n3".
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THE GENERAL CASE  We will now state the general result about the solution of linear ho-
mogeneous recurrence relations with constant coefficients, where the degree may be greater

than twe, under the assumption that the characteristic equation has distinct roots. The proof of
this result will be left as Exercise 16.

Let ¢, ¢q, ..., ¢, be real numbers. Suppose that the characteristic equation
rt—r:..rl'] — e g =1}

has k distinct roots ry, 5, ..., r. Then a sequence |, ] is a solution of the recurrence relation
a, =cyd, | o, o+ +oa,

if and only if
a, =ar) +ayrh + ot arg

forn=0,1,2 ..., where a, &, ..., a; are constants.

We illustrate the use of the theorem with Example 6.

Find the solution to the recurrence relation
ay, = ety — e, 5 + 6a,_;

with the initial conditions a; = 2. 4, = 5, and a; = 15.

Selweion: The characteristic polynomial of this recurrence relation is
=6+ 1lr—6.

The characteristic roots are r=1, r=2, and r=3, because A —-62+1lr—6=
(r— 1){r — 2)ir — 3). Hence, the solutions to this recurrence relation are of the form
iy =ay - 17 iy - 27 4y - 3
To find the constants e, ;. and &5, use the initial conditions. This gives
ay =2 =) +a; + iy,
iy =5=ata;-2+a;-3,
ﬂ1:15=ﬂ|+ﬂl'4+ﬂ3'9.
When these three simultaneous equations are solved for a,, a,, and a;, we find that &, = 1,

i, = —1, and a3 = 2. Hence, the unique solution to this recurrence relation and the given initial
conditions is the sequence {a, | with

a4, =1-2"4+2.3" «
We now state the most general result about linear homogeneous recurrence relations with

constant coefficients, allowing the characteristic equation to have multiple roots. The key point
is that for each root r of the characteristic equation, the general solution has a summand of the
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form P(n)r", where P(n) is a polynomial of degree m — 1, with m the multiplicity of this root.
We leave the proof of this result as Exercise 51.

Let ¢y, 5, ..., ¢ be real numbers. Suppose that the characteristic equation
I —r_'].-"l'_I — e —p =0
has ¢ distinct roots ry, r, ..., r, with multiplicities m, mto, ..., m,, respectively, so

that w; = 1 for i = 1, 2, ..., ¢ and m; + my + -~ + m, = k. Then a sequence {a,] is a solu-
tion of the recurrence relation

gy = Eqiy g+ 8y g+ opd,
if and only if
-H" = {ﬂlln‘l'EL!ﬂ + e 4 EI'IMI_'!'EW'_I}H;

+ Eﬂ'lu_"'ﬂ'z'n‘l' o s +ﬂ'h."1_]ﬂ"'=_|}r;
+o b lagta, nt o, mm e

forn=0,1,2, ..., where a,; are constants for | <{i<rand0<j<m; — L

Example 7 illustrates how Theorem 4 is used to find the general form of a solution of a
linear homogeneous recurrence relation when the characteristic equation has several repeated
roots.

Suppose that the roots of the characteristic equation of a linear homogeneous recurrence relation
are 2,2, 2, 5. 5, and 9 (that is, there are three roots, the root 2 with multiplicity three, the root
5 with multiplicity two, and the root 9 with multiplicity one). What is the form of the general
solution?

Sedution: By Theorem 4, the general form of the solution is

We now illustrate the use of Theorem 4 to solve a linear homogeneous recurrence relation
with constant coefticients when the characteristic equation has a root of multiplicity three.

Find the solution to the recurrence relation
dy = —3d,_; — 3a,_2 —a,_3

with initial conditions ap = 1, a; = -2, and a, = —1.

Solduricn: The characteristic equation of this recurrence relation is
P43 +3r+1=0

Because r* + 3 4+ 3r+ 1 = (r+ 1), there is a single root r = —1 of multiplicity three of the
characteristic equation. By Theorem 4 the solutions of this recurrence relation are of the form

a, =ty o(—1)" + ap m(— 1" + ay n (=10
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To find the constants e, ;, a; |, and a; 5, use the initial conditions. This gives

ag=1=u
a = —I=—ag—a; -y
{vl'] = _1 = u].“ +2u]_| +4ﬂ|_1.
The simultaneous solution of these three equations is ayq =1, a;; =3, and oy, = -2.

Hence. the unique solution to this recurrence relation and the given initial conditions is the
sequence [a, ] with

a, = (14 3n— 20y {(—1)". d

8.2.3 Linear Nonhomogeneous Recurrence Relations
with Constant Coefficients

We have seen how to solve linear homogeneous recurrence relations with constant coefficients.
Is there a relatively simple technique for solving a linear, but not homogeneous, recurrence
relation with constant coefficients, such as a, = 3a,_; + 207 We will see that the answer is yes
for certain families of such recurrence relations.

The recurrence relation a, = 3a,__; + 2# is an example of a linear nonhomogeneous re-
currence relation with constant coefficients, that is, a recurrence relation of the form

i, =y, F iy g+ +epa, g + FH),

where ¢y, ¢y, ..., are real numbers and Fin) is a function not identically zero depending only
on #. The recurrence relation

dy, = cpiy_ | F Oy oo FEpy

is called the associated homogeneous recurrence relation. It plays an important role in the
solution of the nenhomogenezous recurrence relation.

Each of the recurrence relations a, =a__, +2" a, =a, , +a, ,+H +n+1,a, =3a,_, +
n3", and a, = a,_; + a,_1 +4a,_;+n! is a linear nonhomogeneous recurrence relation with
constant coefficients. The associated linear homogeneous recurrence relations are a, = a,_,.
a, =da, +a,_5. 8, =%, anda, =a, | +a, 5+ 6, 3, respectively. |

The key fact about linear nonhomogeneous recurrence relations with constant coefficients
is that every solution is the sum of a particular solution and a solution of the associated linear
homogeneous recurrence relation, as Theorem 3 shows.

If [ar,;."]] is 4 particular solution of the nonhomogeneous linear recurrence relation with con-
stant coefficients

d, =iy Foady_q+ e+, g + FH),

then every solution is of the form {a + a® ], where {a™] is a solution of the associated
homogeneous recurrence relation

dy = Cpily_ ) F Oty g+ Gl
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FProof: Because {uﬁ'ﬂl is a particular solution of the nonhomogeneous recurrence relation, we
know that

A=

Now suppose that {5, | is a second solution of the nonhomogeneous recurrence relation, so that

b". = I'.']b"._l =+ -I'.'Ihn_: + e "‘j:b

[

+ Fin).

Subtracting the first of these two equations from the second shows that
b, —a™ = ¢\ (b,_; — uﬁlj + gl — i.rg-"_}z] oo By — ren['p_jt}.

It follows that {b, —ab} is a solution of the associated homogeneous linear recurrence,
say, {a ). Consequently, b, = a;" + o for all n. 4

By Theorem 3, we see that the key to solving nonhomogeneous recurrence relations with
constant coefficients is finding a particular solution. Then every solution is a sum of this solution
and a solution of the associated homogeneous recurrence relation. Although there is no general
method for finding such a solution that works for every function F(#), there are techniques that
work for certain types of functions Fin), such as polynomials and powers of constants. This is
illustrated in Examples 10 and 11.

Find all solutions of the recurrence relation a, = 3a,_, + 2n. What is the solution with ¢, = 37

Solution: To solve this linear nonhomogeneous recurrence relation with constant coefficients,
we need to solve its associated linear homogeneous equation and to find a particular solution
for the given nonhomogeneous equation. The associated linear homogeneous equation is a, =
3a,_,. Its solutions are ¢/ = a3", where « is a constant.

We now find a particular solution. Because Fin) = 2n is a polynomial in # of degree one, a
reasonable trial solution is a linear function in &, say, p, = ca + d, where ¢ and d are constants.
To determine whether there are any solutions of this form, suppose that p, = en + 4 is such
a solution. Then the equation a, = 3a,_; + 2n becomes e+ d = 3c(n — 1)+ ) + 2n. Sim-
plifying and combining like terms gives (2 + 2cin+ (2d — 3c) = 0. It follows that en +d is a
solution if and only if 2 + 2¢ = 0 and 24 — 3¢ = 0. This shows that en + & is a solution if and
only if ¢ = —1 and d = —3 /2. Consequently, a) ' = —n — 3/2 is a particular solution.

By Theorem 3 all solutions are of the form

/ - 3
a=aP+aM=—p-Z+a-3"
" " " 2

where @ is a constant.

Tao find the solution with &, = 3. let # = 1 in the formula we obtained for the general so-
lution. We find that 3 = —1 — 3/2 4 3a, which implies that ¢ = 11 /6. The solution we seek is
a, = —n—3/2+(11/6)3". «

Find all solutions of the recurrence relation

g, =354, ; —6a,_,+7"

Sofution: This is a linear nonhomogeneous recurrence relation. The solutions of its associated
homogeneous recurrence relation

a, = 5“rr—l: _ﬁu.ll—z
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are a = g, - 3" 4 &, - 2", where a; and a, are constants. Because F(n) = 7", a reasonable trial
solution is o’ = € - 7", where C is a constant. Substituting the terms of this sequence into
the recurrence relation implies that C - 7" = 5C - 7*~! — 6C - 7% + 7". Factoring out 7'~2, this
equation becomes 49C = 35C — 6C 4 49, which implies that 20C = 49, or that C = 49/20.
Hence, a™ = (49/20)7" is a particular solution. By Theorem 5, all solutions are of the form

a, = - 3" +ay - 27+ (49/20)7". <

In Examples 10 and 11, we made an educated guess that there are solutions of a particular
form. In both cases we were able to find particular solutions. This was not an accident. Whenever
Fin) is the product of a polynomial in # and the nth power of a constant, we know exactly what
form a particular solution has, as stated in Theorem 6. We leave the proof of Theorem & as
Exercise 52.

Suppose that {«, ] satisfies the linear nonhomogeneous recurrence relation
a, =@, +cyd, o+ + o, + Fin),

where ¢, €5, ..., ¢, are real numbers, and
Flny = (b’ +b_ 0" + -+ byn + by)s",

where by, by, ... b, and s are real numbers. When » is not a root of the characteristic equation
of the associated linear homogeneous recurrence relation, there is a particular solution of the
form

(p +p_ 0™ 4 i+ pgls™

When s is a root of this characteristic equation and its multiplicity is s, there is a particular
solution of the form

'um(P:'uI"-Pr—l.'uPl o=t +PIH+F"I]}3"

Mote that in the case when » is a root of multiplicity m of the characteristic equation of the
associated linear homogeneous recurrence relation, the factor #™ ensures that the proposed par-
ticular solution will not already be a solution of the associated linear homogeneous recurrence
relation. We next provide Example 12 to illustrate the form of a particular solution provided by
Theorem &.

What form does a particular solution of the linear nonhomogeneous recurrence rela-
tion a, = 6a,_, — %a,_, + F(n) have when F(n) = 3%, F(n) = n3", F(n) =#*2", and Fin) =
(n? + 13377
Selwiion: The associated linear homogeneous recurrence relation is a, = 6a,_; — Ya,_,. Iis
characteristic equation, +* — 6r + 9 = {r — 3)* = 0, has a single root, 3, of multiplicity two. To
apply Theorem 6, with Fin) of the form P(n)s", where Pin) is a polynomial and s is a constant,
we need to ask whether s is a root of this characteristic equation.

Because s = 3 is a root with multiplicity m = 2 but » = 2 is not a root, Theorem 6 tells us
that a particular solution has the form pyn®3" if F(n) = 3", the form n?(p,n + pg)3" if F(n) =
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n3", the form (pon? + pyn + pg)27 if F(n) = n*2", and the form n*(pon® + pyn + pp)3" if Fin) =
(n* + 113" 4

Care must be taken when s« = | when solving recurrence relations of the type covered by
Theorem 6. In particular, to apply this theorem with Fin) = bn, + b _jn_; + - + byn + by,
the parameter s takes the value s = 1 (even though the term 1" does not explicitly appear). By
the theorem, the form of the solution then depends on whether 1 is a root of the character-
istic equation of the associated linear homogeneous recurrence relation. This is illustrated in
Example 13, which shows how Theorem 6 can be used to find a formula for the sum of the first
n positive integers.

Let a, be the sum of the first n positive integers, so that

L
iy, = E k.
]

Mote that a,, satisfies the linear nonhomogeneous recurrence relation
d, =iy +H.

(To obtain a,, the sum of the first n positive integers, from «,,_, the sum of the first n — 1 positive
integers, we add n.) Mote that the initial condition is a; = 1.
The associated linear homogeneous recurrence relation for a,, is

The solutions of this homogeneous recurrence relation are given by af'] = o) ==,
where ¢ is a constant. To find all solutions of a, = «a,_, + #, we need find only a single par
ticular solution. By Theorem 6, because Fi{n) = n = n - (1)" and s = 1 is a root of degree one of
the characteristic equation of the associated linear homogeneous recurrence relation, there is a
particular solution of the form n(p,n + pg) = pn* + pgi.

Inserting this into the recurrence relation gives pn® + pyn = p,(n — 1+ pyin — 11 + n.
Simplitying, we see that n(2p; — 1)+ (py — p,;) = 0, which means that 2p; — 1 =0 and py, —
p,=0,50p, =p, = 1/2 Hence,

s 2 27 2

HIF]—H'_Z_'_H_H{H-'-]'}

is a particular solution. Hence, all solutions of the original recurrence relation o, = a,_; + 1
are given by a_ = a'¥ + &% = ¢ + n(n + 1)/2. Becausea, = 1, wehave | =a, =c+1-2/2=
¢+ 1,50 ¢ = 0. It follows that a, = nin + 1)/2. (This is the same formula given in Table 2 in

Section 2.4 and derived previously.) «
Exercises
1. Determine which of these are linear homogeneous recur- 1. Determine which of these are linear homogeneous recur-
rence relations with constant coefficients. Also, find the rence relations with constant coefficients. Also, find the
degree of those that are. degree of those that are.
a) a,=3a,  +4a, ., +5a_, a) a, =3a,_, b) a, =3
by a,=2na,_, +a, 5 €) a,=a,_, +i,_, :g :ﬁia"_lfr: d) a,=a, , +2a,_,
dy a, =a,_, +2 €] ﬂu=ﬂ3_l+"n—z ] a:=a“_|l+a'_2+n+3

f) a,=a_;

gl a,=a, | +n g a, 4“;_1+§ﬂ'm_4+g"n 7




3. Solve these recurrence relations together with the initial

conditions given.

a) g, =2a, _ formz 1 a,=3

b} a,=a, forrzl.a,=2

¢ a,=5a,_,—ba_ fornz2 a,=1a =10
dj o, =4a,_, —4a,_ torn>2 a, =60 =8
) a,=—%, | —da, ~fornzlay=0a =1
fy o, =4a,_ fornz2 a,=0a =4

gl a,=a, fdfornzla,=1.a, =0

4. Solve these recurrence relations together with the initial

T

conditions given.

a) g, =a, +6a,_ fornzla,=3a =06
bya =Ta,_,—10a, ,fornz2a =2a =1
¢l g, =bu,_, —Ba,_ torn=2 g, =4.a =10
dy a, =2a, ;—a, ;fornz>2 ay=4.a =1

e) g, =da, fornz2 a;="5a =-I

fy g, =—ba, | —%a, fornz2 a,=3a =-3
g iy =—da, +3a, fornz 0 gy =2, 0, =8

. How many different messages can be transmitted in a mi-

croseconds using the two signals described in Exercise 19
in Section §.17

How many different messages can be transmitted in # mi-
croscconds using three different signals if one signal re-
quires | microsecond for transmittal, the other two sig-
nals require 2 microseconds each for transmittal, and a
signal in a message is followed immediately by the next
signal?

In how many ways can a 2 x n rectangular checkerboard
b tiled using 1 » 2 and 2 » 2 pieces?

8. A model for the number of lobsters canght per year is

based on the assumption that the number of lobsters

caught in a year is the average of the number canght in

the two previous years.

a) Find & recurrence relation for [L, ). where L, is the
number of lobsters caught in year n, under the as-
sumption for this model.

b} Find L if 100,000 lobsters were caught in year | and
300,000 were caught in year 2.

L, A deposit of 5100000 is made to an investment fund at

the beginning of a year. On the last day of each year two

dividends are awarded. The first dividend is 20% of the

amount in the account during that year. The second divi-

dend is 45% of the amount in the account in the previous

year.

a) Find a recurrence relation for {P, }. where P, is the
amount in the account at the end of # years if no
money is ever withdrawn.

b} How much is in the account after n vears if no money
has been withdrawn?

*10. Prove Theorem 2.
11.

Links )

The Lucas numbers satisty the recurrence relation
LII = L

anid the initial conditions Ly = 2and L) = L.

a) Showthat L, =, ; + .., form=2 3, ..., where [,
is the mth Fibonacci number.

b} Find an explicit formula for the Lucas numbers.

1 + 'Lll—l"

12,

13.

14.

15.

* 1.
17.

18.

149,

21.
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Find the =olution tw a =2a_, +a,_,—-Ta .
form=345 ..., withay =3,a, =6, and a, =1
Find the solution to a, = Ta,_, +6a, ; with a; =9,
a; = 10, and a; = 32,

Find the solution to a, =5a, , —4a, , with a; =3,
a, =2, 0, =6, and a; = 8.

Find the solution o a, =2a,_, + 3a, , —6a, ; with
ay =7, a, =—4 and a, =&,

Prove Theorem 3.

Prove this identity relating the Fibonacci numbers and the
binomial coefficients:

Jo =Cin M+ Cln— 1, 10+ -« + Clm— &, k),

where n is a positive integer and &k = [n/2]. [Hine: Let
ay = Cin, 0+ Cln— 1, I} 4 - 4+ Cln — k, &). Show that
the sequence [a,, | satisfies the same recurrence relation
and initial conditions satisfied by the sequence of Fi-
bonacci numbers. |

Solve the recurrence relotion a, = 6a,_ — 124, , +
Ba,_, withay, = -3, a, =4, and a, = BE.
Solve the recurrence relation @, = —3a,_, —3a, , —

a, ;witha, =53a =-9 mda, =13 B

. Find the general form of the solutions of the recurrence

relation @, = 8a,_, — léa,_,.

What is the general form of the solutions of 2 linear ho-
mogeneous recurrcnce relation if its characteristic equa-
tion has roots 1,1, 1,1, =2, =2, =2, 3 3, —47

. What is the general form of the solutions of a linear ho-

mogenzous recurrence relation if its chamcteristic equa-
tion kas the roots —1, -1, -1, 2, 2,5, 5,77

. Conzider the nonhomogencous linear recurrence relation

a, = da,_, +2"
a} Show that @, = —2*! is u solution of this recurrence
relation.

b} Use Theorem 3 to find all solutions of this recurrence
relation.

¢) Find the solution with a, = 1.

« Consider the nonhomogencous lincar recurrence relation

dy = 20y + 2.
a) Show that a, = r2" is a solution of this recurrence
relation.

b} Use Theorem 3 to find all solutions of this recurrence
relation.

¢) Find the solution with o, = 2.

. a8} Determine values of the constanis A and 8 such that

a, = An + B is a solution of recurrence relation a, =
2a, ,+n+5.

b} Use Theorem 5 to find all solutions of this recurrence
relation.

¢) Find the solution of this recurrence relation with
iy = 4
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person answers each query truthfully, we can find x

using log n queries by successively splitting the sets

used in each query in half. Ulam’s problem, proposed by

Stunizlow Ulam in 1976, asks for the number of querizs

required Lo find x, supposing that the first person is al-

lowed to lie exactly once.

a) Show that by asking each question twice, given a
number x and a set with 7 elements, and asking one
maore question when we find the lie, Ulam’s problem
can be solved using 2 logn + | gueries.

b} Show that by dividing the initial set of n clements
into four parts, each with /4 elements, 114 of the ele-
ments can be climinated using two querics, [Hing: Use
two gueries, where each of the queries asks whether
the clement is in the union of two of the subsets with
n/4 clements and where one of the subsets of n/4 el-
ements is used in both queries. ]

€] Show from part (b} that if f{n) eguals the number
of queries used to solve Ulam's problem using the
method from part (b) and n is divisible by 4, then
Finh=3nfd) + 2.

d} Solve the recurrence relation in part (c) for fin).

e) Is the naive way to solve Ulam's problem by ask-
ing each question twice or the divide-and-conguer
method based on part (b} more efficient? The most
efficient way to solve Ulam's problem has been
determined by A. Pelc [Pe8T].

s
ie%ﬁ Generating Functions

8.4 Generating Functions 563

In Exercises 29-33, assume that £ is an increasing func-
tion satisfying the recurrence relation fi{n) = af (n/b) + cn?|
where @ = 1, b is an integer greater than 1, and ¢ and o

arec

positive real numbers. These exercises supply a proof of

Theorem 2.

w19,

.

*31.

3.

3.

Show that if @ = & and n is a power of b, then f(n) =
Fiba® 4 en? log,, n.

Use Exercise 29 to show that if a =5, then fin) is
n log n).

Show that if @ £ b and n is a power of b, then fin) =
E']n“'+ E'zn”&-“, where ©) = Pofib —a) and O, =

_fl.'l}+b‘“'.':l.lr[r1—b“”:l.
Use Exercise 31 to show that if a < & then f{n) is Q0.

. Use Exercise 31 to show that if a = &, then flin) is

CHpto8s ),

. Find f{m) when n = 4*, where { smisfies the recurrence

relation f{n) = 5f(n /4% + 6n, with f{1) = 1.

. Give a big-() estimate for the function § in Exercise 34 if

[ is an increasing function.

. Find f{m) when n = 2*, where { smisfies the recurrence

relation f{n) = Bfln/2) + n with /{11 = 1.

(Give a big-0 estimate for the function § in Exercise 36 if
[ is an increasing function.

8.4.1 Introduction

Links )

Generating functions are used to represent sequences efficiently by coding the terms of a se-
quence as coefficients of powers of a variable x in a formal power series. Generating functions

can be used to solve many types of counting problems, such as the number of ways to select
or distribute objects of different kinds, subject to a variety of constraints, and the number of
ways to make change for a dellar using coins of different denominations. Generating functions
can be used to solve recurrence relations by translating a recurrence relation for the terms of
a sequence into an equation involving a generating function. This equation can then be solved
to find a closed form for the generating function. From this closed form, the coefficients of the
power series for the generating function can be found. solving the original recurrence relation.
Generating functions can also be used to prove combinatorial identities by taking advantage of
relatively simple relationships between functions that can be translated into identities involving
the terms of sequences. Generating functions are a helpful tool for studying many properties of
sequences besides those described in this section, such as their use for establishing asymptotic

formulae for the terms of a sequence.

We begin with the definition of the generating function for a sequence.

Definition 1
SeTies

The generating function for the sequence ag, ay, ..., a,, ...

of real numbers i= the infinite

Cr{x) = ap + ayx + - +:.|,:.1ft e — E ak.l:*.

k=1
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EXAMPLE 1

Extro )
Examples

EXAMPLE 2

EXAMPLE 3

Remark: The generating function for [« } given in Definition 1 is sometimes called the ordi-
nary generating function of {a, | to distinguish it from other types of generating functions for
this sequence.

The generating functions for the sequences [a;} with a, =3, 4, =k+1, and a, =2°

are 300 3%, B0k + 1w, and B 2% respectively. <

We can define generating functions for finite sequences of real numbers by extending a
finite sequence ag, @y, ..., a, into an infinite sequence by setting ., = 0. a,,, = 0, and s0 on.
The penerating function Gix) of this infinite sequence [a, ) is a polynomial of degree n because
no terms of the form e{i.re" with j = i occur, that is,

Gilx) = ag +ayx + - +ax".

What is the generating function for the sequence 1, 1, 1, 1, 1, 17
Sodution: The generating function of 1, 1, 1,1, 1, 1 is
l+x+x2 +0 +2 455

By Theorem | of Section 2.4 we have
[ Nffx—1)=1 +x+2 40+ X
when x# 1. Consequently, Gix)=(x"—1)/(x— 1) is the generating function of the

sequence 1, 1, 1, 1, 1, 1. [Because the powers of x are only place holders for the terms of the
sequence in a generating function, we do not need to worry that (1) is undefined.] .|

Let m be a positive integer. Let a, = C{m, &), fork =0, 1, 2, ..., m. What is the generating func-
tion for the sequence ag, ay, ..., qa,7

Solution: The generating function for this sequence is
G(x) = C(m, 0) + C(m, Lyx + C{m, 2 + - + Cim, m)a™,

The binomial theorem shows that Gix) = (1 + xp™. =

3.4.2 Useful Facts About Power Series

When generating functions are used to solve counting problems, they are usually considered to
be formal power series. As such, they are treated as algebraic objects; guestions about their
convergence are ignored. However, when formal power series are convergent, valid operations
carry over to their use as formal power series. We will take advantage of the power series of
particular functions around x = 0. These power series are unigue and have a positive radius of
convergence. Readers familiar with calculus can consult textbooks on this subject for details
about power series, including the convergence of the series we use here.
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We will now state some widely important facts about infinite series used when working
with generating functions. These facts can be found in calculus texts.

The function fix) = /(1 — x) is the generating function of the sequence 1, 1, 1, 1, ..., because
1J{l—x)=1+x+x +

for x| < 1.

The function f{x) = 1 /{1 — ax) is the generating function of the sequence 1, a, o°, &, ..., be-
cause

1/{l —ax) = | + ax+a’x + -

when |ax| < 1, or equivalently, for |x| < 1/|a| fora £ 0. 4

We also will need some results on how to add and how to multiply two generating functions.
Proofs of these results can be found in calculus texts.

Let fix) = X° jax* and g(x) = X2° bt Then

oo o] k
f{_t:} + pix) = Efﬂ* -+ bi}:l'i and f{x}g{_:} = 2 (E dfbH) .

k=il k=0 % j=0

Remark: Theorem 1 is valid only for power series that converge in an interval, as all series
considered in this section do. However, the theory of generating functions is not limited to such
series. In the case of series that do not converge, the statements in Theorem 1 can be taken as
definitions of addition and multiplication of generating functions.

We will illustrate how Theorem | can be used with Example 6.

Let fix) = 1 /{1 —x)*. Use Example 4 to find the coefficients iy, @, d,, ... in the expansion
f =37 ot

Selwiion: From Example 4 we see that
1f{l=x)=l+x+22+2" + .
Hence, from Theorem 1. we have

1/(1 —x)* = i(z l)x*z iu&ﬂ}u*.

E=0 Y j=0
|

Remark: This result also can be derived from Example 4 by differentiation. Taking derivatives is
a useful technigue for producing new identities from existing identities for generating functions.
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To use generating functions to solve many important counting problems, we will need to
apply the binomial theorem for exponents that are not positive integers. Before we state an
extended version of the binomial theorem, we need to define extended binomial coefficients.

Definition 2 Let « be a real number and k a nonnegative integer. Then the extended binomial coefficient
() is defined by
K

w\ _ fuu—1) e (u—k+ DR ifk >0,
e itk =0
EXAMPLE 7 Find the values of the extended binomial coefficients {'32} and {1"3'2}
Solution: Taking 4 = =2 and & = 3 in Definition 2 gives us

(—z) B Y

3 3]

Similarly, taking u = 1,/2 and & = 3 gives us

2y (/22 -1)1/2-12)
3 ) KTl

=(1/2)-1/2)(-3/2)/6
=1/16.

Example 8 provides a useful formula for extended binomial coefficients when the top pa-
rameter is a negative integer. It will be useful in our subsequent discussions.

EXAMPLE 8 When the top parameter is a negative integer, the extended binomial coefficient can be expressed
in terms of 2n ordinary binomial coefficient. To see that this is the case, note that

by definition of extended binomial coefficient

(_n) (== 1) (—n—r+ 1)

r rl

C(=I¥na+ D (ndr—1)

factoring out —1 from each term in the numerator

r!
—1¥yin+r—1iin+r—2)--n
= ) L :Ir{ } by the commutative law for multiplication
rl
(—1¥(n+r—1)! oy :
= e multiplying both the numerator and denominator
F[{ﬂ— 1)[ by (e — 1)
nt+r—1
={-1) ( ) by the definition of binomial coefficients
r
=(—-1Cin+r—11r) using alternative notation for binomial

coefficients.
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We now state the extended binomial theorem.

THE EXTENDED BINOMIAL THEOREM  Let x be a real number with |x| < 1 and let
u be a real number. Then

(14 x)" = E (:) .

k=D

Theorem 2 can be proved using the theory of Maclaurin series. We leave its proof to the reader
with a familiarity with this part of calculus.

Remark: When u is a positive integer, the extended binomial theorem reduces to the binomial
theorem presented in Section 6.4, because in that case () = 0ifk > u.

Example 9 illustrates the use of Theorem 2 when the exponent is a negative integer.

Find the generating functions for (1 +x)™ and (1 —x)™, where » is a positive integer, using
the extended binomial theorem.

Seduwiiorn: By the extended binomial theorem, it follows that

(1+x)™ = i (;”) &,

k=D

Using Example 8, which provides a simple formula for [Tj we obtain

(1+x™= E{—]]ﬁfqn + k-1, ket

k=0

Replacing x by —x, we find that

(1—x)™" = E Cln+ k — 1, k).
-

Table | presents a useful summary of some generating functions that arise frequently.

Remark: Mote that the second and third formulae in this table can be deduced from the first
formula by substituting «x and =" for x, respectively. Similarly, the sixth and seventh formulae
can be deduced from the fifth formula using the same substitutions. The tenth and eleventh can
be deduced from the ninth formula by substituting —x and ax for x, respectively. Also, some
of the formulae in this table can be derived from other formulae using methods from caleulus
(such as differentiation and integration). Students are encouraged to know the core formulae in
this table {that is, formulae from which the others can be derived, perhaps the first, fourth, fifth,
eighth, ninth, tweltth, and thirteenth formulae) and understand how to derive the other formulae
from these core formulae.
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TABLE 1 Useful (Generating Functions.

E=1F

= 1 + Cim, Vax + Cln, 2)a*x® & o + a"x"

Grix) ald
(l+x = i“ Clm, k) Cln, k)
=11-:C{n, Iix + O, 2ot + e 4 2
(1 4ax) = E Cin, k' 2* Cin, k)a*

1+ =} Cinkx

K=k

=14+ Clm, Dixm + O, a4 oo 4 5™

Cim, kfryif r | k; O otherwise

ke

Eml

et =Y =ltxsd b s 1 if k < n; 0 otherwise
| —x =
I [
= _g:.x*_l+x+f+u- 1
1 [
e =z_“na*=*=1+m+a"f+m a
1 - : . 2
T—v =l§.-1:'ﬂ"=]-+-l-"'-+-l'2 & S Lif r | &; O otherwise
1 (L]
—_— = I =1+ 20+ 3" 4+ - k1
TR E.&+lrt ++30 ¢ +
1 im
T ATt k=L Cin+k—1,K)=Cln+k—Ln—1)
=1+Cin e+ Cla+ 1, 20 + o
] 1]
— = Ol k=1, B-1¥ -1 k=1 k) =(-1 k—1ln-1
1 +aF z;"”f ARU-TF (~1Cln + )=(—1¢Cin +k—Ln—1)
= 1—Clm, N+ Cla+ 1, 2h® — e
1 [
T _z_':.l':{n+i—1,k1a"’x* Cin+k -1, kla* = Cln+ k — 1,n— Da*
=1+ Cln, Daz + Cln + 1, Da® + ---
f’=§x—:=1+1+2|+%+--- 1/k!
o ¢l
In{1+x}=E{ 1) f=1_§+]—;_‘;+.._ {_1].1!+Lll.r;_.

Mote: The serses for the 1ast two generating funciions can be found in most caloulus books when power series are discussed.




EXAMPLE 10

Extra )
Examples

EXAMPLE 11

8.4 Generating Functions 569

8.4.3 Counting Problems and Generating Functions

Generating functions can be used to solve a wide variety of counting problems. In particular,
they can be used to count the number of combinations of various types. In Chapter & we de-
veloped technigues to count the r-combinations from a set with n elements when repetition
is allowed and additional constraints may exist. Such problems are equivalent to counting the
solutions to equations of the form

gy teg+o-te, =C

where C is a constant and each ¢; is a nonnegative integer that may be subject to a specified
constraint. Generating functions can also be used to solve counting problems of this type, as
Examples 1012 show.

Find the number of solutions of
ey +ey+ey =17,
where e, e, and ¢, are nonnegative integers with2 < ¢ €53 <e, =6, and4 £ e, = 7.

Sedution: The number of solutions with the indicated constraints is the coefficient of x'™ in the
expansion of

o+ S A S S )

This follows because we obtain a term equal to x'” in the product by picking a term in
the first sum x*, a term in the second sum x*:, and a term in the third sum x*, where the
eXponents e, ¢4, and e, satisfy the equation ¢, + 5 + ¢; = 17 and the given constraints.

It is not hard to see that the coefficient of x'7 in this product is 3. Hence, there are
three solutions. (Note that the calculating of this coefficient involves about as much work
as enumerating all the solutions of the equation with the given constraints. However, the
method that this illustrates often can be used to solve wide classes of counting problems with
special formulae, as we will see. Furthermore, a computer algebra system can be used to
do such computations.) «

In how many different ways can eight identical cookies be distributed among three distinct
children if each child receives at least two cookies and no more than four cookies?

Solution: Because each child receives at least two but no more than four cookies, for each child
there is a factor equal to

2+ 22 +29

in the generating function for the sequence [, |, where ¢, is the number of ways to distribute #
cookies. Because there are three children, this generating function is

i +x +x%.

We need the coefficient of x* in this product. The reason is that the x* terms in the expansion
correspond to the ways that three terms can be selected, with one from each factor, that have
exponents adding up to 8. Furthermore, the exponents of the term from the first, second, and
third factors are the numbers of cookies the first, second. and third children receive, respectively.
Computation shows that this coefficient equals 6. Hence, there are six ways to distribute the
cookies so that each child receives at least two, but no more than four, cookies. -
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EXAMPLE 12

EXAMPLE 13

Use generating functions to determine the number of ways to insert tokens worth $1, $2,
and %5 into a vending machine to pay for an item that costs r dollars in both the cases when
the order in which the tokens are inserted does not matter and when the order does matter. (For
example, there are two ways to pay for an item that costs $3 when the order in which the tokens
are inserted does not matter: inserting three %1 tokens or one $1 token and a %2 token. When
the order matters, there are three ways: inserting three S1 tokens, inserting a $1 token and then
a $2 token, or inserting a $2 token and then a §1 token.)

Solfution: Consider the case when the order in which the tokens are inserted does not matter.
Here, all we care about is the number of each token used to produce a total of » dollars. Because
we can use any number of $1 tokens, any number of 2 tokens, and any number of $5 tokens,
the answer is the coefficient of =" in the generating function

Itx+l+0+)l+0 + a0+l + 27 + 2042 50,

(The first factor in this product represents the %1 tokens used, the second the $2 tokens used.
and the third the %5 tokens used.) For example, the number of ways to pay for an item costing $7
using $1, $2, and %5 tokens is given by the coefficient of x" in this expansion, which equals 6.

When the order in which the tokens are inserted matters, the number of ways to insert
exactly » tokens to produce a total of r dollars is the coefficient of x™ in

{x +x? +.=.5]-"'.

because each of the r tokens may be a 1 token. a $2 token, or a 55 token. Because any number
of tokens may be inserted, the number of ways to produce r dollars using £1, $2, or 55 tokens,
when the order in which the tokens are inserted matters, is the coefficient of =" in

1
I —(x+x2 4+ x%)
B s
I —x—x? ="

l+ix++ 00+ (x+ 2+ 5P+

where we have added the number of ways to insert 0 tokens, | token, 2 tokens, 3 tokens,
and so on, and where we have used the identity 1/{1 —x) = | + x+ > + --- with x replaced
with x + x* + x°. For example, the number of ways to pay for an item costing $7 using 81, $2,
and $5 tokens, when the order in which the tokens are used matters, is the coefficient of x” i this
expansion, which equals 26. [Hins: To see that this coefficient equals 26 requires the addition of
the coefficients of x7 in the expansions (x +x* + x°)* for 2 < &k < 7. This can be done by hand
with considerable computation, or a computer algebra system can be used. ] 4

Example 13 shows the versatility of generating functions when used to solve problems with
differing assumptions.

Use generating functions to find the number of k-combinations of a set with n elements. Assume
that the binomial theorem has already been established.

Solfurion: Each of the n elements in the set contributes the term (1 + =) to the generating function

flxy= X} _,axt. Here f(x) is the generating function for [a, ], where a, represents the number
of k-combinations of a set with n elements. Hence,

flxh=(1+x0"
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But by the binomial theorem, we have
o (n
=2 (i)

where

(n _on
k) klin—i

Hence, C(n, &), the number of k-combinations of a set with # elements, is

m!
ki(n — k) 4

Remark: We proved the binomial theorem in Section 6.4 using the formula for the number of
r-combinations of a set with » elements. This example shows that the binomial theorem, which
can be proved by mathematical induction, can be used to derive the formula for the number of
r-combinations of a set with » elements.

Use generating functions to find the number of »-combinations from a set with n elements when
repetition of elements is allowed.

Senlution: Let Gx) be the penerating function for the sequence [a, ], where a, equals the number
of r-combinations of a set with n elements with repetitions allowed. That is, Gix) = ¥ ax".
Because we can select any number of a particular member of the set with n elements when we
form an r-combination with repetition allowed, each of the n elements contributes (1 + x +x* +
x' + ---) to a product expansion for G(x). Each element contributes this factor because it may
be selected zero times, one time, two times, three times, and so on, when an r-combination is
formed (with a total of r elements selected). Because there are # elements in the set and each
contributes this same factor to Gix), we have

Gx) =l +x+x+ "
As long as |x| < 1, we have | +xdtF o= LA — x), 50
G =11 -2"=(1-x"
Applying the extended binomial theorem (Theorem 2), it follows that

(1= =(1+ (=" =Y ('r”) (=)',

ro )

The number of r-combinations of a set with n elements with repetitions allowed, when r is a
positive integer, is the coefficient a, of = in this sum. Conseguently, using Example 8 we find
that «, equals

(_") 1Y =(-1YClr+r—1, - (-1
;

=Cin+r—1,r) -4

Mote that the result in Example 14 is the same result we stated as Theorem 2 in Section 6.5.
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EXAMPLE 15 Use generating functions to find the number of ways to select r objects of » different kinds if
we must select at least one object of each kind.

Solution: Becanse we need to select at least one object of each kind, each of the n kinds of objects
contributes the factor (x + x* + x* + +-+) to the generating function G(x) for the sequence {a, ).
where a, is the number of ways to select r objects of » different kinds if we need at least one
object of each kind. Hence,

Gl =(x+x +x + - =" (I +x+2" + ) =2" (1 —x)".
Using the extended binomial theorem and Example 8, we have

Gix)=2"f(1 —x)"
=" (l—x)"

= ¢ i (_r“) (—x)

r=(}

= Z{—n'cmh— 1A—1)x"
re=i}

o

Ec:r;n+r—|,r1x"+'

re=il

iﬂ'{r— Lt —mw'

= iﬂ{r— Ir—mn".

We have shifted the summation in the next-to-last equality by setting s = n + rsothatr = n
when r = Dand n 4+ »— I = ¢ — 1, and then we replaced ¢ by r as the index of summation in the
last equality to return to our original notation. Hence, there are C(r — 1, r — ) ways to select r
objects of n different kinds if we must select at least one object of each kind. «

8.4.4 Using Generating Functions to Solve
Recurrence Relations

We can find the solution to a recurrence relation and its initial conditions by finding an explicit
formula for the associated generating function. This is illustrated in Examples 16 and 17.
EXAMPLE 16 Solve the recurrence relation e, = 3a,_, fork = 1,2, 3, ... and initial condition &, = 2.

Extra
Examples ) Solution: Let G{x) be the generating function for the sequence [ag ), that is, G(x) = ¥, axt.
First note that

alrx) = E{]’k_rb'l = Edk—l':k‘
k=0 kwl
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Using the recurrence relation, we see that

(]

Cr(x) — 37 (x) = E HH__& -3 Z met_,;vcE

k=il k=1

oo
= ap + E{ai — 3ay_, Jak
k=1
=2
because a; = 2 and a;, = 3a;_,;. Thus,

Gx) — 3nG(x) = (1 — I)Gix) = 2.

Solving for G(x) shows that G(x) = 2/(1 — 3x). Using the identity 1/(1 —ax) = 37  a*s*,
from Table 1, we have

o0 o
G{x}:ZE?,*f = 22-3%*.
kil kil
Consequently, o, =2 - 3% 4

Suppose that a valid codeword is an n-digit number in decimal notation containing an even
number of 0s. Let o, denote the number of valid codewords of length a. In Example 4 of Section
B.1 we showed that the sequence [a,} satisfies the recurrence relation

a, = 8a,_, + 107!

n—1
and the initial condition @, = 9. Use generating functions to find an explicit formula for a,,.

Sedution: To make our work with generating functions simpler, we extend this sequence
by setting a; = I; when we assign this value to ay and use the recurrence relation, we
have a; = Bay + 10" = 8 + 1 = 9, which is consistent with our original initial condition. (It also

makes sense because there is one code word of length O—the empty string.)
We multiply both sides of the recurrence relation by x” to obtain

unx" = Sun_|x" + 10l

Let Gix) = E:"_D a,x" be the generating function of the sequence ay. ay, g;, ... We sum both

sides of the last equation starting with n = 1, to find that

Glx)—1= Eaﬂ,f' = E(aa,_tf + 10" ')
m=l

=]

=8 iuﬂ_].ﬁ" + i 10ty
n=|

=]

= Exiun_|x"_l' +xi 101t

=] n=1
i) o0

= Exzaﬂ.r‘+.rz 1"
r=1 m=0

= BalGix) + xf(1 — 10x),
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EXAMPLE 18

where we have used Example 5 to evaluate the second summation. Therefore, we have
Gix) — 1 = 8xG{x) 4 x/(1 — 10x).
Solving for G(x) shows that

| —9x

Gix)= — % |
(1 —Bx)(1 — 10x)

Expanding the right-hand side of this equation into partial fractions (as is done in the integration
of rational functions studied in calculus) gives

=3t imw)

Using Example 5 twice (once with &« = 8 and once with & = 10) gives

G{I}:%(iﬂ"f+ilﬂnf)

ne={l E

= Elisw 10M)".
n=0 2

Consequently, we have shown that

|
a, = (8" + 107)

8.4.5 Proving Identities via Generating Functions

In Chapter & we saw how combinatorial identities could be established using combinatorial
proofs. Here we will show that such identities, as well as identities for extended binomial coef-
ficients, can be proved using generating functions. Sometimes the generating function approach
is simpler than other approaches, especially when it is simpler to work with the closed form
of a generating function than with the terms of the sequence themselves. We illustrate how
generzting functions can be used to prove identities with Example 18.

Use generating functions to show that
E Cin, k? = C(2n, n)
=il

whenever n is a positive integer.

Solurion: First note that by the binomial theorem C(2#, n) is the coefficient of x” in {1 + x)*".
However, we also have

(1+x™ =[(1 +xy]®
= [C{m, 0) + C(n, 1z + C(n, 2 + - + C(n, n)x"]2.




The coefficient of x7 in this expression is
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Cin, MO, my+ Cin, 1NCO(, 01— 1)+ Cin, 2)0(m, 0 — 2) 4 - + O, m)C(n, 0.

This equals ¥;_,Cin k)% because C(n n—4k)= C{n k). Because both C(2n.n) and
¥, Cin, k)* represent the coefficient of x" in (1 + x)™, they must be equal. 4

Exercises 44 and 45 ask that Pascal's identity and Vandermonde’s identity be proved using

penerating functions.

Exercises

1. Find the generating function for the finite sequence 2, 2,
2,2,2.2

2. Find the generating function for the finite sequence 1, 4,
I6, 64, 236.

In Exercises 3-8, by a closed form we mean an algebraic ex-
pression not invelving a summation over a range of values or
the use of ellipses.

A. Find a closed form for the generating function for each of
these sequences. (For cach sequence, use the most obvi-
ous choice of a sequence that follows the pattern of the
initial terms listed.)

a) 0,2,2,2,22,2,0,0,0,0,0,.
by 0,0,0,1,1,1,1,1,1,.
ﬂ&L&&LE&L&&Lm
dy 2,4, 8, 16,32, 64, 128,

()()() ()“””

fy 2,-2.2. -1 4 2 2
g LLOLLLLIL
hy 00,0, 1,23, 4, ...
4. Find a closed form for the generating function for each of
these sequences. (Assume a general form for the terms of

the sequence, using the most obvious choice of such a se-
quence. )

a) =l -1 -1 =L -1 =0 -1 0.0 000 0, O,
by 1,3,9, 27,81, 243,729, ...

) 00003, -3.3, 23,3, -3, ...

dy LZLLLLLLIL ..

2 (3)2()#(3)-7() osos.

fy -3.3,-3,3,-3.3, ..
001 -2 4, -8, l6, 32 64, .
hy Lo 00,0, 0,0, ...
5. Find a closed form for the generating function for the se-
quence {a, |, where
a) g, =5foralln=0172
b} o, =3 foralln=012 ...
¢l a,=2fwrn=3435 . anda, =g, =a, =0
di a,=2n+3forallm=0,1,2,....

e) a,

E) foralln=012
n

fya = n:d-) foralln=0 1,2,

. Find a closed form for the generating function for the se-

guence {a, |, where

a) g =—lforalln=012 ...

b) a = forn=1234 .. anda, =0.
) a =n—lforn=0,12_...

dj a, =1+ 1) forn=012, ...

e) a, = ;) form=10,12....

-
P
=}

|

o = m)!’nru:ﬂ,],l....
n+l

7. For cach of these generating functions, provide a closed

formula for the sequence it determines.

a) (3 — 47 by  +1)°
) Iffl — 5x) dy /(1 +3x)
e) ¥+ I+ THI -2

R E ) L B e |

gh 2200 —x)F hy Ze™

8. For each of these generating functions. provide a closed

formula tor the sequence it determines.

a) (+ 1) by {3r—1°

e) /01— %) d) rll."'[J —xF

o) c TEO/L- . 1) {l+r"‘u‘[I+x}"

¥y x (] +x427) hy & —
9, Find the coefficient of x™ in the power series of each of

these functions.

a) (I +27 +x"" 429407

b) (P +rf+x 2 0 £

o) (P 2" e N e+
P44

d) (B4 a0 DR a2t
IB+IL] }

e) Et+.r“+r‘+.r“+x“+ B o e e s

Az eat®y)

10. Find the coefficient of x* in the power series of each of

these functions.

) (I+0 4844747

b) (f+C +x* 425 42 4P
g (O +0+80 + x40+
d) (x4 07 " i a0
e) (l+x+27)

)

Bl T
+ a5 )
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61. Let m be o positive imteger. Let X be the random vari- b) Find the expected value and the variance of X using
ghle whose value is n if the mth success occurs on the Exercise 59 and the closed form for the probability
(i + mth trial when independent Bernoulli trials are per- generating function in part (a).
formed, each with probability of success p. 62. Show that if X and ¥ are independent random variables
a) Using Exercise 32 in the Supplementary Exercises of on a sample space 5 such that X{s) and ¥{s) arc nonneg-
Chapter 7, show that the probability generating func- ative integers for all 5 € §, then Gy, (60 = Gy{odlrypix).
tion Gx_ is given by GI_{J:} = {1 — g™, where

g=1-p.

m Inclusion-Exclusion

EXAMPLE 1

8.5.1 Introduction

A discrete mathematics class contains 30 women and 30 sophomores. How many students in
the class are either women or sophomores? This question cannot be answered unless more in-
formation is provided. Adding the number of women in the class and the number of sophomores
probably does not give the correct answer, because women sophomores are counted twice. This
observation shows that the number of students in the class that are either sophomores or women
is the sum of the number of women and the number of sophomores in the class minus the num-
ber of women sophomores. A technique for solving such counting problems was introduced
in Section 6.1. In this section we will generalize the ideas introduced in that section to solve
problems that require us to count the number of elements in the union of more than two sets.

8.5.2 The Principle of Inclusion-Exclusion

How many elements are in the union of two finite sets7 In Section 2.2 we showed that the number
of elements in the union of the two sets A and 8 is the sum of the numbers of elements in the
sets minus the number of elements in their intersection. That is,

|[AUB| =|A| + |8 —|AnB|.

As we showed in Section 6.1, the formula for the number of elements in the union of two sets
is useful in counting problems. Examples 1-3 provide additional illustrations of the usefulness
of this formula.

In a discrete mathematics class every student is a major in computer science or mathematics, or
both. The number of students having computer science as a major (possibly along with math-
ematics) is 25; the number of students having mathematics as a major (possibly along with
computer science) is 13; and the number of students majoring in both computer science and
mathematics is 8. How many students are in this class?

Senlurion: Let A be the set of students in the class majoring in computer science and B be the set
of students in the class majoring in mathematics. Then A N B is the set of students in the class
who are joint mathematics and computer science majors. Because every student in the class
is majoring in either computer science or mathematics (or both), it follows that the number of
students in the class is |4 U B|. Therefore,

|AUB| = |Al + |B| — AN B
=25+13—8=30.

Therefore, there are 30 students in the class. This computation is illustrated in Figure 1. 4
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JAUB| = 4] + |8 - JAnB| =254+ 13-8=30 |AUB| = |4] + |B| - |4 n B =142 + 90 -12 = 220

A A B

2 X

4| =25 [Arn 8 =4 |8l =13 |4] =142 [4n Bl =12 |B] =50
FIGURE 1 The set of students in a FIGURE 2 The set of positive integers not
discrete mathematics class. exceeding 1000 divisible by either 7 or 11.
EXAMPLE 2 How many positive integers not exceeding 1000 are divisible by 7 or 117

EXAMPLE 3

Solution: Let A be the set of positive integers not exceeding 1000 that are divisible by 7, and
let B be the set of positive integers not exceeding 1000 that are divisible by 11. Then AU B
is the set of integers not exceeding 1000 that are divisible by either 7 or 11, and A n B is the
set of integers not exceeding 1000 that are divisible by both 7 and 11. From Example 2 of
Section 4.1, we know that among the positive integers not exceeding 1000 there are | 10007
integers divisible by 7 and | 1000/11] divisible by 11. Because 7 and 11 are relatively prime,
the integers divisible by both 7 and 11 are those divisible by 7 - 11. Consequently, there are
| 1000/(11 - 7] positive integers not exceeding 1000 that are divisible by both 7 and 11. It
follows that there are

[AUB| = 4| + |B| - |A N B|

=+ 150 - 175

142 + 90— 12 = 220

positive integers not exceeding 1000 that are divisible by either 7 or 11. This computation is
illustrated in Figure 2. 4

Example 3 shows how to find the number of elements in a finite universal set that are outside
the union of two sets.

Suppose that there are 1807 freshmen at your school. Of these, 453 are taking a course in
computer science, 567 are taking a course in mathematics, and 299 are taking courses in both
computer science and mathematics. How many are not taking a course either in computer sci-
ence or in mathematics?

Selution: To find the number of freshmen who are not taking a course in either mathematics
or computer science, subtract the number that are taking a course in either of these subjects
from the total number of freshmen. Let A be the set of all freshmen taking a course in com-
puter science, and let B be the set of all freshmen taking a course in mathematics. It follows
that |A| =453, |B| = 567, and [A m B| = 299. The number of freshmen taking a course in ei-
ther computer science or mathematics is

[AUB| = |4A| + |B| — |A nB| = 453 + 567 — 299 = T21.
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AN

{8) Count of elements by (b} Count of elements by (o) Count of elements by
la| + 8] +|c] lal + 18| + |c] - Jan 8] - |4 + [&] + |l - Jane| -
[Anc]l—]enc] lancl—|enc + JAnenc|

FIGURE ¥ Finding a formula for the number of elements in the union of three sets.

EXAMPLE 4

Consequently, there are 1807 — 721 = 1086 freshmen who are not taking a course in computer
science or mathematics. L

We will now begin our development of a formula for the number of elements in the union
of a finite number of sets. The formula we will develop is called the principle of inclusion—
exclusion. For concreteness, before we consider unions of i sets, where n is any positive integer,
we will derive a formula for the number of elements in the union of three seis A, B, and C. To
construct this formula, we note that [A| 4+ [B| 4 |C| counts each element that is in exactly one
of the three sets once, elements that are in exactly two of the sets twice, and elements in all three
sets three times. This is illustrated in the first panel in Figure 3.

To remove the overcount of elements in more than one of the sets, we subtract the number
of elements in the intersections of all pairs of the three sets. We obtain

JA|+IB|+ICl—AnB|—|AnC|—|BnC).

This expression still counts elements that occur in exactly ong of the sets once. An element
that occurs in exactly two of the sets is also counted exactly once, because this element will
occur in one of the three intersections of sets taken two at a time. However, those elements
that occur in all three sets will be counted zero times by this expression, because they occur
in all three intersections of sets taken two at a time. This is illustrated in the second panel in
Figure 3.

To remedy this undercount, we add the number of elements in the intersection of all three
sets. This final expression counts ezch element once, whether it is in one, two, or three of the
sets. Thus,

JAUBUC|=A|+ B+ |C]—AnB| - [AnC| - |BnC| + |ANnBnC).

This formula is illustrated in the third panel of Figure 3.
Example 4 illustrates how this formula can be used.

A total of 1232 students have taken a course in Spanish, 879 have taken a course in French,
and 114 have taken a course in Russian. Further, 103 have taken courses in both Spanish and
French, 23 have taken courses in both Spanish and Russian, and 14 have taken courses in both




562 B/ Advanced Counting Technigues

[snFrgl =2 |5 F| =108

FIGURE 4 The set of students who have taken courses
in Spanish, French, and Russian.

French and Russian. If 2092 students have taken at least one of Spanish, French, and Russian,

how many students have taken a course in all three languages?T

Sofution: Let 8 be the set of students who have taken a course in Spanish, F the set of students
who have taken a course in French. and & the set of students who have taken a course in Russian.
Then

|S|=1232, |F| =879, |Rl=114,
|SnF| =103, |SnR| =23, [FNR| = 14,

and
|§ U FUR| =2092,

When we insert these gquantities into the equation
[SUFUR|=|S|+|F|+|R|—-ISnF|=|SnR|—-|FnRl+|SnFnR|

we obtain
2092 = 123248794+ 114 - 103 - 23— 144+ SN FN K|

We now solve for |§n FnR|. We find that |SnFn K| =7. Therefore, there are seven

students who have taken courses in Spanish, French, and Russian. This is illustrated in
Figure 4. -

We will now state and prove the inclusion—exclusion principle for n sets, where n is a
positive integer. This priniciple tells us that we can count the elements in a union of » sets by
adding the number of elements in the sets, then subtracting the sum of the number of elements
in all intersections of two of these sets, then adding the number of elements in all intersections
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of three of these sets, and so on, until we reach the number of elements in the intersection of
all the sets. It is added when there is an odd number of sets and added when there is an even
number of sets.

THE PRINCIPLE OF INCLUSION-EXCLUSION Let A, Ay, ..., A, be finite sets.
Then

A, UA U UAL= X 4I— X [4n4)
I<i<n 1<izj<n
+ z 4, A N A = + (=14, NA; NN AL
l=izfekzn

Proof: We will prove the formula by showing that an element in the union is counted exactly
once by the right-hand side of the equation. Suppose that « is a member of exactly r of the sets
AL Ag, .., A, where 1 £ r < n. This element is counted C(r, 1) times by Z]4;|. It is counted
Cir, ) times by Z|4; N A;|. In general, it is counted C(r, m) times by the summation involving
m of the sets 4;. Thus, this element is counted exactly

Cir, 1) — C(r, 2} + C(r. 3) — =~ +{— 1Y Cir, 1)

times by the expression on the right-hand side of this equation. Our goal is to evaluate this
quantity. By Corollary 2 of Section 6.4, we have

C(r, 0) — C{r, 1) + C(r, 2) — = + (—1Y C(r, r) = 0.

Hence,

1 = C(r0) = Cr, 1y — Clr, 20 + - + (=1 C(r, 1),

Therefore, each element in the union is counted exactly once by the expression on the right-hand
side of the equation. This proves the principle of inclusion—exclusion. 4

The inclusion—exclusion principle gives a formula for the number of elements in the union
of i sets for every positive integer n. There are terms in this formula for the number of ele-
ments in the intersection of every nonempty subset of the collection of the n sets. Hence, there
are 27 — | terms in this formula.

Give a formula for the number of elements in the union of four sets.

Sedurion: The inclusion—exclusion principle shows that

|A) UA; UA; VAL = 4] + |As] + |4;3] + 44
= |4y A = A NA] = |4; ALl — |A; N A | = |4, NA|
— |Az NA| + |4 NA; NAG| + |4, NA; NAL| +|A, NA; NAy|
+ Ay Ay ndy| — 14, NnA; NA; NA.

Note that this formula contains 15 different terms, one for each nonempty subset of
(A A A5 Ayl -4
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Exercises

1. How many elements are in 4, U A, if there are 12 ele- and caulifiower, and 14 like all three vegetables. How

ments in 4,, 18 elements in A, and

a) A, nA,=#? by |4, nd,| =17

o) |4, nd;| =867 dy A4, CA7

. There are 345 students at o college who have taken a
course in calculus, 212 who have taken a course in dis-
crete mathematics, and 188 who have taken courses in
both caleulus and discrete mathematics. How many stu-

dents have taken a course in either calculus or discrete
muathematicsT

. A survey of households in the United States reveals that
06% have at least one television set, 98% have telephone
service, and 953% have telephone service and at least
one television set. What percentage of households in the
United States have neither telephone service nor a televi-
sion set?

. A marketing report concerning personal computers states
that &30,000 owners will buy a printer for their mechines
next year and 1250000 will buy at least one software
package. If the report states that 1 450,000 owners will
buy either a printer or at least one software package. how
many will buy both a printer and st least one software

package?

. Find the number of elements in A, UA; UA; if there
are 100 clements in cach sct and if

) the sets are pairwise disjoint.

b} there are 50 common elements in each pair of sets and
no clements in all three sets,

¢} there are 30 common elements in each pair of sets and
23 elements in all three sets.

d} the sets are equal.

. Find the number of elements in 4, U A, UA; if there are
100 elements in A, 1000 in A5, and 10,000 in A, if

a) A CA-and A, C A

b) the sets arc pairwise disjoint.

c) there are two elements common to each pair of sets
and one clement in all three scts.
. There are 2304 computer science students at a school, OF
these, 1876 have taken a course in Java, 999 have tnken a
course in Linux, and 345 have taken a course in C. Fur-
ther, 876 have taken courses in both Java and Linux, 231
have taken courses in both Linux and C. and 2000 have
taken courses in both Java and C. If 189 of these stu-
dents have taken courses in Linux, Java, and C, how many
of these 2504 students have not taken a course in any of
these three programming languages?

. In asurvey of 270 college students, it is found that 64 like
Brussecls sprouts, %4 like broccoli, 38 like caulifower,
26 like both Brussels sprouts and broccoli, 28 like both
Brussels sprouts and caulifiower, 22 like both broceoli

10,

11.

1L

13

14.

15.

* 16

17.

18.

19,

20.

21.

2L

23

many of the 270 students do not like any of these
vepetables?

. How many students are enrolled in a course either in cal-

culus, discrete mathematics, data structures, or program-
ming languages at a school if there are 507, 202, 312,
and 344 students in these courses, respectively; 14 in
both calculus and data structures; 213 in both calculus
and programming languages; 211 in both discrete math-
ematics and data structurcs; 43 in both discrete mathe-
matics and programming languages; and no student may
take calculus and discrete mathematics, or data structures
and programming languages, concurrenthy?

Find the number of positive integers not exceeding 100
that are not divisible by 5 or by 7.

Find the number of positive intcgers not exceeding 1000
that are not divisible by 3, 17, or 33,

Find the number of positive intcgers not excecding
10,000 that are not divisible by 3.4, T, or 11.

Find the number of positive integers not exceeding 100
that are either odd or the square of an integer.

Find the number of positive integers not exceeding 1000
that are either the square or the cube of an integer.

How many bit strings of length eight do not contain six
consecutive Os7

How many permutations of the 26 letters of the Englizh
alphabet do not contain any of the strings fixh, rai or bird?
How many permutations of the 10 digits either begin with
the 3 digits 987, contain the digits 45 in the fifth and sixth
positions, or end with the 3 digits 1237

How many clements are in the wnion of four sets if
each of the sets has 100 elements, each pair of the sets
shares 50 elements, each three of the sets share 25 ele-
ments, and there are 3 elements in all four sets?

How many elements are in the union of four sets it the
sets have 300, 60, 70, and 20 clements, respectively, each
pair of the sets has 5 elements in common, each triple of
the seis has | common element, and no element is in all
four sets?

How many terms are there in the formula for the number
of elements in the union of 10 sets given by the principle
of inclusion—cxclusion?

Write out the explicit formula given by the principle of
inclusion—exclusion for the number of elements in the
union of hve seis.

How many clements are in the union of five sets if the
sets contain 10,000 elements each, each pair of sets has
1000 common elements, cach triple of sets has 100 com-
mon elements, every four of the sets have 10 common
elements, and there is | element in all five sets?

Write out the explicit formula given by the principle of
inclusion—cxclusion for the number of clements in the
union of six sets when it is known that no three of these
sets have a common intersection.



