PREVIEW

Does experiencing violence in video games have an effect
on the players’ behavior? One study suggests that the
answer is yes and no. Bartholow and Anderson (2002)
randomly assigned male and female undergraduate stu-
dents to play a violent video game or a nonviolent game.
After the game, each participant was asked to take part
in a competitive reaction time game with another student
who was actually part of the research team (a confeder-
ate). Both students were instructed to respond as quickly
as possible to a stimulus tone and, on each trial, the loser
was punished with a blast of white noise delivered through
headphones. Part of the instructions allowed the partici-
pant to sct the level of intensity for the punishment noise
and the level selected was used as a measure of aggressive
behavior for that participant, with higher levels indicating
more aggressive behavior. The results of the study showed
that the level of violence in the video game had essentially
no effect on the behavior of the female participants but the
males were significantly more aggressive after playing the
violent game compared to the nonviolent game.

The Bartholow and Anderson study is an example of
research that involves two independent variables in the
same study. The independent variables are:

1. Level of violence in the video game (high or low)

2. Gender (male or female)

The results of the study indicate that the effect of
one variable (violence) depends on another variable
(gender).

You should realize that it is quite common to have
two variables that interact in this way. For example, a
drug may have profound effects on some patients and
have no effect whatsoever on others. Some children
survive abusive environments and live normal, pro-
ductive lives, while others show serious difficulties.
To observe how one variable interacts with another, it
is necessary to study both variables simultaneously in
one study. However, the analysis of variance (ANOVA)
procedures introduced in Chapters 12 and 13 arc lim-
ited to evaluating mean differences produced by one
independent variable and are not appropriate for
mean differences involving two (or more) independent
variables.

Fortunately, ANOVA is a very flexible hypoth-
esis testing procedure and can be modified again to
evaluate the mean dilferences produced in a research
study with two (or more) independent variables. In
this chapter we introduce the two-factor ANOVA,
which tests the significance of each independent vari-
able acting alone as well as the interaction between
variables.

14.1

An Overview of the Two-Factor, Independent-Measures,

ANOVA: Main Effects and Interactions

LEARNING OBJECTIVES 1.

Describe the structure of a factorial research design, especially a two-factor

independent-measures design, using the terms factor and level.

2. Define a main effect and an interaction and identify the patterns of data that produce

main effects and interactions.

3. ldentify the three F-ratios for a two-factor ANVOA and explain how they are related

to each other.

In most research situations, the goal is to examine the relationship between two variables.
Typically, the research study attempts to isolate the two variables to eliminate or reduce the
influence of any outside variables that may distort the relationship being studied. A typical
experiment, for example, focuses on one independent variable (which is expected to influ-
ence behavior) and one dependent variable (which is a measure of the behavior). In real
life, however, variables rarely exist in isolation. That is, behavior usually is influenced by a
variety of different variables acting and interacting simultaneously. To examine these more
complex, real-life situations, researchers often design research studies that include more

448



SECTION 14.1 | An Overview of the Two-Factor, Independent-Measures, ANOVA

An independent variable
is a manipulated vari-
able in an experiment. A
quasi-independent vari-
able is not manipulated
but defines the groups
of scores in a nonexperi-
mental study.

TABLE 14.1

The structure of a
two-factor experiment
presented as a matrix. The
two factors are gender
and level of violence in

a video game, with two
levels for each factor.
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than one independent variable. Thus, researchers systematically change two (or more) vari-
ables and then observe how the changes influence another (dependent) variable.

In Chapters 12 and 13, we examined ANOVA for single-factor research designs—that
is, designs that included only one independent variable or only one quasi-independent vari-
able. When a research study involves more than one factor, it is called a factorial design. In
this chapter, we consider the simplest version of a factorial design. Specifically, we exam-
ine ANOVA as it applies to research studies with exactly two factors. In addition, we limit
our discussion to studies that use a separate sample for each treatment condition—that is,
independent-measures designs. Finally, we consider only research designs for which the
sample size (n) is the same for all treatment conditions. In the terminology of ANOVA, this
chapter examines two-factor, independent-measures, equal n designs.

We will use the Bartholow and Anderson video game violence study described in the
Chapter Preview to introduce the two-factor research design. Table 14.1 shows the struc-
ture of the study. Note that the study involves two separate factors: one factor is manipu-
lated by the researcher, changing from a violent to a nonviolent game, and the second
factor is gender, which varies from male to female. The two factors are used to create a
matrix with the different genders defining the rows and the different levels of violence
defining the columns. The resulting two-by-two matrix shows four different combina-
tions of the variables, producing four different conditions. Thus, the research study would
require four separate samples, one for each cell, or box, in the matrix. The dependent
variable for the study is the level of aggressive behavior for the participants in each of the
four conditions.

Factor B: Level of Violence

Nonviolent Violent

Scores for a group of Scores for a group of

Male males who play a nonvio- | males who play a violent
lent video game video game
Factor A: Gender
Scores for a group of Scores for a group of
Female | females who play a non- females who play a vio-

violent video game lent video game

The two-factor ANOVA tests for mean differences in research studies that are structured
like the gender-and-video-violence study in Table 14.1. For this example, the two-factor
ANOVA evaluates three separate sets of mean differences.

1. What happens to the level of aggressive behavior when violence is added or taken
away from the game?

2. Is there a difference in the aggressive behavior for male participants compared to
females?

3. Is aggressive behavior affected by specific combinations of game violence and
gender? (For example, a violent game may have a large effect on males but only a
small effect for females.)

Thus, the two-factor ANOVA allows us to examine three types of mean differences within
one analysis. In particular, we conduct three separate hypotheses tests for the same data,
with a separate F-ratio for each test. The three F-ratios have the same basic structure:

variance (differences) between treatments

~ variance (differences) expected if there is no treatment effect
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TABLE 14.2

DEFINITION

In each case, the numerator of the F-ratio measures the actual mean differences in the data,
and the denominator measures the differences that would be expected if there is no treatment
effect. As always, a large value for the F-ratio indicates that the sample mean differences are
greater than would be expected by chance alone, and therefore provides evidence of a treat-
ment effect. To determine whether the obtained F-ratios are significant, we need to compare
each F-ratio with the critical values found in the F-distribution table in Appendix B.

B Main Effects and Interactions

As noted in the previous section, a two-factor ANOVA actually involves three distinct
hypothesis tests. In this section, we examine these three tests in more detail.

Traditionally, the two independent variables in a two-factor experiment are identified
as factor A and factor B. For the study presented in Table 14.1, gender is factor A, and
the level of violence in the game is factor B. The goal of the study is to evaluate the mean
differences that may be produced by either of these factors acting independently or by the
two factors acting together.

B Main Effects

One purpose of the study is to determine whether differences in gender (factor A) result
in differences in behavior. To answer this question, we compare the mean score for all the
males with the mean for the females. Note that this process evaluates the mean difference
between the top row and the bottom row in Table 14.1.

To make this process more concrete, we present a set of hypothetical data in Table 14.2.
The table shows the mean score for each of the treatment conditions (cells) as well as
the overall mean for each column (each level of violence) and the overall mean for each
row (each gender group). These data indicate that the male participants (the top row) had
an overall mean of M = 8. This overall mean was obtained by computing the average of
the two means in the top row. In contrast, the female participants had an overall mean of
M = 4 (the mean for the bottom row). The difference between these means constitutes what
is called the main effect for gender, or the main effect for factor A.

Hypothetical data for an experiment examining the effect of violence in a video game on the
aggressive behavior of males and females.

Nonviolent Violent
Game Game
Males M=7 M=9 M=28
Females M=3 M=5 M=4
M=5 M="1

Similarly, the main effect for factor B (level of violence) is defined by the mean difference
between the columns of the matrix. For the data in Table 14.2, the two groups of participants
who played a nonviolent game had an overall mean score of M = 5. Participants who played
a violent game had an overall average score of M = 7. The difference between these means
constitutes the main effect for the level of game violence, or the main effect for factor B.

The mean differences among the levels of one factor are referred to as the main effect
of that factor. When the design of the research study is represented as a matrix with
one factor determining the rows and the second factor determining the columns, then
the mean differences among the rows describe the main effect of one factor, and the
mean differences among the columns describe the main effect for the second factor.
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The mean differences between columns or rows simply describe the main effects for a
two-factor study. As we have observed in earlier chapters, the existence of sample mean
differences does not necessarily imply that the differences are statistically significant. In
general, two samples are not expected to have exactly the same means. There will always
be small differences from one sample to another, and you should not automatically assume
that these differences are an indication of a systematic treatment effect. In the case of a
two-factor study, any main effects that are observed in the data must be evaluated with a
hypothesis test to determine whether they are statistically significant effects. Unless the
hypothesis test demonstrates that the main effects are significant, you must conclude that
the observed mean differences are simply the result of sampling error.

The evaluation of main effects accounts for two of the three hypothesis tests in a two-
factor ANOVA. We state hypotheses concerning the main effect of factor A and the main
effect of factor B and then calculate two separate F-ratios to evaluate the hypotheses.

For the example we are considering, factor A involves the comparison of two different
genders. The null hypothesis would state that there is no difference between the two levels;
that is, gender has no effect on aggressive behavior. In symbols,

Ho: p“Al = p"Az
The alternative hypothesis is that the two genders do produce different aggression scores:
H:p A #* ;LA2

To evaluate these hypotheses, we compute an F-ratio that compares the actual mean differ-
ences between the two genders vs. the amount of difference that would be expected without
any systematic difference.

e variance (differences) between the means for factor A
variance (differences) expected if there is no treatment effect

variance (differences) between the row means

~ variance (differences) expected if there is no treatment effect

Similarly, factor B involves the comparison of the two different violence conditions. The
null hypothesis states that there is no difference in the mean level of aggression between
the two conditions. In symbols,

Hy g = Wy,
As always, the alternative hypothesis states that the means are different:
H: Mg, #* K,

Again, the F-ratio compares the obtained mean difference between the two violence condi-
tions vs. the amount of difference that would be expected if there is no systematic treatment
effect.

variance (differences) between the means for factor B

~ variance (differences) expected if there is no treatment effect

variance (differences) between the column means

~ variance (differences) expected if there is no treatment effect
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DEFINITION

The data in Table 14.3
show the same pat-
tern of results that was
obtained in the Bar-
tholow and Anderson
research study.

Ml Interactions

In addition to evaluating the main effect of each factor individually, the two-factor ANOVA
allows you to evaluate other mean differences that may result from unique combinations
ol the two factors. For example, specific combinations of game violence and gender acting
together may have cffects that are different from the effects of gender or game violence acting
alone. Any “extra” mean differences that are not explained by the main effects are called an
interaction, or an interaction between factors. The real advantage of combining two factors
within the same study is the ability to examine the unique effects caused by an interaction.

An interaction between two factors occurs whenever the mean differences between
individual treatment conditions, or cells, are different from what would be predicted
from the overall main effects of the factors.

To make the concept of an interaction more concrete, we reexamine the data shown in
Table 14.2. For these data, there is no interaction; that is, there are no extra mean differ-
ences that are not explained by the main effects. For example, within each violence condi-
tion (each column of the matrix) the average level of aggression for the male participants is
4 points higher than the average for the female participants. This 4-point mean difference
is exactly what is predicted by the overall main effect for gender.

Now consider a different set of data shown in Table 14.3. These new data show exactly
the same main effects that existed in Table 14.2 (the column means and the row means have
not been changed). There is still a 4-point mean difference between the two rows (the main
effect for gender) and a 2-point mean difference between the two columns (the main effect for
violence). But now there is an interaction between the two factors. For example, for the male
participants (top row), there is a 4-point difference in the level of aggression after a violent game
vs. a nonviolent game. This 4-point difference cannot be explained by the 2-point main effect
for the violence factor. Also, for the female participants (bottom row), the data show no differ-
ence between the two game violence conditions. Again, the zero difference is not what would
be expected based on the 2-point main elfect [or the game violence factor. Mean diflerences that
are not explained by the main effects are an indication of an interaction between the two factors.

TABLE 14.3

Hypothetical data for an experiment examining the effect of violence in a video game on the
aggressive behavior of males and females. The data show the same main effects as the values in
Table 14.2 but the individual treatment means have been modified to create an interaction.

Nonviolent Violent

Game Game
Male M=6 M=10 | =38
Female M=4 M= 4 | M=4
M=5 M= 17

To evaluate the interaction, the two-factor ANOVA first identifies mean differences that
are not explained by the main effects. The extra mean differences are then evaluated by an
F-ratio with the following structure:

variance (mean differences) not explained by main effects

variance (differences) expected if there is no treatment effects
The null hypothesis for this F-ratio simply states that there is no interaction:

H: There is no interaction between factors A and B. The mean differences between
treatment conditions are explained by the main effects of the two factors.
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DEFINITION

The alternative hypothesis is that there is an interaction between the two factors:

H: There is an interaction between factors. The mean differences between treat-
ment conditions are not what would be predicted from the overall main effects
of the two factors.

B More about Interactions

In the previous section, we introduced the concept of an interaction as the unique effect
produced by two factors working together. This section presents two alternative definitions
of an interaction. These alternatives are intended to help you understand the concept of an
interaction and to help you identify an interaction when you encounter one in a set of data.
You should realize that the new definitions are equivalent to the original and simply present
slightly different perspectives on the same concept.

The first new perspective on the concept of an interaction focuses on the notion of
independence for the two factors. More specifically, if the two factors are independent,
so that one factor does not influence the effect of the other, then there is no interac-
tion. On the other hand, when the two factors are not independent, so that the effect of
one factor depends on the other, then there is an interaction. The notion of dependence
between factors is consistent with our earlier discussion of interactions. If one fac-
tor influences the effect of the other, then unique combinations of the factors produce
unique effects.

When the effect of one factor depends on the different levels of a second factor, then
there is an interaction between the factors.

This definition of an interaction should be familiar in the context of a “drug interaction.”
Your doctor and pharmacist are always concerned that the effect of one medication may be
altered or distorted by a second medication that is being taken at the same time. Thus, the
elfect of one drug (factor A) depends on a second drug (lactor B), and you have an interac-
tion between the two drugs.

Returning to Table 14.2, you will notice that the size of the game-violence effect (first
column vs. second column) does not depend on the gender of the participants. For these
data, adding violence produces the same 2-point increase in aggressive behavior for both
groups of participants. Thus, the effect of game violence does not depend on gender and
there is no interaction. Now consider the data in Table 14.3. This time, the effect of adding
violence depends on the gender of the participants. For example, there is a 4-point increase
in aggressive behavior for the males but adding violence has no effect on aggression for the
females. Thus, the effect of game violence depends on gender, which means that there is an
interaction between the two factors.

The second alternative definition of an interaction is obtained when the results of a
two-factor study are presented in a graph. In this case, the concept of an interaction can
be defined in terms of the pattern displayed in the graph. Figure 14.1 shows the two sets
of data we have been considering. The original data from Table 14.2, where there is no
interaction, are presented in Figure 14.1(a). To construct this figure, we selected one
of the factors to be displayed on the horizontal axis; in this case, the different levels of
game violence are displayed. The dependent variable, the level of aggressive behavior,
is shown on the vertical axis. Note that the figure actually contains two separate graphs:
The top line shows the relationship between game violence and aggression for the males,
and the bottom line shows the relationship for the females. In general, the picture in
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FIGURE 14.1

(a) Graph showing the treatment means for Table 14.2, for which there is no interaction. (b) Graph for Table 14.3, for
which there is an interaction.

DEFINITION

the graph matches the structure of the data matrix; the columns of the matrix appecar as
values along the X-axis, and the rows of the matrix appear as separate lines in the graph
(see Box 14.1).

For the original set of data, Figure 14.1(a), note that the two lines are parallel; that is,
the distance between lines is constant. In this case, the distance between lines reflects the
2-point difference in the mean aggression scores for males and females, and this 2-point
difference is the same for both game violence conditions.

Now look at a graph that is obtained when there is an interaction in the data. Figure
14.1(b) shows the data from Table 14.3. This time, note that the lines in the graph are not
parallel. The distance between the lines changes as you scan from left to right. For these
data, the distance between the lines corresponds to the gender effect—that is, the mean
difference in aggression for male vs. female participants. The fact that this difference
depends on the level of game violence is an indication of an interaction between the two
factors.

When the results of a two-factor study are presented in a graph, the existence of
nonparallel lines (lines that cross or converge) indicates an interaction between the
two factors.

For many students, the concept of an interaction is easiest to understand using the per-
spective of interdependency; that is, an interaction exists when the effects of one variable
depend on another factor. However, the easiest way to identify an interaction within a set
of data is to draw a graph showing the treatment means. The presence of nonparallel lines
is an easy way to spot an interaction.
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BOX14.1 Graphing Results from a Two-Factor Design

One of the best ways to get a quick overview of the
results from a two-factor study is to present the data
in a graph. Because the graph must display the means
obtained for two independent variables (two factors),
constructing the graph can be a bit more complicated
than constructing the single-factor graphs we pre-
sented in Chapter 3 (pp. 90-91).

Figure 14.2 shows two possible graphs presenting
the results from a two-factor study with 2 levels of
factor A and 3 levels of factor B. With a 2 X 3 design,
there are a total of 6 different treatment means that
are shown in the following matrix.

Factor B
B1 B2 B3

=10 M=40 | M =20
=30 M=50 | M=30

A, M
Factor A
A M

In the two graphs, note that values for the depen-
dent variable (the treatment means) are shown on the
vertical axis. Also note that the levels for one factor
(we selected factor B) are displayed on the horizon-
tal axis. Either factor can be used, but it is better to
select one for which the different levels are measured
on an interval or ratio scale. The reason for this sug-
gestion is that an interval or ratio scale will permit
you to construct a line graph as in Figure 14.2(a).
If neither of the two factors is measured on an

interval or ratio scale, you should use a bar graph as
in Figure 14.2(b).

Line graphs: In Figure 14.2(a), we have assumed
that factor B is an interval or a ratio variable, and the
three levels for this factor are listed on the horizontal
axis. Directly above the B, value on the horizontal
axis, we have placed two dots corresponding to
the two means in the B, column of the data matrix.
Similarly, we have placed two dots above B, and
another two dots above B,. Finally, we have drawn
a line connecting the three dots corresponding to
level 1 of factor A (the three means in the top row of
the data matrix). We have also drawn a second line
that connects the three dots corresponding to level 2
of factor A. These lines are labeled A and A, in the
figure.

Bar graphs: Figure 14.2(b) also shows the three
levels of factor B displayed on the horizontal axis.
This time, however, we assume that factor B is mea-
sured on a nominal or ordinal scale, and the result
is a bar graph. Directly above the B, value, we have
drawn two bars so that the heights of the bars corre-
spond to the two means in the B, column of the data
matrix. Similarly, we have drawn two bars above B,
and two more bars above B3. Finally, the three bars
corresponding to level 1 of factor A (the top row of
the data matrix) are all colored (or shaded) to dif-
ferentiate them from the three bars for level 2 of
factor A.

()
50
[0)
5 40
@ 30 Ay
B 20 A
>
10

By By By
Levels of factor B

FIGURE 14.2

®) Al
50 A, Hi
[0)
: 40
% 30
C
9 20
=
10
By B, B3

Levels of factor B

Two graphs showing the results from a two-factor study. A line graph is shown in (a) and a bar graph (b).

455




456

The A X B interaction
typically is called “A

by B” interaction. If
there is an interaction
between video game vio-
lence and gender, it may
be called the “violence
by gender” interaction.

TABLE 14.4

Three sets of data showing
different combinations of
main effects and interac-
tion for a two-factor study.
(The numerical value in
cach cell of the matrices
represents the mean value
obtained for the sample in
that treatment condition.)

CHAPTER 14 | Two-Factor Analysis of Variance (Independent Measures)

H Independence of Main Effects and Interactions

The two-factor ANOVA consists of three hypothesis tests, each evaluating specific mean
differences: the A effect, the B effect, and the A X B interaction. As we have noted, these
are three separate tests, but you should also realize that the three tests are independent.
That is, the outcome for any one of the three tests is totally unrelated to the outcome for
either of the other two. Thus, it is possible for data from a two-factor study to display any
possible combination of significant and/or not significant main effects and interactions.
The data sets in Table 14.4 show several possibilities.

Table 14.4(a) shows data with mean differences between levels of factor A (an A
effect) but no mean differences for factor B and no interaction. To identify the A effect,
notice that the overall mean for A, (the top row) is 10 points higher than the overall
mean for A, (the bottom row). This 10-point difference is the main effect for factor A.
To evaluate the B effect, notice that both columns have exactly the same overall mean,
indicating no difference between levels of factor B; hence, there is no B effect. Finally,
the absence of an interaction is indicated by the fact that the overall A effect (the 10-point
difference) is constant within each column; that is, the A effect does not depend on the
levels of factor B. (Alternatively, the data indicate that the overall B effect is constant
within each row.)

(a) Data showing a main effect for factor A but no B effect and no interaction

B1 BZ
A, 20 20 A mean = 20
10-point difference
A, 10 10 A, mean = 10
B1 mean B2 mean
=15 =15
D

No difference

(b) Data showing main effects for both factor A and factor B but no interaction

B1 BZ
A, 10 30 A mean = 20
10-point difference
A, 20 40 A, mean = 30
B, mean B, mean
=15 =35
<«

20-point difference

(c) Data showing no main effect for either factor but an interaction

B1 BZ
A, 10 20 A, mean = 15
No difference
A, 20 10 A, mean = 15

B, mean = 15
B —

B, mean = 15

No difference
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LEARNING CHECK

ANSWERS

Table 14.4(b) shows data with an A effect and a B effect but no interaction. For these
data, the A effect is indicated by the 10-point mean difference between rows, and the B
effect is indicated by the 20-point mean difference between columns. The fact that the
10-point A effect is constant within each column indicates no interaction.

Finally, Table 14.4(c) shows data that display an interaction but no main effect for factor
A or for factor B. For these data, there is no mean difference between rows (no A effect)
and no mean difference between columns (no B effect). However, within each row (or
within each column), there are mean differences. The “extra” mean differences within the
rows and columns cannot be explained by the overall main effects and therefore indicate
an interaction.

The following example is an opportunity to test your understanding of main effects and
interactions.

The following matrix represents the outcome of a two-factor experiment. Describe the
main effect for factor A and the main effect for factor B. Does there appear to be an interac-
tion between the two factors?

Experiment |
B B

1 2

A, M=10 | M =20
A, M=30 | M=40

You should conclude that there is a main effect for factor A (the scores in A, average
20 points higher than in A ) and there is a main effect for factor B (the scores in B, average
10 points higher than in B|) but there is no interaction; there is a constant 20-point differ-
ence between A, and A, that does not depend on the levels of factor B. [

1. How many separate samples would be needed for a two-factor, independent-
measures research study with 2 levels of factor A and 3 levels of factor B?

a. 2
b. 3
c. 5
d. 6

2. In a two-factor experiment with 2 levels of factor A and 2 levels of factor B, three of
the treatment means are essentially identical and one is substantially different from
the others. What result(s) would be produced by this pattern of treatment means?

a. a main effect for factor A

b. a main effect for factor B

C. an interaction between A and B

d. The pattern would produce main effects for both A and B, and an interaction.

3. In a two-factor ANOVA, what is the implication of a significant A X B interaction?
a. At least one of the main effects must also be significant.
b. Both of the main effects must also be significant.
c. Neither of the two main effects can be significant.
d. The significance of the interaction has no implications for the main effects.

1. D, 2.D, 3.D
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14.2 | An Example of the Two-Factor ANOVA and Effect Size

LEARNING OBJECTIVES

4. Describe the two-stage structure of a two-factor ANOVA and explain what happens
in each stage.

5. Compute the SS, df, and MS values needed for a two-factor ANOVA and explain the
relationships among them.

6. Conduct a two-factor ANOVA including measures of effect size for both main effects
and the interaction.

The two-factor ANOVA is composed of three distinct hypothesis tests:

1. The main effect of factor A (often called the A-effect). Assuming that factor A is
used to define the rows of the matrix, the main effect of factor A evaluates the mean
differences between rows.

2. The main effect of factor B (called the B-effect). Assuming that factor B is used to
define the columns of the matrix, the main effect of factor B evaluates the mean
differences between columns.

3. The interaction (called the A X B interaction). The interaction evaluates mean dif-
ferences between treatment conditions that are not predicted from the overall main
effects from factor A or factor B.

For each of these three tests, we are looking for mean differences between treatments that are
larger than would be expected if there are no treatment effects. In each case, the significance of
the treatment effect is evaluated by an F-ratio. All three F-ratios have the same basic structure:

variance (mean differences) between treatments
F= (14.1)

~ variance (mean differences) expected if there are no treatment effects

The general structure of the two-factor ANOVA is shown in Figure 14.3. Note that the over-
all analysis is divided into two stages. In the first stage, the total variability is separated into
two components: between-treatments variability and within-treatments variability. This first
stage is identical to the single-factor ANOVA introduced in Chapter 12 with each cell in the
two-factor matrix viewed as a separate treatment condition. The within-treatments variability

FIGURE 14.3
Structure of the analysis
for a two-factor ANOVA.

4 Total
variance
Stage 1 < / \
\_ Between-freatments Within-freatments
4 varionce variance
Stage 2 <
Factor A Factor B Interaction
variance variance variance




Remember that in
ANOVA a variance is
called a mean square,
or MS.

TABLE 14.5

Data for a two-factor
study comparing two
levels of time control
(self-regulated or fixed by
the researchers) and two
levels of text presenta-
tion (paper and computer
screen). The dependent
variable is performance
on a quiz covering the
text that was presented.
The study involves four
treatment conditions with
n = 5 participants in each
treatment.
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that is obtained in stage 1 of the analysis is used as the denominator for the F-ratios. As we
noted in Chapter 12, within each treatment, all of the participants are treated exactly the same.
Thus, any differences that exist within the treatments cannot be caused by treatment effects.
As a result, the within-treatments variability provides a measure of the differences that exist
when there are no systematic treatment effects influencing the scores (see Equation 14.1).
The between-treatments variability obtained in stage 1 of the analysis combines all the
mean differences produced by factor A, factor B, and the interaction. The purpose of the second
stage is to partition the differences into three separate components: differences attributed to
factor A, differences attributed to factor B, and any remaining mean differences that define the
interaction. These three components form the numerators for the three F-ratios in the analysis.
The goal of this analysis is to compute the variance values needed for the three F-ratios.
We need three between-treatments variances (one for factor A, one for factor B, and one for
the interaction), and we need a within-treatments variance. Each of these variances (or mean
squares) is determined by a sum of squares value (SS) and a degree of freedom value (df):

SS
mean square = MS = —

daf

To demonstrate the two-factor ANOVA, we will use a research study based on previous
work by Ackerman and Goldsmith (2011). Their study compared learning performance by
students who studied text either from printed pages or from a computer screen. The results
from the study indicate that students do much better studying from printed pages il their
study time is sclf-regulated. However, when the researchers fixed the time spent studying,
there was no difference between the two conditions. Apparently, students are less accurate
predicting their learning performance or have trouble regulating study time when work-
ing with a computer screen compared to working with paper. Table 14.5 shows data from
a two-factor study replicating the Ackerman and Goldsmith experiment. The two factors
are mode of presentation (paper or computer screen) and time control (self-regulated or
fixed). A separate group of n = 5 students was tested in each of the four conditions. The
dependent variable is student performance on a quiz covering the text that was studied.

Factor B: Text Presentation Mode

Computer
Paper Screen
11 4
8 4
9 8
Self-regulated 12 i T.= 70
M= 9 M= 5
T =145 T=25
SS =10 SS =12 V= 20
Factor A G =155
Time Control 10 10 2X? = 1303
7 6
10 10
6 10 = 85
Fixed 7 9 o
M= 8 M= 9
T =40 T =145
SS =14 S§ =12
T =85 T =70

I
<A
I

e,
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The data are displayed in a matrix with the two levels of time control (factor A) making
up the rows and the two levels of presentation mode (factor B) making up the columns.
Note that the data matrix has a total of four cells or treatment conditions with a separate
sample of n = 5 participants in each condition. Most of the notation should be familiar
from the single-factor ANOVA presented in Chapter 12. Specifically, the treatment totals
are identified by T values, the total number of scores in the entire study is N = 20, and the
grand total (sum) of all 20 scores is G = 155. In addition to these familiar values, we have
included the totals for each row and for each column in the matrix. The goal of the ANOVA
is to determine whether the mean differences observed in the data are significantly greater
than would be expected if there were no treatment effects.

Hl Stage 1 of the Two-Factor Analysis

The first stage of the two-factor analysis separates the total variability into two compo-
nents: between-treatments and within-treatments. The formulas for this stage are identical
to the formulas used in the single-factor ANOVA in Chapter 12 with the provision that each
cell in the two-factor matrix is treated as a separate treatment condition. The formulas and
the calculations for the data in Table 14.5 are as follows:

Total Variability

G2
S8 = X — N (14.2)
For these data,
1552
S8, = 1303 — 0
= 1303 -1201.25
= 101.75

This SS value measures the variability for all N = 20 scores and has degrees of freedom
given by

dfpg =N—1 (14.3)
For the data in Table 14.5, df‘ = 19.

otal

Within-Treatments Variability To compute the variance within treatments, we first
compute SS and df = n — 1 for each of the individual treatment conditions. Then the
within-treatments SS is defined as

SSwilhin treatments = 2SScach treatment (144)
And the within-treatments df is defined as
f within treatments = E feach (reatment (14'5)

For the four treatment conditions in Table 14.5,

=10+ 12+ 14+ 12=48

within treatments

—4+4+4+4=16

f within treatments

Between-Treatments Variability Because the two components in stage 1 must add up
to the total, the easiest way to find SS is by subtraction.

between treatments

=S85 —S§ (14.6)

between treatments total within
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For the data in Table 14.5, we obtain

= 101.75-48 = 53.75

between treatments

However, you can also use the computational formula to calculate SS, - directly.
etween treatments
G
SShelween treatments = E; - W (14'7)

For the data in Table 14.5, there are four treatments (four 7 values), each with n = 5 scores,
and the between-treatments SS is
S, 452 257 40> 45* 1552
between treatments — —— + —— + — + —— —
5 5 5 5 20
=405 + 125 + 320 + 405 —1201.25

= 53.75

The between-treatments df value is determined by the number of treatments (or the number
of T values) minus one. For a two-factor study, the number of treatments is equal to the
number of cells in the matrix. Thus,

= number of cells — 1 (14.8)

j between treatments

For these data’ dfl;clwccn (reatments =3.
This completes the first stage of the analysis. Note that the two components add to equal
the total for both SS values and df values.
SS. + SS =SS

between (reatments within treatments total

53.75 + 48 = 101.75

f between treatments f within treatments 7 total

3+16=19

B Stage 2 of the Two-Factor Analysis

The second stage of the analysis determines the numerators for the three F-ratios. Specifi-
cally, this stage determines the between-treatments variance for factor A, factor B, and the
interaction.

1. Factor A The main effect for factor A evaluates the mean differences between the
levels of factor A. For this example, factor A defines the rows of the matrix, so we
are evaluating the mean differences between rows. To compute the SS for factor A,
we calculate a between-treatment SS using the row totals exactly the same as we

computed SS, .o Using the treatment totals (T values) earlier. For factor A,
the row totals are 70 and 85, and each total was obtained by adding 10 scores.
Therelore,
T3 G?
SS, = S — — (14.9)
’ nROW N

For our data,
702 852 1557
= — 4+ — —
SSA 10 10 20
=490 + 722.5-1201.25
=11.25
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Factor A involves two treatments (or two rows), easy and difficult, so the df value is

df, = number of rows — 1 (14.10)
=2-1
=1

2. Factor B The calculations for factor B follow exactly the same pattern that was
used for factor A, except for substituting columns in place of rows. The main effect
for factor B evaluates the mean differences between the levels of factor B, which
define the columns of the matrix.

T2 2
g5 =5 oG (14.1)

B
nCOL N

For our data, the column totals are 85 and 70, and each total was obtained by adding
10 scores. Thus,

85>  70° 155
S, = -
5710 010 20

= 722.5 + 490 - 1201.25
11.25

df, = number of columns — 1 (14.12)
=2-1
=1
3. The A X B Interaction The A X B interaction is defined as the “extra” mean

differences not accounted for by the main effects of the two factors. We use this
definition to find the SS and df values for the interaction by simple subtraction.
Specifically, the between-treatments variability is partitioned into three parts: the
A effect, the B effect, and the interaction (see Figure 14.3). We have already com-

puted the SS and df values for A and B, so we can find the interaction values by
subtracting to find out how much is left. Thus,

SS,., =SS -85, -SS, (14.13)

AxB between treatments
For our data,
S8,y =53.75-11.25-11.25
=31.25
Similarly,
U S— (14.14)
=3-1-1
=1
An easy to remember alternative formula for df, is
df,, ., = df, X df, (14.15)
=1X1=1
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B Mean Squares and F-Ratios for the Two-Factor ANOVA

The two-factor ANOVA consists of three separate hypothesis tests with three separate
F-ratios. The denominator for each F-ratio is intended to measure the variance (differ-
ences) that would be expected if there are no treatment effects. As we saw in Chapter 12,
the within-treatments variance is the appropriate denominator for an independent-measures
design (see p. 373). The within-treatments variance is called a mean square, or MS, and is
computed as follows:

_ within treatments

within treatments f
within treatments

For the data in Table 14.5,

4
48

within treatments 16 e

MS

This value forms the denominator for all three F-ratios.

The numerators of the three F-ratios all measured variance or differences between treat-
ments: differences between levels of factor A, differences between levels of factor B, and
extra differences that are attributed to the A X B interaction. These three variances are
computed as follows:

SS SS SS

A B AXB

MS,=—* MS,=—= MS, =
A de B de AXB deXB

For the data in Table 14.4, the three MS values are

11.25 11.25 31.25
MS, = —===1125 MS,=—= =1125 MS, == "=3125

Finally, the three F-ratios are

oo M _mas
4 MSwilhin (reatments 3 B
b MS 125
i MSWithm trcatments 3 '
MS,, 31.25
Fo,= =— -4

within treatments

To determine the significance of each F-ratio, we must consult the F distribution table
using the df values for each of the individual F-ratios. For this example, all three F-ratios
have df = 1 for the numerator and df = 16 [or the denominator. Checking the table with
df = 1, 16, we find a critical value of 4.49 for « = .05 and a critical value of 8.53 for
a = .01. For both main effects, we obtained FF = 3.75, so neither of the main effects is
significant. For the interaction, we obtained F = 10.42, which exceeds both of the critical
values, so we conclude that there is a significant interaction between the two factors. That
is, the difference between the two modes of presentation depends on how studying time is
controlled. ]

Table 14.6 is a summary table for the complete two-factor ANOVA [rom Example 14.2.
Although these tables are no longer commonly used in research reports, they provide a
concise format for displaying all of the elements of the analysis.
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TABLE 14.6

A summary table for the
two-factor ANOVA for the
data from Example 14.2.

Source SS df MS F
Between treatments 53.75 3
Factor A (time control) 11.25 1 11.25 F(1,16) = 3.75
Factor B (paper/screen) 11.25 1 11.25 F(1,16) = 3.75
AXB 31.25 1 31.25 F(1, 16) = 10.42
Within treatments 48 16 3
Total 101.75 19

The following example is an opportunity to test your understanding of the calculations
required for a two-factor ANOVA.

The following data summarize the results from a two-factor independent-measures
experiment:

Factor B
B1 BZ B3
n=10 n=10 n =10
T= 0 T=10 T =20
Factor A SS =30 SS =40 SS =50
n=10 n=10 n=10
T =40 T =30 T =20
SS =60 SS =50 SS =40

Calculate the total for each level of factor A and compute SS for factor A, then calculate the
totals for factor B, and compute SS for this factor. You should find that the totals for factor
A are 30 and 90, and SS L= 60. All three totals for factor B are equal to 40. Because they
are all the same, there is no variability, and SS, = 0. |

B Measuring Effect Size for the Two-Factor ANOVA

The general technique for measuring effect size with an ANOVA is to compute a value for 72,
the percentage of variance that is explained by the treatment effects. For a two-factor
ANOVA, we compute three separate values for eta squared: one measuring how much of
the variance is explained by the main effect for factor A, one for factor B, and a third for the
interaction. As we did with the repeated-measures ANOVA (p. 427) we remove any vari-
ability that can be explained by other sources before we calculate the percentage for each of
the three specific treatment effects. Thus, for example, before we compute the m? for factor
A, we remove the variability that is explained by factor B and the variability explained by
the interaction. The resulting equation is
SS

A

SS.. —SS,—SS,.,

total

for factor A, > = (14.16)

Note that the denominator of Equation 14.15 consists of the variability that is explained
by factor A and the other unexplained variability. Thus, an cquivalent version of the
equation is,
SS,
8§, + 88

for factor A, n? = (14.17)

within treatments



