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In this chapter, we examine a very flexible and widely used test of sig-
nificance called the analysis of variance (often abbreviated as ANOVA).
This test is designed to be used with interval-ratio-level dependent variables and
is a powerful tool for analyzing the most sophisticated and precise measurements
you are likely to encounter.

It is perhaps easiest to think of ANOVA as an extension of the test for the
significance of the difference between two sample means, which was presented
in Chapter 8. Those tests can be used only in situations in which our independent
variable has exactly two categories (e.g., Protestants and Catholics). On the other
hand, the analysis of variance is appropriate for independent variables with more
than two categories (e.g., Protestants, Catholics, Jews, people with no religious
affiliation, and so forth).

To illustrate, suppose we were interested in analyzing support for capi-
tal punishment. Why does opinion on this issue vary from person to person?
Could there be a relationship between religion (the independent variable) and
support for capital punishment (the dependent variable)? The death penalty has
an obvious moral dimension and may well be affected by a person’s religious
background.

Suppose we administered a scale that measures support for capital punishment at
the interval-ratio level to a randomly selected sample that includes Protestants, Catho-
lics, Jews, people with no religious affiliation (“Nones”), and people from other reli-
gions (“Others”). We have five categories of subjects, and we want to see if opinion
varies significantly by the category (religion) into which a person is classified. We will
also want to raise other issues: Which religion shows the most support for capital pun-
ishment? Are Protestants significantly more supportive than Catholics or Jews? How do
people with no religious affiliation compare to other people? The analysis of variance
provides a very useful statistical context in which the questions can be addressed.

The Logic of the Analysis of Variance

For ANOVA, the null hypothesis is that the populations from which the sam-
ples are drawn have the same score on the dependent variable. As applied to our
problem, the null hypothesis could be phrased as “People from different religious
affiliations do not vary in their support for the death penalty” or, symbolically, as
Mmy = Mo = 3 = ... u (Note that this is an extended version of the null hypoth-
esis for the two-sample 7 test.) As usual, the researcher will normally want to reject
the null hypothesis and, in this case, show that support is related to religion.

If the null hypothesis of “no difference” in the populations is true, then any
means calculated from randomly selected samples should be roughly equal in
value. The average score for the Protestant sample should be about the same as
the average score for the Catholics, the Jews, and so forth. Note that the averages
are unlikely to be exactly the same value even if the null hypothesis really is true
because we will always encounter some error or chance fluctuations in the meas-
urement process. We are not asking: “Are there differences between the samples
(or, in our example, the religions)?” Rather, we are asking: “Are the differences
between the samples large enough to reject the null hypothesis and justify the
conclusion that the populations are different?”
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TABLE 9.1

TABLE 9.2

Support for Capital Punishment by Religion (Fictitious Data)

Protestant Catholic Jew None Other
Mean = 10.3 11.0 10.1 9.9 10.5
Standard deviation = 2.4 1.9 2.2 1.7 2.0
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Support for Capital Punishment by Religion (Fictitious Data)

Protestant Catholic Jew None Other
Mean = 14.7 11.3 5.7 8.3 71
Standard deviation = 0.9 0.8 1.0 1.1 0.7
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Now consider what kinds of outcomes we might encounter if we actually ad-
ministered a “Support for Capital Punishment Scale” and organized the scores by
religion. Of the infinite variety of possibilities, let us focus on the two extreme out-
comes presented in Tables 9.1 and 9.2. In the first set of hypothetical results (Table 9.1),
we see that the means and standard deviations of the groups are quite similar. The
average scores are about the same, and all five groups exhibit about the same dis-
persion. These results are consistent with the null hypothesis of no difference between
the populations on support for capital punishment. Neither the average score nor
the dispersion of the scores varies in any important way by religion.

Now consider another set of fictitious results, as displayed in Table 9.2.
Here, we see substantial differences in average score, with Jews showing the low-
est support and Protestants showing the highest. Also, the standard deviations
are low and similar from category to category, indicating that there is not much
variation within the religions. Table 9.2 shows marked differences between reli-
gions combined with homogeneity (or low standard deviations) within religions.
In other words, the religions are different from each other and there is not much
variation within each religion. These results would contradict the null hypothesis
and support the notion that support for the death penalty does vary by religion

ANOVA proceeds by making these kinds of comparisons. The test compares the
amount of variation between categories (for example, from Protestants to Catholics to
Jews to “Nones” to “Others”) with the amount of variation within categories (among
Protestants, among Catholics, and so forth). The greater the difference between cat-
egories (as measured by the means) relative to the differences within categories (as
measured by the standard deviations), the more likely that the null hypothesis of “no
difference” is false and can be rejected. If support for capital punishment truly varies
by religion, then the sample mean for each religion should be quite different from the
others and dispersion within the categories should be relatively low.

The Computation of Anova

Even though we have been thinking of ANOVA as a test for the significance
of the difference between sample means, the computational routine actu-
ally involves developing two separate estimates of the population variance o
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(hence, the name analysis of variance). Recall from Chapter 4 that the variance is
the standard deviation squared. One estimate of the population variance is based
on the amount of variation within each of the categories of the independent vari-
able and the other is based on the amount of variation between categories.

Before constructing these estimates, we need to introduce some new con-
cepts and statistics. The first new concept is the total variation of the scores,
which is measured by a quantity called the total sum of squares, or SST

SST = SX? — NX>

To solve this formula, first find the sum of the squared scores (in other words,
square each score and then add up the squared scores). Next, square the mean of
all scores, multiply that value by the total number of cases in the sample (N), and
the subtract that quantity from the sum of the squared scores.

Formula 9.1 may seem vaguely familiar. A similar expression—2.(X; — X)*—
appears in the formula for the standard deviation and variance (see Chapter 4). All
three statistics incorporate information about the variation of the scores (or, in the
case of SS7, the squared scores) around the mean (or, in the case of SS7, the square
of the mean multiplied by N). In other words, all three statistics are measures of the
variation, or dispersion, of the scores.

To construct the two separate estimates of the population variance, the total
variation (SS7) is divided into two components. One component reflects the pat-
tern of variation within each of the categories and is called the sum of squares
within (SSW). In our example problem, SSW would measure the amount of vari-
ety in support for the death penalty within each of the religions.

The other component is based on the variation between categories and is called the
sum of squares between (SSB). Again using our example to illustrate, SSB measures
how different people in each religion are from each other in their support for capital
punishment. SSW and SSB are components of SS7,, as reflected in Formula 9.2:

SST = §SB + SSW

Let us with the computation of SSB—our measure of the variation between cat-
egories. We use the category means as summary statistics to determine the size of the
difference from category to category. In other words, we compare the average support
for the death penalty for each religion with the average support for all religions com-
bined to determine SSB. The formula for the sum of squares between (SSB) is:

SSB = SN,(X, — X)?

where:
SSB = the sum of squares between the categories
N, = the number of cases in a category

X, = the mean of a category

To find SSB, subtract the overall mean of all scores (X) from each category mean
(X,), square the difference, multiply by the number of cases in the category, and
then add the results across all the categories.
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FORMULA 9.4

FORMULA 9.5

FORMULA 9.6

FORMULA 9.7

FORMULA 9.8

FORMULA 9.9

The second estimate of the population variance (SSW) is based on the
amount of variation within the categories. Formula 9.2 shows that the total sum
of squares (SS7) is equal to the addition of SSW and SSB. This relationship pro-
vides us with an easy method for finding SSW by simple subtraction. Formula 9.4
rearranges the symbols in Formula 9.2.

SSW = SST — SSB

Let us pause for a second to remember what we are after here. If the null hy-
pothesis is true, then there should not be much variation from category to category
(see Table 9.1) and SSW and SSB should be roughly equal. If the null hypothesis
is not true, there will be large differences between categories (see Table 9.2) rela-
tive to the differences within categories and SSB should be much larger than SSW.
SSB will increase as the differences between category means increases, especially
when there is not much variation within the categories (SSW). The larger SSB is
compared to SSW, the more likely we are to reject the null hypothesis.

The next step in the computational routine is to construct the estimates of the
population variance. To do this, we divide each sum of squares by its respective
degrees of freedom. To find the degrees of freedom associated with SSW, subtract
the number of categories (k) from the number of cases (N). The degrees of free-
dom associated with SSB are the number of categories minus 1. In summary:

dfw =N — k
where:
dfw = degrees of freedom associated with SSW
N = total number of cases
k = number of categories
dfb =k — 1
where:

dfb = degrees of freedom associated with SSB
k = number of categories

The actual estimates of the population variance—called the mean square
estimates—are calculated by dividing each sum of squares by its respective
degrees of freedom:

SSW

Mean square within = ——
dfw

SSB

Mean square between = ——
dfb

The test statistic calculated in step 4 of the five-step model is called the F' ratio,
and its value is determined by this formula:

Mean square between

Mean square within
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To compute ANOVA, we will use Formulas 9.1, 9.3, and 9.4 to find SST, SSB, and SSW. Then, we will calculate
the degrees of freedom, mean square estimates of the population variance, and the obtained F ratio. | strongly
recommend you use a computing table like Table 9.3 to organize the computations.

Step Operation
To Find SST by Using Formula 9.1

1. Find 2X? by squaring each score and adding all the squared scores together.
2. Find NX? by squaring the value of the mean and then multiplying by N.
3. Subtract the quantity you found in step 2 from the quantity you found in step 1.
To Find SSB by Using Formula 9.3
1. Subtract the mean of all scores (X) from the mean of each category (X,) and then square each
difference.
2. Multiply each of the squared differences you found in step 1 by the number of cases in the category N,.
3. Add the quantities you found in step 2.

To Find SSW by Using Formula 9.4
1. Subtract the value of SSB from the value of SST.

To Calculate Degrees of Freedom
1. For dfw, subtract the number of categories (k) from the number of cases (N).
2. For dfb, subtract 1 from the number of categories (k).
To Construct the Two Mean Square Estimates of the Population Variance
1. To find the MSW estimate, divide SSW by dfw.
2. To find the MSB estimate, divide SSB by drb.
To Find the Obtained F Ratio
1. Divide the MSB estimate by the MSW estimate.
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As you can see, the value of the F ratio will be a function of the amount of varia-
tion between categories (based on SSB) to the amount of variation within the cat-
egories (based on SSW). The greater the variation between the categories relative
to the variation within, the higher the value of the F ratio and the more likely we
will reject the null hypothesis.

An Example of Computing the Analysis of Variance Assume we have ad-
ministered our Support for Capital Punishment Scale to a sample of 20 individuals
who are equally divided into the five religions. (Obviously, this sample is much too
small for any serious research and is intended solely for purposes of illustration.)
All scores are reported in Table 9.3, along with the other quantities needed to com-
plete the computations. The scores (X)) are listed for each of the five religions, and
a column has been added for the squared scores (Xf). The sums of X; and Xl.z are
reported at the bottom of each column. The category means (X, ) show that the four
Protestants averaged 12.5 on the Support for Capital Punishment Scale, the four
Catholics averaged 21.0, and so forth. Finally, the overall mean (sometimes called
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the grand mean) is reported in the bottom row of the table. This shows that all 20
respondents averaged 16.6 on the scale.
To organize our computations, we will follow the routine summarized in the
“One Step at a Time” box. We begin by finding SS7 by means of Formula 9.1:
SST = 3X* — NX*
SST = (666 + 1898 + 1,078 + 1794 + 712) — (20)(16.6)?
SST = (6,148) — (20)(275.56)
SST = 6,148 — 5,511.2
SST = 636.80
The sum of squares between (SSB) is found by means of Formula 9.3:
SSB = SN,(X, — X)?
SSB = 4(12.5 — 16.6)* + 4(21.0 — 16.6)?
+ 4(16.0 — 16.6)* + 4(20.5 — 16.6)> + 4(13.0 — 16.6)?
SSB = 67.24 + 7744 + 1.44 + 60.84 + 51.84
SSB = 258.80

Now SSW can be found by subtraction (Formula 9.4):

SSW = 88T — SSB
SSW = 636.8 — 258.80
SSW = 378.00

To find the degrees of freedom for the two sums of squares, we use Formulas 9.5
and 9.6:

dfb =N —k=20—5=15
dfb=k—1=5-1=4

Finally, we are ready to construct the mean square estimates of the population
variance. For the estimate based on SSW, we use Formula 9.7:

SSW  378.00
dfw 15

Mean square within = =25.20

TABLE 9.3 Support for Capital Punishment by Religion (Fictitious Data)

Protestant Catholic Jewish None Other
I XXX X XX X
8 64 12 144 12 144 15 225 10 100
12 144 20 400 13 169 16 256 18 324
13 169 25 625 18 324 23 529 12 144
17 289 27 729 21 441 28 784 12 144
50 666 84 1,898 64 1,078 82 1,794 52 712
X,=125 X, =210 X, = 16.0 X, =205 X, = 13.0
X=16.6
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For the between estimate, we use Formula 9.8:

M bet SSB 258.80
can sguare netween = — =
E dfw 4

= 64.70

The test statistic, or F ratio, is found by means of Formula 9.9:

_ Mean square between  64.70

= = 2.57
Mean square within 25.20
This statistic must still be evaluated for its significance. (Solve any of the end-of-
chapter problems to practice computing these quantities and solving these formulas.)

A Test of Significance for ANOVA

Now we will see how to test an F ratio for significance. We will also take a look at
some of the assumptions underlying the ANOVA test. As usual, we will follow the
five-step model as a convenient way of organizing the decision-making process.

Step 1. Making assumptions and meeting test requirements.

Model: Independent random samples
Level of measurement is interval-ratio
Populations are normally distributed
Population variances are equal

The model assumptions are quite strict and underscore the fact that ANOVA
should be used only with dependent variables that have been carefully and pre-
cisely measured. However, as long as the categories are roughly equal in size,
ANOVA can tolerate some violation of the model assumptions. In situations
where you are uncertain or have samples of very different size, it is probably ad-
visable to use an alternative test. (Chi square in Chapter 10 is one option.)

Step 2. Stating the null hypothesis. For ANOVA, the null hypothesis always
states that the means of the populations from which the samples were drawn are
equal. For our example problem, we are concerned with five different popula-
tions, or categories, so our null hypothesis would be:

Hy:py = o = M3 = g = s

where w, represents the mean for Protestants, w, the mean for Catholics, and
so forth.

The alternative hypothesis states simply that at least one of the population
means is different. The wording here is important. If we reject the null hypoth-
esis, ANOVA does not identify which mean or means are significantly different.

(H,: At least one of the population means is different.)

Step 3. Selecting the sampling distribution and establishing the critical
region. The sampling distribution for ANOVA is the F distribution, which is sum-
marized in Appendix D. Note that there are separate tables for alphas of .05 and .01.



232

PART Il

INFERENTIAL STATISTICS

As with the 7 table, the value of the critical F' score will vary by degrees of freedom.
For ANOVA, there are two separate degrees of freedom—one for each estimate of
the population variance. The numbers across the top of the table are the degrees of
freedom associated with the between estimate (dfb), and the numbers down the side
of the table are those associated with the within estimate (dfw). In our example, dfb
is (k — 1), or4, and dfwis (N — k), or 15 (see Formulas 9.5 and 9.6). Thus, if we
set alpha at .05, our critical F' score will be 3.06.
Summarizing these considerations:

Sampling distribution = F distribution
Alpha = 0.05
Degrees of freedom within (dfw) = (N — k) = 15
Degrees of freedom between (dfp) = (k. — 1) = 4
F(critical) = 3.06

Take a moment to inspect the two F tables and you will notice that all the values
are greater than 1.00. This is because ANOVA is a one-tailed test and we are
concerned only with outcomes in which there is more variance between catego-
ries than within categories. F' values of less than 1.00 would indicate that the
between estimate was lower in value than the within estimate, and because we
would always fail to reject the null in such cases, we simply ignore this class of
outcomes.

Step 4. Computing the test statistic. This was done in the previous section,
where we found an obtained F ratio of 2.57.

Step 5. Making a decision and interpreting the results of the test. Compare
the test statistic with the critical value:

F(critical) = 3.06

F(obtained) = 2.57
Because the test statistic does not fall into the critical region, our decision would
be to fail to reject the null. Support for capital punishment does not differ sig-

nificantly by religion, and the variation we observed in the sample means is
unimportant.

Applying Statistics 9.1 The Analysis of Variance

An experiment in teaching introductory biology was re-
cently conducted at a large university. One section was
taught by the traditional lecture-lab method, a second
was taught by an all-lab/demonstration approach with
no lectures, and a third was taught entirely by a series of
recorded lectures and demonstrations that the students

were free to view at any time and as often as they wanted.
Students were randomly assigned to each of the three
sections, and at the end of the semester, random samples
of final exam scores were collected from each section.
Is there a significant difference in student performance by
teaching method?
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Applying Statistics 9.1 (continued)

Final Exam Scores by Teaching Method

Lecture Demonstration Recording

X X2 X X2 X X2

55 3,025 56 3,136 50 2,500
57 3,249 60 3,600 52 2,704
60 3,600 62 3,844 60 3,600
63 3,969 67 4,489 61 3,721
72 5,184 70 4,900 63 3,969
73 5,329 71 5,041 69 4,761
79 6,241 82 6,724 71 5,041
85 7,225 88 7,744 80 6,400
92 8464 95 905 82 6724

3X = 636 651 588

SX? = 46,286 48,503 39,420

X, = 70.67 72.33 65.33

X = 1,875/27 = 69.44

We can see by inspection that the “Recording” group had
the lowest average score and that the “Demonstration” group
had the highest average score. The ANOVA test will tell us
if these differences are large enough to justify the conclusion
that they did not occur by chance alone. We can organize the
computations following the steps described in the “One Step
at a Time” box about computing ANOVA (see page 229):

SST = >X* — NX?

SST = (46,286 + 48,503 + 39,420) — 27(69.44)>

SST = 134,209 — 130,191.67

SST = 4017.33

SSB = SN(X, — X)?

SSB = (9)(70.67 — 69.44)* + (9)(72.33 — 69.44)?
+ (9)(65.33 — 69.44)?

SSB = 13.62 + 75.17 + 152.03

SSB = 240.82

SSW = SST — SSB

SSW = 4017.33 — 240.82
SSW = 3776.51
dfv=N—k=27—3=24
db=k—-1=3—1=2

SSW 3776.51
Mean square within = —— = = 157.36
dfw 24
SSB 240.82
Mean square between = —— = = 12041
ap 2

_ Mean square between
~ Mean square within
12041
15736

F=0.77

We can now conduct the test of significance.
Step 1. Making Assumptions and Meeting Test
Requirements.

Model: Independent random sample
Level of measurement is interval-ratio
Populations are normally distributed
Population variances are equal

Step 2. Stating the Null Hypothesis.
Hy:py = oy = 3

H,: Atleast one of the population means is different,

Step 3. Selecting the Sampling Distribution and
Establishing the Critical Region.

Sampling distribution = F distribution

Alpha = 0.05
Degrees of freedom (within) = (N — k)
=(27-3)=24
Degrees of freedom (between) = (k — 1)
=(3-1)=2

F(critical) = 3.40
Step 4. Computing the Test Statistics. We found an
obtained F ratio of 0.77.

Step 5. Making a Decision and Interpreting the Results
of the Test. Compare the test statistic with the critical
value:

F(critical) = 3.40
F(obtained) = 0.77

We would clearly fail to reject the null hypothesis and
conclude that the observed differences among the cat-
egory means were the results of random chance. Student
performance in this course does not vary significantly by
teaching method.
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