
14
Learning Objectives
When you have completed
this chapter, you will be
able to:

LO1 Describe the relationship
between several independent
variables and a dependent
variable using multiple
regression analysis.

LO2 Set up, interpret, and
apply an ANOVA table.

LO3 Compute and interpret
measures of association in
multiple regression.

LO4 Conduct a hypothesis
test to determine whether a
set of regression coefficients
differ from zero.

LO5 Conduct a hypothesis test
of each regression coefficient.

LO6 Use residual analysis to
evaluate the assumptions of
multiple regression analysis.

LO7 Evaluate the effects
of correlated independent
variables.

LO8 Evaluate and use
qualitative independent
variables.

LO9 Explain the possible
interaction among independent
variables.

LO10 Explain stepwise
regression.

Multiple Regression 
Analysis

The mortgage department of the Bank of New England is studying data

from recent loans. Of particular interest is how such factors as the value of

the home being purchased, education level of the head of the household,

age of the head of the household, current monthly mortgage payment, and

gender of the head of the household relate to the family income. Are the

proposed variables effective predictors of the dependent variable family

income? (See the Example/Solution in Section 14.9 and LO1.)
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Multiple Regression Analysis 513

GENERAL MULTIPLE 

REGRESSION EQUATION

where:
a is the intercept, the value of Y when all the X’s are zero.

is the amount by which Y changes when that particular increases by one
unit, with the values of all other independent variables held constant. The
subscript j is simply a label that helps to identify each independent variable;
it is not used in any calculations. Usually the subscript is an integer value
between 1 and k, which is the number of independent variables. However,
the subscript can also be a short or abbreviated label. For example, age could
be used as a subscript.

In Chapter 13, the regression analysis described and tested the relationship between
a dependent variable, , and a single independent variable, X. The relationship
between and X was graphically portrayed by a line. When there are two inde-
pendent variables, the regression equation is

Because there are two independent variables, this relationship is graphically por-
trayed as a plane and is shown in Chart 14–1. The chart shows the residuals as the
difference between the actual Y and the fitted on the plane. If a multiple regres-
sion analysis includes more than two independent variables, we cannot use a graph
to illustrate the analysis since graphs are limited to three dimensions.

To illustrate the interpretation of the intercept and the two regression coefficients,
suppose a vehicle’s mileage per gallon of gasoline is directly related to the octane rat-
ing of the gasoline being used and inversely related to the weight of the automobile

Assume that the regression equation, calculated using statistical software, is:

Ŷ � 6.3 � 0.2X1 � 0.001X2

(X2).
(X1)

Ŷ

Ŷ � a � b1X1 � b2X2

Ŷ
Ŷ

Xjbj

Ŷ � a � b1X1 � b2X2 � b3X3 � . . . � bkXk [14–1]

14.1 Introduction
In Chapter 13, we described the relationship between a pair of interval- or ratio-scaled
variables. We began the chapter by studying the correlation coefficient, which mea-
sures the strength of the relationship. A coefficient near plus or minus 1.00 or
.78, for example) indicates a very strong linear relationship, whereas a value near
0 ( or .18, for example) means that the relationship is weak. Next we developed
a procedure to determine a linear equation to express the relationship between the
two variables. We referred to this as a regression line. This line describes the rela-
tionship between the variables. It also describes the overall pattern of a dependent
variable (Y ) to a single independent or explanatory variable (X ).

In multiple linear correlation and regression, we use additional independent vari-
ables (denoted . . . , and so on) that help us better explain or predict the
dependent variable (Y ). Almost all of the ideas we saw in simple linear correlation
and regression extend to this more general situation. However, the additional inde-
pendent variables do lead to some new considerations. Multiple regression analysis
can be used either as a descriptive or as an inferential technique.

14.2 Multiple Regression Analysis
The general descriptive form of a multiple linear equation is shown in formula (14–1).
We use k to represent the number of independent variables. So k can be any positive
integer.

X1, X2, 

�.12

(�.88

LO1 Describe the
relationship between
several independent
variables and a
dependent variable
using multiple regression
analysis.
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The intercept value of 6.3 indicates the regression equation intersects the 
Y-axis at 6.3 when both and are zero. Of course, this does not make any
physical sense to own an automobile that has no (zero) weight and to use gasoline
with no octane. It is important to keep in mind that a regression equation is not
generally used outside the range of the sample values.

The of 0.2 indicates that for each increase of 1 in the octane rating of the
gasoline, the automobile would travel 2/10 of a mile more per gallon, regardless of
the weight of the vehicle. The value of �0.001 reveals that for each increase of
one pound in the vehicle’s weight, the number of miles traveled per gallon decreases
by 0.001, regardless of the octane of the gasoline being used.

As an example, an automobile with 92-octane gasoline in the tank and weighing
2,000 pounds would travel an average 22.7 miles per gallon, found by:

The values for the coefficients in the multiple linear equation are found by
using the method of least squares. Recall from the previous chapter that the least
squares method makes the sum of the squared differences between the fitted
and actual values of Y as small as possible, that is, the term is minimized.
The calculations are very tedious, so they are usually performed by a statistical
software package, such as Excel or Minitab.

In the following example, we show a multiple regression analysis using three
independent variables employing Excel and Minitab. Both packages report a stan-
dard set of statistics and reports. However, Minitab also provides advanced regres-
sion analysis techniques that we will use later in the chapter.

�(Y � Ŷ )2

Ŷ � a � b1X1 � b2X2 � 6.3 � 0.2(92) � 0.001(2,000) � 22.7

b2

b1

X2X1

514 Chapter 14

X1

Y

X2

Estimated point (Y )

Observed point (Y )

Plane formed through
the sample points
  � a � b1 X1 � b2 X2 

^

^Y 

CHART 14–1 Regression Plane with 10 Sample Points

Example Salsberry Realty sells homes along the east coast of the United States. One of
the questions most frequently asked by prospective buyers is: If we purchase this
home, how much can we expect to pay to heat it during the winter? The research
department at Salsberry has been asked to develop some guidelines regarding
heating costs for single-family homes. Three variables are thought to relate to the
heating costs: (1) the mean daily outside temperature, (2) the number of inches
of insulation in the attic, and (3) the age in years of the furnace. To investigate,
Salsberry’s research department selected a random sample of 20 recently sold
homes. It determined the cost to heat each home last January, as well as the
January outside temperature in the region, the number of inches of insulation
in the attic, and the age of the furnace. The sample information is reported in
Table 14–1.
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Multiple Regression Analysis 515

Solution We begin the analysis by defining the dependent and independent variables. The
dependent variable is the January heating cost. It is represented by Y. There are
three independent variables:

• The mean outside temperature in January, represented by .
• The number of inches of insulation in the attic, represented by .
• The age in years of the furnace, represented by .

Given these definitions, the general form of the multiple regression equation follows.
The value is used to estimate the value of Y.

Now that we have defined the regression equation, we are ready to use either Excel
or Minitab to compute all the statistics needed for the analysis. The outputs from
the two software systems are shown below.

To use the regression equation to predict the January heating cost, we need
to know the values of the regression coefficients, . These are highlighted in
the software reports. Note that the software used the variable names or labels
associated with each independent variable. The regression equation intercept, a,
is labeled as “constant” in the Minitab output and “intercept” in the Excel output.

bj

Ŷ � a � b1X1 � b2X2 � b3X3

Ŷ

X3

X2

X1

The data in Table 14–1 is available in both Excel and Minitab formats at the
textbook website, www.mhhe.com/lind15e. The basic instructions for using Excel
and Minitab for this data are in the Software Commands section at the end of this
chapter.

Determine the multiple regression equation. Which variables are the indepen-
dent variables? Which variable is the dependent variable? Discuss the regression
coefficients. What does it indicate if some coefficients are positive and some coef-
ficients are negative? What is the intercept value? What is the estimated heating
cost for a home if the mean outside temperature is 30 degrees, there are 5 inches
of insulation in the attic, and the furnace is 10 years old?

TABLE 14–1 Factors in January Heating Cost for a Sample of 20 Homes

Statistics in Action

Many studies indi-
cate a woman will
earn about 70 per-
cent of what a man
would for the same
work. Researchers at
the University of
Michigan Institute
for Social Research
found that about
one-third of the
difference can be
explained by such
social factors as dif-
ferences in educa-
tion, seniority, and
work interruptions.
The remaining two-
thirds is not ex-
plained by these
social factors.

Heating Cost Mean Outside Attic Insulation Age of Furnace

Home ($) Temperature (�F) (inches) (years)

1 $250 35 3 6
2 360 29 4 10
3 165 36 7 3
4 43 60 6 9
5 92 65 5 6
6 200 30 5 5
7 355 10 6 7
8 290 7 10 10
9 230 21 9 11

10 120 55 2 5
11 73 54 12 4
12 205 48 5 1
13 400 20 5 15
14 320 39 4 7
15 72 60 8 6
16 272 20 5 8
17 94 58 7 3
18 190 40 8 11
19 235 27 9 8
20 139 30 7 5
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516 Chapter 14

In this case, the estimated regression equation is:

We can now estimate or predict the January heating cost for a home if we know
the mean outside temperature, the inches of insulation, and the age of the furnace.
For an example home, the mean outside temperature for the month is 30 degrees

there are 5 inches of insulation in the attic and the furnace is 10 years old
. By substituting the values for the independent variables:

The estimated January heating cost is $276.56.

Ŷ � 427.194 � 4.583(30) � 14.831(5) � 6.101(10) � 276.56

(X3)
(X2),(X1),

Ŷ � 427.194 � 4.583X1 � 14.831X2 � 6.101X3
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Multiple Regression Analysis 517

The regression coefficients, and their algebraic signs, also provide information
about their individual relationships with the January heating cost. The regression
coefficient for mean outside temperature is �4.583. The coefficient is negative and
shows an inverse relationship between heating cost and temperature. This is not sur-
prising. As the outside temperature increases, the cost to heat the home decreases.
The numeric value of the regression coefficient provides more information. If we
increase temperature by 1 degree and hold the other two independent variables con-
stant, we can estimate a decrease of $4.583 in monthly heating cost. So if the mean
temperature in Boston is 25 degrees and it is 35 degrees in Philadelphia, all other
things being the same (insulation and age of furnace), we expect the heating cost
would be $45.83 less in Philadelphia.

The attic insulation variable also shows an inverse relationship: the more insu-
lation in the attic, the less the cost to heat the home. So the negative sign for this
coefficient is logical. For each additional inch of insulation, we expect the cost to
heat the home to decline $14.83 per month, holding the outside temperature and
the age of the furnace constant.

The age of the furnace variable shows a direct relationship. With an older fur-
nace, the cost to heat the home increases. Specifically, for each additional year
older the furnace is, we expect the cost to increase $6.10 per month.

Self-Review 14–1 There are many restaurants in northeastern South Carolina. They serve beach vacationers
in the summer, golfers in the fall and spring, and snowbirds in the winter. Bill and Joyce
Tuneall manage several restaurants in the North Jersey area and are considering moving to
Myrtle Beach, SC, to open a new restaurant. Before making a final decision, they wish to
investigate existing restaurants and what variables seem to be related to profitability. They
gather sample information where profit (reported in $000) is the dependent variable and the
independent variables are:

X1 the number of parking spaces near the restaurant.
X2 the number of hours the restaurant is open per week.
X3 the distance from Peaches Corner, a landmark in Myrtle Beach.
X4 the number of servers employed.
X5 the number of years the current owner has owned the restaurant.

The following is part of the output obtained using statistical software.

Predictor Coef SE Coef T
Constant 2.50 1.50 1.667
X1 3.00 1.500 2.000
X2 4.00 3.000 1.333
X3 �3.00 0.20 �15.00
X4 0.20 .05 4.00
X5 1.00 1.50 0.667

(a) What is the amount of profit for a restaurant with 40 parking spaces that is open
72 hours per week, is 10 miles from Peaches Corner, has 20 servers, and has been
open 5 years?

(b) Interpret the values of and in the multiple regression equation.b3b2

Exercises
1. The director of marketing at Reeves Wholesale Products is studying monthly sales. Three

independent variables were selected as estimators of sales: regional population, per
capita income, and regional unemployment rate. The regression equation was computed
to be (in dollars):

Ŷ � 64,100 � 0.394X1 � 9.6X2 � 11,600X3

Lin01803_ch14_512-572.qxd  11/4/10  12:15 AM  Page 517



a. What is the full name of the equation?
b. Interpret the number 64,100.
c. What are the estimated monthly sales for a particular region with a population of

796,000, per capita income of $6,940, and an unemployment rate of 6.0 percent?
2. Thompson Photo Works purchased several new, highly sophisticated processing

machines. The production department needed some guidance with respect to qualifica-
tions needed by an operator. Is age a factor? Is the length of service as an operator (in
years) important? In order to explore further the factors needed to estimate performance
on the new processing machines, four variables were listed:

X1 � Length of time an employee was in the industry
X2 � Mechanical aptitude test score
X3 � Prior on-the-job rating
X4 � Age

Performance on the new machine is designated Y.
Thirty employees were selected at random. Data were collected for each, and their

performances on the new machines were recorded. A few results are:

518 Chapter 14

The equation is:

a. What is this equation called?
b. How many dependent variables are there? Independent variables?
c. What is the number 0.286 called?
d. As age increases by one year, how much does estimated performance on the new

machine increase?
e. Carl Knox applied for a job at Photo Works. He has been in the business for six

years, and scored 280 on the mechanical aptitude test. Carl’s prior on-the-job per-
formance rating is 97, and he is 35 years old. Estimate Carl’s performance on the
new machine.

3. A sample of General Mills employees was studied to determine their degree of satis-
faction with their quality of life. A special index, called the index of satisfaction, was
used to measure satisfaction. Six factors were studied, namely, age at the time of first
marriage annual income number of children living value of all assets 
status of health in the form of an index and the average number of social activi-
ties per week—such as bowling and dancing Suppose the multiple regression
equation is:

a. What is the estimated index of satisfaction for a person who first married at 18,
has an annual income of $26,500, has three children living, has assets of $156,000,
has an index of health status of 141, and has 2.5 social activities a week on the
average?

b. Which would add more to satisfaction, an additional income of $10,000 a year or two
more social activities a week?

4. Cellulon, a manufacturer of home insulation, wants to develop guidelines for builders and
consumers on how the thickness of the insulation in the attic of a home and the outdoor
temperature affect natural gas consumption. In the laboratory, it varied the insulation
thickness and temperature. A few of the findings are:

Ŷ � 16.24 � 0.017X1 � 0.0028X2 � 42X3 � 0.0012X4 � 0.19X5 � 26.8X6

(X6).
(X5),

(X4),(X3),(X2),(X1),

Ŷ � 11.6 � 0.4X1 � 0.286X2 � 0.112X3 � 0.002X4

Performance Length of Mechanical Prior

on New Time in Aptitude On-the-Job

Machine, Industry, Score, Performance, Age,

Name Y X1 X2 X3 X4

Mike Miraglia 112 12 312 121 52
Sue Trythall 113 2 380 123 27
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Multiple Regression Analysis 519

On the basis of the sample results, the regression equation is:

a. How much natural gas can homeowners expect to use per month if they install 6
inches of insulation and the outdoor temperature is 40 degrees F?

b. What effect would installing 7 inches of insulation instead of 6 have on the
monthly natural gas consumption (assuming the outdoor temperature remains at
40 degrees F)?

c. Why are the regression coefficients and negative? Is this logical?

14.3 Evaluating a 
Multiple Regression Equation
Many statistics and statistical methods are used to evaluate the relationship between
a dependent variable and more than one independent variable. Our first step was to
write the relationship in terms of a multiple regression equation. The next step follows
on the concepts presented in Chapter 13 by using the information in an ANOVA table
to evaluate how well the equation fits the data.

The ANOVA Table
As in Chapter 13, the statistical analysis of a multiple regression equation is sum-
marized in an ANOVA table. To review, the total variation of the dependent variable,
Y, is divided into two components: (1) regression, or the variation of Y explained by
all the independent variables and (2) the error or residual, or unexplained variation
of Y. These two categories are identified in the first column of an ANOVA table below.
The column headed “df” refers to the degrees of freedom associated with each cat-
egory. The total number of degrees of freedom is n � 1. The number of degrees of
freedom in the regression is equal to the number of independent variables in the
multiple regression equation. We call the regression degrees of freedom k. The num-
ber of degrees of freedom associated with the error term is equal to the total degrees
of freedom minus the regression degrees of freedom. In multiple regression, the
degrees of freedom are n � (k � 1).

b2b1

Ŷ � 62.65 � 1.86X1 � 0.52X2

Monthly Natural Thickness of Outdoor

Gas Consumption Insulation Temperature

(cubic feet), (inches), (�F),

Y X1 X2

30.3 6 40
26.9 12 40
22.1 8 49

Source df SS MS F

Regression k SSR MSR � SSR�k MSR�MSE
Residual or error n � (k � 1) SSE MSE � SSE�[n � (k � 1)]

Total n � 1 SS total

The term “SS” located in the middle of the ANOVA table refers to the sum of
squares. Notice that there is a sum of squares for each source of variation. The sum
of squares column shows the amount of variation attributable to each source. The
total variation of the dependent variable, Y, is summarized in SS total. You should

LO2 Set up, interpret,
and apply an ANOVA
table.
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note that this is simply the numerator of the usual formula to calculate any variation—
in other words, the sum of the squared deviations from the mean. It is computed as:

As we have seen, the total sum of squares is the sum of the regression and residual
sum of squares. The regression sum of squares is the sum of the squared differences
between the estimated or predicted values, , and the overall mean of Y. The regres-
sion sum of squares is found by:

The residual sum of squares is the sum of the squared differences between the
observed values of the dependent variable, Y, and their corresponding estimated or
predicted values, . Notice that this difference is the error of estimating or predict-
ing the dependent variable with the multiple regression equation. It is calculated as:

We will use the ANOVA table information from the previous example to evalu-
ate the regression equation to estimate January heating costs.

Residual or Error Sum of Squares � SSE � ©(Y � Ŷ )2

Ŷ

Regression Sum of Squares � SSR � ©(Ŷ  � Y )2

Ŷ

Total Sum of Squares � SS total � ©(Y � Y )2

Multiple Standard Error of Estimate
We begin with the multiple standard error of estimate. Recall that the standard
error of estimate is comparable to the standard deviation. To explain the details of
the standard error of estimate, refer to the first sampled home in Table 14–1 in the
previous example on page 515. The actual heating cost for the first observation, Y,
is $250, the outside temperature, is 35 degrees, the depth of insulation, is
3 inches, and the age of the furnace, is 6 years. Using the regression equation
developed in the previous section, the estimated heating cost for this home is:

So we would estimate that a home with a mean January outside temperature
of 35 degrees, 3 inches of insulation, and a 6-year-old furnace would cost
$258.90 to heat. The actual heating cost was $250, so the residual—which is the
difference between the actual value and the estimated value—is 

This difference of $8.90 is the random or unexplained error
for the first home sampled. Our next step is to square this difference—that is, find
(Y � Ŷ )2 � (250 � 258.90)2 � (�8.90)2 � 79.21.

250 � 258.90 � �8.90.
Y � Ŷ �

 � 258.90

 � 427.194 � 4.583(35) � 14.831(3) � 6.101(6)

 Ŷ � 427.194 � 4.583X1 � 14.831X2 � 6.101X3

X3,
X2,X1,

LO3 Compute and
interpret measures of
association in multiple
regression.
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where:
Y is the actual observation.

is the estimated value computed from the regression equation.
n is the number of observations in the sample.
k is the number of independent variables.
SSR is the Residual Sum of Squares from an ANOVA table.

There is still more information in the ANOVA table that can be used to compute
the multiple standard error of the estimate. Note that the next column in the ANOVA
table is labeled MS, or mean square. For the regression and residual sources of vari-
ation, the mean squares are calculated as the sum of squares divided by its corre-
sponding degrees of freedom. In the case of the multiple standard error of the mean,
the multiple standard error of the estimate is the square root of the residual mean
square.

How do we interpret the standard error of estimate of 51.05? It is the typical
“error” when we use this equation to predict the cost. First, the units are the same
as the dependent variable, so the standard error is in dollars, $51.05. Second, we
expect the residuals to be approximately normally distributed, so about 68 percent
of the residuals will be within and about 95 percent within 
or As before with similar measures of dispersion, such as the standard
error of estimate in Chapter 13, a smaller multiple standard error indicates a bet-
ter or more effective predictive equation.

Coefficient of Multiple Determination
Next, let’s look at the coefficient of multiple determination. Recall from the previous
chapter the coefficient of determination is defined as the percent of variation in the
dependent variable explained, or accounted for, by the independent variable. In the
multiple regression case, we extend this definition as follows.

�$102.10.
�2(51.05)�$51.05

sY.123...K � 2MSE � 22605.995 � $51.05

Ŷ

MULTIPLE STANDARD

ERROR OF ESTIMATE
[14–2]sY.123...k �

B

©(Y � Ŷ 
 
)2

n � (k � 1)
�
B

SSR
n � (k � 1)

If we repeat this calculation for the other 19 observations and sum all 20 squared
differences, the total will be the residual or error sum of squares from the ANOVA
table. Using this information, we can calculate the multiple standard error of the
estimate as:

COEFFICIENT OF MULTIPLE DETERMINATION The percent of variation in the dependent
variable, explained by the set of independent variables, . . . .XkX3,X2,X1,Y,

The characteristics of the coefficient of multiple determination are:

1. It is symbolized by a capital R squared. In other words, it is written as 
because it behaves like the square of a correlation coefficient.

2. It can range form 0 to 1. A value near 0 indicates little association between
the set of independent variables and the dependent variable. A value near 1
means a strong association.

3. It cannot assume negative values. Any number that is squared or raised to
the second power cannot be negative.

4. It is easy to interpret. Because is a value between 0 and 1, it is easy to
interpret, compare, and understand.

R2

R2
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We can calculate the coefficient of determination from the information found in the
ANOVA table. We look in the sum of squares column, which is labeled SS in the Excel
output, and use the regression sum of squares, SSR, then divide by the total sum
of squares, SS total.

Using the residual and total sum of squares from the ANOVA table, we can use
formula (14–3) to calculate the coefficient of multiple determination.

How do we interpret this value? We conclude that the independent variables (out-
side temperature, amount of insulation, and age of furnace) explain, or account for,
80.4 percent of the variation in heating cost. To put it another way, 19.6 percent of
the variation is due to other sources, such as random error or variables not included
in the analysis. Using the ANOVA table, 19.6 percent is the error sum of squares
divided by the total sum of squares. Knowing that the SSR � SSE � SS total, the
following relationship is true.

Adjusted Coefficient of Determination
The number of independent variables in a multiple regression equation makes the
coefficient of determination larger. Each new independent variable causes the pre-
dictions to be more accurate. That, in turn, makes SSE smaller and SSR larger.
Hence, increases only because of the total number of independent variables and
not because the added independent variable is a good predictor of the dependent
variable. In fact, if the number of variables, k, and the sample size, n, are equal, the
coefficient of determination is 1.0. In practice, this situation is rare and would also
be ethically questionable. To balance the effect that the number of independent vari-
ables has on the coefficient of multiple determination, statistical software packages
use an adjusted coefficient of multiple determination.

R2

1 � R2 � 1 �
SSR

SS total
�

SSE
SS total

�
41,695

212,916
� .196

R2 �
SSR

SS total
�

171,220
212,916

� .804

ADJUSTED COEFFICIENT OF DETERMINATION [14–4]R2
adj � 1 �

SSE
n � (k � 1)

SS total
n � 1

The error and total sum of squares are divided by their degrees of freedom. Notice
especially the degrees of freedom for the error sum of squares includes k, the
number of independent variables. For the cost of heating example, the adjusted
coefficient of determination is:

If we compare the (0.80) to the adjusted (0.77), the difference in this case
is small.

R2R2

R2
adj � 1 �

41,695
20 � (3 � 1)

212,916
20 � 1

� 1 �
2,606

11,206.0
� 1 � .23 � .77

COEFFICIENT OF MULTIPLE DETERMINATION [14–3]R2 �
SSR

SS total
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Exercises
5. Consider the ANOVA table that follows.

Analysis of Variance
Source DF SS MS F P
Regression 2 77.907 38.954 4.14 0.021
Residual Error 62 583.693 9.414
Total 64 661.600

Analysis of Variance
Source DF SS MS F
Regression 5 3710.00 742.00 12.89
Residual Error 46 2647.38 57.55
Total 51 6357.38

a. Determine the standard error of estimate. About 95 percent of the residuals will be
between what two values?

b. Determine the coefficient of multiple determination. Interpret this value.
c. Determine the coefficient of multiple determination, adjusted for the degrees of

freedom.
6. Consider the ANOVA table that follows.

a. Determine the standard error of estimate. About 95 percent of the residuals will be
between what two values?

b. Determine the coefficient of multiple determination. Interpret this value.
c. Determine the coefficient of multiple determination, adjusted for the degrees of freedom.

14.4 Inferences in Multiple Linear Regression
Thus far, multiple regression analysis has been viewed only as a way to describe
the relationship between a dependent variable and several independent vari-
ables. However, the least squares method also has the ability to draw inferences
or generalizations about the relationship for an entire population. Recall that
when you create confidence intervals or perform hypothesis tests as a part of
inferential statistics, you view the data as a random sample taken from some
population.

In the multiple regression setting, we assume there is an unknown popula-
tion regression equation that relates the dependent variable to the k independent

Self-Review 14–2 Refer to Self-Review 14–1 on the subject of restaurants in Myrtle Beach. The ANOVA
portion of the regression output is presented below.

Analysis of Variance
Source DF SS MS
Regression 5 100 20
Residual Error 20 40 2
Total 25 140

(a) How large was the sample?
(b) How many independent variables are there?
(c) How many dependent variables are there?
(d) Compute the standard error of estimate. About 95 percent of the residuals will be

between what two values?
(e) Determine the coefficient of multiple determination. Interpret this value.
( f ) Find the coefficient of multiple determination, adjusted for the degrees of freedom.
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variables. This is sometimes called a model of the relationship. In symbols we
write:

This equation is analogous to formula (14–1) except the coefficients are now reported
as Greek letters. We use the Greek letters to denote population parameters. Then
under a certain set of assumptions, which will be discussed shortly, the computed
values of a and are sample statistics. These sample statistics are point estimates
of the corresponding population parameters and For example, the sample
regression coefficient is a point estimate of the population parameter The sam-
pling distribution of these point estimates follows the normal probability distribution.
These sampling distributions are each centered at their respective parameter values.
To put it another way, the means of the sampling distributions are equal to the pa-
rameter values to be estimated. Thus, by using the properties of the sampling distri-
butions of these statistics, inferences about the population parameters are possible.

Global Test: Testing the Multiple Regression Model
We can test the ability of the independent variables to explain the
behavior of the dependent variable Y. To put this in question form: Can the depen-
dent variable be estimated without relying on the independent variables? The test
used is referred to as the global test. Basically, it investigates whether it is possi-
ble all the independent variables have zero regression coefficients.

To relate this question to the heating cost example, we will test whether the
independent variables (amount of insulation in the attic, mean daily outside tem-
perature, and age of furnace) effectively estimate home heating costs. In testing a
hypothesis, we first state the null hypothesis and the alternate hypothesis. In the
heating cost example, there are three independent variables. Recall that 
are sample regression coefficients. The corresponding coefficients in the population
are given the symbols We now test whether the regression coefficients
in the population are all zero. The null hypothesis is:

The alternate hypothesis is:

Not all the �i’s are 0.

If the null hypothesis is true, it implies the regression coefficients are all zero and,
logically, are of no use in estimating the dependent variable (heating cost). Should
that be the case, we would have to search for some other independent variables—
or take a different approach—to predict home heating costs.

To test the null hypothesis that the multiple regression coefficients are all zero,
we employ the F distribution introduced in Chapter 12. We will use the .05 level of
significance. Recall these characteristics of the F distribution:

1. There is a family of F distributions. Each time the degrees of freedom in either
the numerator or the denominator changes, a new F distribution is created.

2. The F distribution cannot be negative. The smallest possible value is 0.
3. It is a continuous distribution. The distribution can assume an infinite number

of values between 0 and positive infinity.
4. It is positively skewed. The long tail of the distribution is to the right-hand side.

As the number of degrees of freedom increases in both the numerator and the
denominator, the distribution approaches the normal probability distribution.
That is, the distribution will move toward a symmetric distribution.

5. It is asymptotic. As the values of X increase, the F curve will approach the hor-
izontal axis, but will never touch it.

The F-statistic to test the global hypothesis follows. As in Chapter 12, it is the
ratio of two variances. In this case, the numerator is the regression sum of squares

H1:

H0: �1 � �2 � �3 � 0

�1, �2, and �3.

b1, b2, and b3

X1, X2, . . . , Xk

�2.b2

�j.�
bj

Ŷ � � � �1X1 � �2 
X2 �  

. . . � �k 
Xk

LO4 Conduct a
hypothesis test to
determine whether a set
of regression coefficients
differ from zero.
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divided by its degrees of freedom, k. The denominator is the residual sum of squares
divided by its degrees of freedom, n � (k � 1). The formula follows.

The critical value of F is found in Appendix B.4. Using the table for the .05 sig-
nificance level, move horizontally to 3 degrees of freedom in the numerator, then
down to 16 degrees of freedom in the denominator, and read the critical value. It is
3.24. The region where is not rejected and the region where is rejected are
shown in the following diagram.

H0H0

Using the ANOVA table, the F-statistic is

Remember that the F-statistic tests the basic null hypothesis that two variances
or, in this case, two mean squares are equal. Also remember that we always put
the larger of the two variances in the numerator. In our global multiple regression
hypothesis test, we will reject the null hypothesis, H0, that all regression coefficients
are zero when the regression mean square is larger in comparison to the residual
mean square. If this is true, the F-statistic will be relatively large and in the far right
tail of the F-distribution, and the p-value will be small, that is, less than our choice
of our significance level of 0.05. Thus, we will reject the null hypothesis.

As with other hypothesis-testing methods, the decision rule can be based on
either of two methods: (1) comparing the test statistic to a critical value or (2) cal-
culating a p-value based on the test statistic and comparing the p-value to the sig-
nificance level. Using the critical value method, we first find the critical value of F
that requires three pieces of information: (1) the numerator degrees of freedom, (2)
the denominator degrees of freedom, and (3) the significance level. The degrees of
freedom for the numerator and the denominator are reported in the Excel ANOVA
table that follows. The ANOVA output is highlighted in light green. The top number
in the column marked “df” is 3, indicating there are 3 degrees of freedom in the
numerator. This value corresponds to the number of independent variables. The mid-
dle number in the “df” column (16) indicates that there are 16 degrees of freedom
in the denominator. The number 16 is found by n � (k � 1) � 20 � (3 � 1) � 16.

F �
SSR �k

SSE�[n � (k � 1)]
�

MSR
MSE

� 21.90

[14–5]F �
SSR �k

SSE �[n � (k � 1)]
GLOBAL TEST
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Continuing with the global test, the decision rule is: Do not reject the null
hypothesis, , that all the regression coefficients are 0 if the computed value of F
is less than or equal to 3.24. If the computed F is greater than 3.24, reject and
accept the alternate hypothesis, 

The computed value of F is 21.90, which is in the rejection region. The null hypoth-
esis that all the multiple regression coefficients are zero is therefore rejected. This means
that at least one of the independent variables has the ability to explain the variation in
the dependent variable (heating cost). We expected this decision. Logically, the out-
side temperature, the amount of insulation, or age of the furnace have a great bear-
ing on heating costs. The global test assures us that they do.

Testing the null hypothesis can also be based on a p-value, which is reported
in the computer software output for all hypothesis tests. In the case of the F-statistic,
the p-value is defined as the probability of observing an F-value as large or larger
than the F test statistic, assuming the null hypothesis is true. If the p-value is less than
our selected significance level, then we decide to reject the null hypothesis. The
ANOVA shows the F-statistic’s p-value is equal to 0.000. It is clearly less than our
significance level of 0.05. Therefore, we decide to reject the global null hypothesis
and conclude that at least one of the regression coefficients is not equal to zero.

The decision is the same as when we used the critical value approach. The advan-
tage to using the p-value approach is that the p-value gives us a “flavor” of the deci-
sion. The computed p-value is much smaller than our significance level (.000 versus
.05). We reject the null hypothesis that all the regression coefficients are 0 and, on the
basis of the p-value, conclude that there is little likelihood this hypothesis is true.

Evaluating Individual Regression Coefficients
So far we have shown that at least one, but not necessarily all, of the regression
coefficients are not equal to zero and thus useful for predictions. The next step is
to test the independent variables individually to determine which regression coeffi-
cients may be 0 and which are not.

Why is it important to know if any of the equal 0? If a could equal 0, it
implies that this particular independent variable is of no value in explaining any vari-
ation in the dependent value. If there are coefficients for which cannot be rejected,
we may want to eliminate them from the regression equation.

We will now conduct three separate tests of hypothesis—for temperature, for
insulation, and for the age of the furnace.

For temperature: For insulation: For furnace age:

H1: �3 � 0H1: �2 � 0H1: �1 � 0

H0: �3 � 0H0: �2 � 0H0: �1 � 0

H0

��i’s

H1.
H0

H0

3.24 Scale of F

F distribution

df = (3, 16)

Region of 
rejection 
(.05 level)

Region 
where H0 is 
not rejected

LO5 Conduct a
hypothesis test of each
regression coefficient.
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We will test the hypotheses at the .05 level. Note that these are two-tailed tests.
The test statistic follows Student’s t distribution with degrees of

freedom. The number of sample observations is n. There are 20 homes in the study,
so The number of independent variables is k, which is 3. Thus, there are

degrees of freedom.
The critical value for t is in Appendix B.2. For a two-tailed test with 16 degrees

of freedom using the .05 significance level, is rejected if t is less than �2.120 or
greater than 2.120.

Refer to the Excel output in the previous section. (See page 525.) The column
highlighted in yellow, headed Coefficients, shows the values for the multiple regres-
sion equation:

Interpreting the term in the equation: For each degree the temperature
increases, it is expected that the heating cost will decrease about $4.58, holding
the two other variables constant.

The column in the Excel output labeled “Standard Error” shows the standard
error of the sample regression coefficients. Recall that Salsberry Realty selected a
sample of 20 homes along the East Coast of the United States. If Salsberry Realty
selected a second random sample and computed the regression coefficients for that
sample, the values would not be exactly the same. If the sampling process was
repeated many times, we could construct a sampling distribution for each of these
regression coefficients. The column labeled “Standard Error” estimates the variabil-
ity for each of these regression coefficients. The sampling distributions of the coef-
ficients follow the t distribution with degrees of freedom. Hence, we are
able to test the independent variables individually to determine whether the net
regression coefficients differ from zero. The formula is:

n � (k � 1)

�4.583X1

Ŷ � 427.194 � 4.583X1 � 14.831X2 � 6.101X3

H0

n � (k � 1) � 20 � (3 � 1) � 16
n � 20.

n � (k � 1)

TESTING INDIVIDUAL

REGRESSION COEFFICIENTS
[14–6]t �

bi � 0
sbi

The refers to any one of the regression coefficients, and refers to the stan-
dard deviation of that distribution of the regression coefficient. We include 0 in the
equation because the null hypothesis is 

To illustrate this formula, refer to the test of the regression coefficient for the
independent variable temperature. From the computer output on page 525, the
regression coefficient for temperature is �4.583. The standard deviation of the sam-
pling distribution of the regression coefficient for the independent variable temper-
ature is 0.772. Inserting these values in formula (14–6):

Applying the formula, the computed t ratio is �5.937 for temperature (the small dif-
ference between the computed value and that shown on the Excel output is due to
rounding) and �3.119 for insulation. Both of these t-values are in the rejection region
to the left of �2.120. Thus, we conclude that the regression coefficients for the tem-
perature and insulation variables are not zero. The computed t for the age of the fur-
nace is 1.521, so we conclude that could equal 0. The independent variable age of
the furnace is not a significant predictor of heating cost. It can be dropped from the
analysis.

We can also use p-values to test the individual regression coefficients. Again,
these are commonly reported in computer software output. The computed t ratio
for temperature on the Excel output is �5.934 and has a p-value of 0.000. Because
the p-value is less than 0.05, the regression coefficient for the independent variable

t �
b1 � 0

sb1

�
�4.583 � 0

0.772
� �5.937

�i � 0.

sbi
bi
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temperature is not equal to zero and should be included in the equation to predict
heating costs. For insulation, the t ratio is �3.119 and has a p-value of 0.007. As
with temperature, the p-value is less than 0.05, so we conclude that the insulation
regression coefficient is not equal to zero and should be included in the equation
to predict heating cost. In contrast to temperature and insulation, the p-value to test
the “age of the furnace” regression coefficient is 0.148. It is clearly greater than 0.05,
so we conclude that the “age of furnace” regression coefficient could equal 0. Further,
as an independent variable it is not a significant predictor of heating cost. Thus, age
of furnace should not be included in the equation to predict heating costs.

At this point, we need to develop a strategy for deleting independent variables.
In the Salsberry Realty case, there were three independent variables, and one (the
age of the furnace) had a regression coefficient that did not differ from 0. It is clear
that we should drop that variable and rerun the regression equation. Below is the
Minitab output where heating cost is the dependent variable and outside temper-
ature and amount of insulation are the independent variables.

Summarizing the results from this new Minitab output:

1. The new regression equation is:

Notice that the regression coefficients for outside temperature and amount
of insulation are similar to but not exactly the same as when we included
the independent variable age of the furnace. Compare the above equation to
that in the Excel output on page 525. Both of the regression coefficients are
negative as in the earlier equation.

2. The details of the global test are as follows:

H0: �1 � �2 � 0

(X2)
(X1)

Ŷ � 490.29 � 5.1499X1 � 14.718X2

Not all of the �i’s � 0

The F distribution is the test statistic and there are degrees of freedom
in the numerator and degrees of freedom in the
denominator. Using the .05 significance level and Appendix B.4, the decision

n � (k � 1) � 20 � (2 � 1) � 17
k � 2

H1:
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rule is to reject if F is greater than 3.59. We compute the value of F as
follows:

Because the computed value of F (29.42) is greater than the critical value (3.59),
the null hypothesis is rejected and the alternate accepted. We conclude that at
least one of the regression coefficients is different from 0.

Using the p-value, the F test statistic (29.42) has a p-value (0.000) that is
clearly less than 0.05. Therefore, we reject the null hypothesis and accept the
alternate. We conclude that at least one of the regression coefficients is differ-
ent from 0.

3. The next step is to conduct a test of the regression coefficients individually. We
want to find out if one or both of the regression coefficients are different from 0.
The null and alternate hypotheses for each of the independent variables are:

Outside Temperature Insulation

The test statistic is the t distribution with 
degrees of freedom. Using the .05 significance level and Appendix B.2, the
decision rule is to reject if the computed value of t is less than �2.110 or
greater than 2.110.

Outside Temperature Insulation

In both tests, we reject and accept We conclude that each of the regression
coefficients is different from 0. Both outside temperature and amount of insulation
are useful variables in explaining the variation in heating costs.

Using p-values, the p-value for the temperature t-statistic is 0.000 and the p-
value for the insulation t-statistic is 0.008. Both p-values are less than 0.05, so in
both tests we reject the null hypothesis and conclude that each of the regression
coefficients is different from 0. Both outside temperature and amount of insulation
are useful variables in explaining the variation in heating costs.

In the heating cost example, it was clear which independent variable to delete.
However, in some instances which variable to delete may not be as clear-cut. To
explain, suppose we develop a multiple regression equation based on five indepen-
dent variables. We conduct the global test and find that some of the regression coef-
ficients are different from zero. Next, we test the regression coefficients individually
and find that three are significant and two are not. The preferred procedure is to drop
the single independent variable with the smallest absolute t value or largest p-value
and rerun the regression equation with the four remaining variables, then, on the new
regression equation with four independent variables, conduct the individual tests. If
there are still regression coefficients that are not significant, again drop the variable
with the smallest absolute t value or the largest, nonsignificant p-value. To describe
the process in another way, we should delete only one variable at a time. Each time
we delete a variable, we need to rerun the regression equation and check the remain-
ing variables.

This process of selecting variables to include in a regression model can be auto-
mated, using Excel, Minitab, MegaStat, or other statistical software. Most of the soft-
ware systems include methods to sequentially remove and/or add independent
variables and at the same time provide estimates of the percentage of variation

H1.H0

t �
b2 � 0

sb2

�
�14.718 � 0

4.934
� �2.98t �

b1 � 0
sb1

�
�5.1499 � 0

0.7019
� �7.34

H0

n � (k � 1) � 20 � (2 � 1) � 17

H1: �2 � 0H1: �1 � 0
H0: �2 � 0H0: �1 � 0

F �
SSR �k

SSE �[n � (k � 1)]
�

165,195�2
47,721�[20 � (2 � 1)]

� 29.42

H0
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Self-Review 14–3 The regression output about eating places in Myrtle Beach is repeated below (see earlier
self-reviews).

explained (the R-square term). Two of the common methods are stepwise regres-
sion and best subset regression. It may take a long time, but in the extreme we
could compute every regression between the dependent variable and any possible
subset of the independent variables.

Unfortunately, on occasion, the software may work “too hard” to find an equa-
tion that fits all the quirks of your particular data set. The suggested equation may
not represent the relationship in the population. A judgment is needed to choose
among the equations presented. Consider whether the results are logical. They
should have a simple interpretation and be consistent with your knowledge of the
application under study.

Predictor Coef SE Coef T p-value
Constant 2.50 1.50 1.667 —
X1 3.00 1.500 2.000 0.056
X2 4.00 3.000 1.333 0.194
X3 �3.00 0.20 �15.00 0.000
X4 0.20 .05 4.00 0.000
X5 1.00 1.50 0.667 0.511

Analysis of Variance
Source DF SS MS F p-value
Regression 5 100 20 10 0.000
Residual Error 20 40 2
Total 25 140

Predictor Coef SE Coef T P
Constant 84.998 1.863 45.61 0.000
X1 2.391 1.200 1.99 0.051
X2 �0.4086 0.1717 �2.38 0.020

Analysis of Variance
Source DF SS MS F P
Regression 2 77.907 38.954 4.14 0.021
Residual Error 62 583.693 9.414
Total 64 661.600

(a) Perform a global test of hypothesis to check if any of the regression coefficients are
different from 0. What do you decide? Use the .05 significance level.

(b) Do an individual test of each independent variable. Which variables would you consider
eliminating? Use the .05 significance level.

(c) Outline a plan for possibly removing independent variables.

Exercises
7. Given the following regression output,

answer the following questions:
a. Write the regression equation.
b. If is 4 and is 11, what is the value of the dependent variable?
c. How large is the sample? How many independent variables are there?
d. Conduct a global test of hypothesis to see if any of the set of regression coefficients

could be different from 0. Use the .05 significance level. What is your conclusion?
e. Conduct a test of hypothesis for each independent variable. Use the .05 significance

level. Which variable would you consider eliminating?
f. Outline a strategy for deleting independent variables in this case.

X2X1
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8. The following regression output was obtained from a study of architectural firms. The
dependent variable is the total amount of fees in millions of dollars.

is the number of architects employed by the company.
is the number of engineers employed by the company.
is the number of years involved with health care projects.
is the number of states in which the firm operates.
is the percent of the firm’s work that is health care–related.

a. Write out the regression equation.
b. How large is the sample? How many independent variables are there?
c. Conduct a global test of hypothesis to see if any of the set of regression coefficients

could be different from 0. Use the .05 significance level. What is your conclusion?
d. Conduct a test of hypothesis for each independent variable. Use the .05 significance

level. Which variable would you consider eliminating first?
e. Outline a strategy for deleting independent variables in this case.

14.5 Evaluating the Assumptions 
of Multiple Regression
In the previous section, we described the methods to statistically evaluate the
multiple regression equation. The results of the test let us know if at least one
of the coefficients was not equal to zero and we described a procedure of eval-
uating each regression coefficient. We also discussed the decision-making pro-
cess for including and excluding independent variables in the multiple regression
equation.

It is important to know that the validity of the statistical global and individ-
ual tests rely on several assumptions. That is, if the assumptions are not true,
the results might be biased or misleading. However, strict adherence to the fol-
lowing assumptions is not always possible. Fortunately, the statistical techniques
discussed in this chapter work well even when one or more of the assumptions
are violated. Even if the values in the multiple regression equation are “off” slightly,
our estimates using a multiple regression equation will be closer than any that could
be made otherwise. Usually the statistical procedures are robust enough to over-
come violations of some assumptions.

In Chapter 13, we listed the necessary assumptions for regression when we con-
sidered only a single independent variable. (See Section 13.8 on page 490.) The
assumptions for multiple regression are similar.

1. There is a linear relationship. That is, there is a straight-line relationship
between the dependent variable and the set of independent variables.

X5

X4

X3

X2

X1

Predictor Coef SE Coef T p-value
Constant 7.987 2.967 2.69 —
X1 0.12242 0.03121 3.92 0.000
X2 �0.12166 0.05353 �2.27 0.028
X3 �0.06281 0.03901 �1.61 0.114
X4 0.5235 0.1420 3.69 0.001
X5 �0.06472 0.03999 �1.62 0.112

Analysis of Variance
Source DF SS MS F p-value
Regression 5 3710.00 742.00 12.89 0.000
Residual Error 46 2647.38 57.55
Total 51 6357.38
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2. The variation in the residuals is the same for both large and small values
of To put it another way, is unrelated to whether is large or small.

3. The residuals follow the normal probability distribution. Recall the residual
is the difference between the actual value of Y and the estimated value So
the term is computed for every observation in the data set. These resid-
uals should approximately follow a normal probability distribution. In addition,
the mean of the residuals should be 0.

4. The independent variables should not be correlated. That is, we would like to
select a set of independent variables that are not themselves correlated.

5. The residuals are independent. This means that successive observations of
the dependent variable are not correlated. This assumption is often violated
when time is involved with the sampled observations.

In this section, we present a brief discussion of each of these assumptions. In addi-
tion, we provide methods to validate these assumptions and indicate the conse-
quences if these assumptions cannot be met. For those interested in additional
discussion, Kutner, Nachtscheim, Neter, and Li, Applied Linear Statistical Models,
5th ed., (McGraw-Hill: 2005), is an excellent reference.

Linear Relationship
Let’s begin with the linearity assumption. The idea is that the relationship
between the set of independent variables and the dependent variable is linear. If
we are considering two independent variables, we can visualize this assumption.
The two independent variables and the dependent variable would form a three-
dimensional space. The regression equation would then form a plane as shown
on page 514. We can evaluate this assumption with scatter diagrams and residual
plots.

Using Scatter Diagrams The evaluation of a multiple regression equation
should always include a scatter diagram that plots the dependent variable against
each independent variable. These graphs help us to visualize the relationships and
provide some initial information about the direction (positive or negative), linearity, and
strength of the relationship. For example, the scatter diagrams for the home heat-
ing example follow. The plots suggest a fairly strong negative, linear relationship
between heating cost and temperature, and a negative relationship between heating
cost and insulation.

Using Residual Plots Recall that a residual can be computed using the
multiple regression equation for each observation in a data set. In Chapter 13, we

(Y � Ŷ )

(Y � Ŷ )
Ŷ.

Ŷ(Y � Ŷ )Ŷ.

532 Chapter 14

LO6 Use residual
analysis to evaluate the
assumptions of multiple
regression analysis.
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discussed the idea that the best regression line passed through the center of the
data in a scatter plot. In this case, you would find a good number of the observa-
tions above the regression line (these residuals would have a positive sign), and a
good number of the observations below the line (these residuals would have a neg-
ative sign). Further, the observations would be scattered above and below the line
over the entire range of the independent variable.

The same concept is true for multiple regression, but we cannot graphically por-
tray the multiple regression. However, plots of the residuals can help us evaluate
the linearity of the multiple regression equation. To investigate, the residuals are plot-
ted on the vertical axis against the predictor variable, The graph on the left below
shows the residual plots for the home heating cost example. Notice the following:

• The residuals are plotted on the vertical axis and are centered around zero.
There are both positive and negative residuals.

• The residual plots show a random distribution of positive and negative values
across the entire range of the variable plotted on the horizontal axis.

• The points are scattered and there is no obvious pattern, so there is no reason
to doubt the linearity assumption.

This plot supports the assumption of linearity.

Ŷ.

If there is a pattern to the points in the scatter plot, further investigation is
necessary. The points in the graph on the right above show nonrandom residuals.
See that the residual plot does not show a random distribution of positive and
negative values across the entire range of the variable plotted on the horizontal
axis. In fact, the graph shows a curvature to the residual plots. This indicates the
relationship may not be linear. In this case, we would evaluate different transfor-
mations of the equation as discussed in Chapter 13.

Variation in Residuals Same
for Large and Small Values
This requirement indicates that the variation about the predicted values is con-
stant, regardless of whether the predicted values are large or small. To cite a
specific example, which may violate the assumption, suppose we use the single
independent variable age to explain the variation in income. We suspect that
as age increases so does salary, but it also seems reasonable that as age
increases there may be more variation around the regression line. That is, there will
likely be more variation in income for a 50-year-old person than for a 35-year-old

Ŷ
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person. The requirement for constant variation around the regression line is called
homoscedasticity.

HOMOSCEDASTICITY The variation around the regression equation is the same for
all of the values of the independent variables.

To check for homoscedasticity the residuals are plotted against the fitted values of
Y. This is the same graph that we used to evaluate the assumption of linearity. (See
page 533.) Based on the scatter diagram in that software output, it is reasonable
to conclude that this assumption has not been violated.

Distribution of Residuals
To be sure that the inferences we make in the global and individual hypotheses tests
are valid, we evaluate the distribution of residuals. Ideally, the residuals should follow
a normal probability distribution.

To evaluate this assumption, we can organize the residuals into a frequency dis-
tribution. The Minitab histogram of the residuals is shown following on the left for
the home heating cost example. Although it is difficult to show that the residuals
follow a normal distribution with only 20 observations, it does appear the normality
assumption is reasonable.

Both Minitab and Excel offer another graph that helps to evaluate the assump-
tion of normally distributed residuals. It is a called a normal probability plot and is
shown to the right of the histogram. We describe this graph further in Section 17.6
starting on page 663. Basically, the normal probability plot supports the assump-
tion of normally distributed residuals if the plotted points are fairly close to a straight
line drawn from the lower left to the upper right of the graph.

In this case, both graphs support the assumption that the residuals follow the
normal probability distribution. Therefore, the inferences that we made based on
the global and individual hypothesis tests are supported with the results of this
evaluation.

Multicollinearity
Multicollinearity exists when independent variables are correlated. Correlated inde-
pendent variables make it difficult to make inferences about the individual regression
coefficients and their individual effects on the dependent variable. In practice, it is

LO7 Evaluate the
effects of correlated
independent variables.
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Example Refer to the data in Table 14–1, which relates the heating cost to the independent
variables outside temperature, amount of insulation, and age of furnace. Develop a
correlation matrix for all the independent variables. Does it appear there is a prob-
lem with multicollinearity? Find and interpret the variance inflation factor for each of
the independent variables.

nearly impossible to select variables that are completely unrelated. To put it another
way, it is nearly impossible to create a set of independent variables that are not
correlated to some degree. However, a general understanding of the issue of multi-
collinearity is important.

First, we should point out that multicollinearity does not affect a multiple regres-
sion equation’s ability to predict the dependent variable. However, when we are
interested in evaluating the relationship between each independent variable and the
dependent variable, multicollinearity may show unexpected results.

For example, if we use two highly multicollinear variables, high school GPA and
high school class rank, to predict the GPA of incoming college freshmen (dependent
variable), we would expect that both independent variables would be positively
related to the dependent variable. However, because the independent variables
are highly correlated, one of the independent variables may have an unexpected
and inexplicable negative sign. In essence, these two independent variables are
redundant in that they explain the same variation in the dependent variable.

A second reason for avoiding correlated independent variables is they may lead
to erroneous results in the hypothesis tests for the individual independent variables.
This is due to the instability of the standard error of estimate. Several clues that
indicate problems with multicollinearity include the following:

1. An independent variable known to be an important predictor ends up having a
regression coefficient that is not significant.

2. A regression coefficient that should have a positive sign turns out to be nega-
tive, or vice versa.

3. When an independent variable is added or removed, there is a drastic change
in the values of the remaining regression coefficients.

In our evaluation of a multiple regression equation, an approach to reducing the
effects of multicollinearity is to carefully select the independent variables that are
included in the regression equation. A general rule is if the correlation between
two independent variables is between �0.70 and 0.70, there likely is not a prob-
lem using both of the independent variables. A more precise test is to use the
variance inflation factor. It is usually written VIF. The value of VIF is found as
follows:

The term refers to the coefficient of determination, where the selected
independent variable is used as a dependent variable and the remaining inde-
pendent variables are used as independent variables. A VIF greater than 10
is considered unsatisfactory, indicating that the independent variable should be
removed from the analysis. The following example will explain the details of
finding the VIF.

R2
j

VARIANCE INFLATION FACTOR [14–7]VIF �
1

1 � R2
j
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Solution We begin by using the Minitab system to find the correlation matrix for the depen-
dent variable and the three independent variables. A portion of that output follows:

Cost Temp Insul
Temp �0.812
Insul �0.257 �0.103
Age 0.537 �0.486 0.064

Cell Contents: Pearson correlation

The highlighted area indicates the correlation among the independent variables.
None of the correlations among the independent variables exceed �.70 or .70, so
we do not suspect problems with multicollinearity. The largest correlation among the
independent variables is �0.486 between age and temperature.

To confirm this conclusion, we compute the VIF for each of the three indepen-
dent variables. We will consider the independent variable temperature first. We use
Minitab to find the multiple coefficient of determination with temperature as the
dependent variable and amount of insulation and age of the furnace as indepen-
dent variables. The relevant Minitab output follows.

Regression Analysis: Temp versus Insul, Age

The regression equation is
Temp � 58.0 � 0.51 Insul � 2.51 Age

Predictor Coef SE Coef T P
Constant 57.99 12.35 4.70 0.000
Insul �0.509 1.488 �0.34 0.737
Age �2.509 1.103 �2.27 0.036

S � 16.0311  R-Sq � 24.1%  R-Sq(adj) � 15.2%

Analysis of Variance
Source DF SS MS F P
Regression 2 1390.3 695.1 2.70 0.096
Residual Error 17 4368.9 257.0
Total 19 5759.2

The coefficient of determination is .241, so inserting this value into the VIF formula:

The VIF value of 1.32 is less than the upper limit of 10. This indicates that the inde-
pendent variable temperature is not strongly correlated with the other independent
variables.

Again, to find the VIF for insulation we would develop a regression equation
with insulation as the dependent variable and temperature and age of furnace as
independent variables. For this equation, we would determine the coefficient of
determination. This would be the value for . We would substitute this value in
equation 14–7, and solve for VIF.

Fortunately, Minitab will generate the VIF values for each of the independent
variables. These values are reported in the right-hand column under the heading VIF
in the following Minitab output. All these values are less than 10. Hence, we con-
clude there is not a problem with multicollinearity in this example.

The regression equation is
Cost � 427 � 4.58 Temp � 14.8 Insul � 6.10 Age

Predictor Coef SE Coef T P VIF
Constant 427.19 59.60 7.17 0.000
Temp �4.5827 0.7723 �5.93 0.000 1.318
Insul �14.831 4.754 �3.12 0.007 1.011
Age �6.101 4.012 1.52 0.148 1.310

R2
2

VIF �
1

1 � R2
1

�
1

1 � .241
� 1.32
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