
©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Chapter 12

Object-Oriented Design

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 1 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Object-oriented Design

•Designing systems using self-contained
objects and object classes

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 2 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Objectives
• To explain how a software design may be

represented as a set of interacting objects that
manage their own state and operations

• To describe the activities in the object-oriented
design process

• To introduce various models that describe an
object-oriented design

• To show how the UML may be used to represent
these models

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 3 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Topics covered
• Objects and object classes
• An object-oriented design process
• Design evolution

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 4 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Characteristics of OOD
• Objects are abstractions of real-world or system

entities and manage themselves
• Objects are independent and encapsulate state

and representation information.
• System functionality is expressed in terms of

object services
• Shared data areas are eliminated. Objects

communicate by message passing
• Objects may be distributed and may execute

sequentially or in parallel

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 5 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Interacting objects

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 6 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Advantages of OOD
• Easier maintenance. Objects may be

understood as stand-alone entities
• Objects are appropriate reusable components
• For some systems, there may be an obvious

mapping from real world entities to system
objects

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 7 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Object-oriented development
• Object-oriented analysis, design and

programming are related but distinct
• OOA is concerned with developing an object

model of the application domain
• OOD is concerned with developing an object-

oriented system model to implement
requirements

• OOP is concerned with realising an OOD using
an OO programming language such as Java or
C++

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 8 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Objects and object classes
• Objects are entities in a software system which

represent instances of real-world and system
entities

• Object classes are templates for objects. They
may be used to create objects

• Object classes may inherit attributes and
services from other object classes

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 9 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Objects

An object is an entity which has a state and a defined set of
operations which operate on that state. The state is represented as a
set of object attributes. The operations associated with the object
provide services to other objects (clients) which request these
services when some computation is required.

Objects are created according to some object class definition. An
object class definition serves as a template for objects. It includes
declarations of all the attributes and services which should be
associated with an object of that class.

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 10 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

The Unified Modeling Language
• Several different notations for describing object-

oriented designs were proposed in the 1980s
and 1990s

• The Unified Modeling Language is an integration
of these notations

• It describes notations for a number of different
models that may be produced during OO
analysis and design

• It is now a de facto standard for OO modelling

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 11 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Employee object class (UML)

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 12 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Object communication
• Conceptually, objects communicate by

message passing.
• Messages
• The name of the service requested by the calling object.
• Copies of the information required to execute the service

and the name of a holder for the result of the service.

• In practice, messages are often implemented
by procedure calls

• Name = procedure name.
• Information = parameter list.

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 13 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Message examples
 // Call a method associated with a buffer

// object that returns the next value
// in the buffer

 v = circularBuffer.Get () ;

 // Call the method associated with a

// thermostat object that sets the
// temperature to be maintained

 thermostat.setTemp (20) ;

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 14 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Generalisation and inheritance
• Objects are members of classes which define

attribute types and operations
• Classes may be arranged in a class hierarchy

where one class (a super-class) is a generalisation of
one or more other classes (sub-classes)

• A sub-class inherits the attributes and
operations from its super class and may add
new methods or attributes of its own

• Generalisation in the UML is implemented as inheritance
in OO programming languages

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 15 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

A generalisation hierarchy

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 16 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Advantages of inheritance
• It is an abstraction mechanism which may be

used to classify entities
• It is a reuse mechanism at both the design and

the programming level
• The inheritance graph is a source of

organisational knowledge about domains and
systems

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 17 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Problems with inheritance
• Object classes are not self-contained. they

cannot be understood without reference to their
super-classes

• Designers have a tendency to reuse the
inheritance graph created during analysis. Can
lead to significant inefficiency

• The inheritance graphs of analysis, design and
implementation have different functions and
should be separately maintained

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 18 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Inheritance and OOD
• There are differing views as to whether

inheritance is fundamental to OOD.
• View 1. Identifying the inheritance hierarchy or network is a

fundamental part of object-oriented design. Obviously this can
only be implemented using an OOPL.

• View 2. Inheritance is a useful implementation concept which
allows reuse of attribute and operation definitions. Identifying
an inheritance hierarchy at the design stage places
unnecessary restrictions on the implementation

• Inheritance introduces complexity and this is
undesirable, especially in critical systems

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 19 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

UML associations
• Objects and object classes participate in

relationships with other objects and object
classes

• In the UML, a generalised relationship is
indicated by an association

• Associations may be annotated with information
that describes the association

• Associations are general but may indicate that
an attribute of an object is an associated object
or that a method relies on an associated object

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 20 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

An association model

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 21 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Concurrent objects
• The nature of objects as self-contained entities

make them suitable for concurrent
implementation

• The message-passing model of object
communication can be implemented directly if
objects are running on separate processors in a
distributed system

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 22 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Servers and active objects
• Servers.
• The object is implemented as a parallel process (server)

with entry points corresponding to object operations. If no
calls are made to it, the object suspends itself and waits for
further requests for service

• Active objects
• Objects are implemented as parallel processes and the

internal object state may be changed by the object itself and
not simply by external calls

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 23 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Active transponder object
• Active objects may have their attributes modified

by operations but may also update them
autonomously using internal operations

• Transponder object broadcasts an aircraft’s
position. The position may be updated using a
satellite positioning system. The object
periodically update the position by triangulation
from satellites

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 24 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

An active transponder object

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 25 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Java threads
• Threads in Java are a simple construct for

implementing concurrent objects
• Threads must include a method called run() and

this is started up by the Java run-time system
• Active objects typically include an infinite loop so

that they are always carrying out the
computation

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 26 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

An object-oriented design process
• Define the context and modes of use of the

system
• Design the system architecture
• Identify the principal system objects
• Develop design models
• Specify object interfaces

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 27 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Weather system description
A weather data collection system is required to generate weather maps on a
regular basis using data collected from remote, unattended weather stations
and other data sources such as weather observers, balloons and satellites.
Weather stations transmit their data to the area computer in response to a
request from that machine.

The area computer validates the collected data and integrates it with the data
from different sources. The integrated data is archived and, using data from
this archive and a digitised map database a set of local weather maps is
created. Maps may be printed for distribution on a special-purpose map
printer or may be displayed in a number of different formats.

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 28 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Weather station description

A weather station is a package of software controlled instruments
which collects data, performs some data processing and transmits
this data for further processing. The instruments include air and
ground thermometers, an anemometer, a wind vane, a barometer
and a rain gauge. Data is collected every five minutes.

When a command is issued to transmit the weather data, the
weather station processes and summarises the collected data. The
summarised data is transmitted to the mapping computer when a
request is received.

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 29 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Layered architecture

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 30 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

System context and models of use
• Develop an understanding of the relationships

between the software being designed and its
external environment

• System context
• A static model that describes other systems in the environment.

Use a subsystem model to show other systems. Following slide
shows the systems around the weather station system.

• Model of system use
• A dynamic model that describes how the system interacts with

its environment. Use use-cases to show interactions

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 31 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Subsystems in the weather mapping
system

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 32 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Use-cases for the weather station

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 33 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Use-case description

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 34 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Architectural design
• Once interactions between the system and its

environment have been understood, you use this
information for designing the system architecture

• Layered architecture is appropriate for the
weather station

• Interface layer for handling communications
• Data collection layer for managing instruments
• Instruments layer for collecting data

• There should be no more than 7 entities in an
architectural model

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 35 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Weather station architecture

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 36 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Object identification
• Identifying objects (or object classes) is the most

difficult part of
object oriented design

• There is no 'magic formula' for object
identification. It relies on the skill, experience
and domain knowledge of system designers

• Object identification is an iterative process. You
are unlikely to get it right first time

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 37 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Approaches to identification
• Use a grammatical approach based on a natural

language description of the system (used in
Hood method)

• Base the identification on tangible things in the
application domain

• Use a behavioural approach and identify objects
based on what participates in what behaviour

• Use a scenario-based analysis. The objects,
attributes and methods in each scenario are
identified

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 38 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Weather station object classes
• Ground thermometer, Anemometer, Barometer
• Application domain objects that are ‘hardware’ objects related

to the instruments in the system

• Weather station
• The basic interface of the weather station to its environment. It

therefore reflects the interactions identified in the use-case
model

• Weather data
• Encapsulates the summarised data from the instruments

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 39 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Weather station object classes

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 40 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Further objects and object refinement
• Use domain knowledge to identify more objects

and operations
• Weather stations should have a unique identifier
• Weather stations are remotely situated so instrument failures

have to be reported automatically. Therefore attributes and
operations for self-checking are required

• Active or passive objects
• In this case, objects are passive and collect data on request

rather than autonomously. This introduces flexibility at the
expense of controller processing time

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 41 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Design models
• Design models show the objects and object

classes and relationships between these entities
• Static models describe the static structure of the

system in terms of object classes and
relationships

• Dynamic models describe the dynamic
interactions between objects.

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 42 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Examples of design models
• Sub-system models that show logical groupings

of objects into coherent subsystems
• Sequence models that show the sequence of

object interactions
• State machine models that show how individual

objects change their state in response to events
• Other models include use-case models,

aggregation models, generalisation models,etc.

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 43 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Subsystem models
• Shows how the design is organised into logically

related groups of objects
• In the UML, these are shown using packages -

an encapsulation construct. This is a logical
model. The actual organisation of objects in the
system may be different.

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 44 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Weather station subsystems

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 45 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Sequence models
• Sequence models show the sequence of object

interactions that take place
• Objects are arranged horizontally across the top
• Time is represented vertically so models are read top to bottom
• Interactions are represented by labelled arrows, Different styles

of arrow represent different types of interaction
• A thin rectangle in an object lifeline represents the time when

the object is the controlling object in the system

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 46 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Data collection sequence

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 47 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Statecharts
• Show how objects respond to different service

requests and the state transitions triggered by
these requests

• If object state is Shutdown then it responds to a Startup()
message

• In the waiting state the object is waiting for further messages
• If reportWeather () then system moves to summarising state
• If calibrate () the system moves to a calibrating state
• A collecting state is entered when a clock signal is received

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 48 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Weather station state diagram

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 49 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Object interface specification
• Object interfaces have to be specified so that the

objects and other components can be designed
in parallel

• Designers should avoid designing the interface
representation but should hide this in the object
itself

• Objects may have several interfaces which are
viewpoints on the methods provided

• The UML uses class diagrams for interface
specification but Java may also be used

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 50 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Weather station interface

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 51 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Design evolution
• Hiding information inside objects means that

changes made to an object do not affect other
objects in an unpredictable way

• Assume pollution monitoring facilities are to be
added to weather stations. These sample the
air and compute the amount of different
pollutants in the atmosphere

• Pollution readings are transmitted with weather
data

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 52 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Changes required
• Add an object class called ‘Air quality’ as part of

WeatherStation
• Add an operation reportAirQuality to

WeatherStation. Modify the control software to
collect pollution readings

• Add objects representing pollution monitoring
instruments

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 53 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Pollution monitoring

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 54 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

• OOD is an approach to design so that design
components have their own private state and
operations

• Objects should have constructor and inspection
operations. They provide services to other objects

• Objects may be implemented sequentially or
concurrently

• The Unified Modeling Language provides different
notations for defining different object models

Key points

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 55 of 56

©Ian Sommerville 2000 Software Engineering, 6th edition. Chapter 12 Slide 0

Key points
• A range of different models may be produced

during an object-oriented design process. These
include static and dynamic system models

• Object interfaces should be defined precisely
using e.g. a programming language like Java

• Object-oriented design simplifies system
evolution

http://www.ccs.neu.edu/home/lieber/com3205/f02/lectures/sommerville/ch12.ppt 17/01/2020, 5>39 PM
Page 56 of 56

