
1

Database Administration I © All rights reserved

Managing an Oracle Instance

Date: 07.10.2009
Instructor: SL. Dr. Ing. Ciprian Dobre

2

Database Administration I © All rights reserved

Objectives

After completing this lesson, you should be able to do
the following:
• Create and manage initialization parameter files
• Start up and shut down an instance
• Monitor and use diagnostic files

3

Database Administration I © All rights reserved

spfiledb01.ora

Initialization Parameter Files

CONNECT / AS SYSDBA
STARTUP

Oracle Instance
SGA

Redo Log
Buffer

Shared Pool

Data Dictionary
Cache

Library
Cache

DBW0SMONPMON CKPTLGWR Others

Database
Buffer Cache

Java Pool Large Pool

Initialization Parameter Files
In order to start an instance and open the database, you must connect as
SYSDBA and enter the STARTUP command. The Oracle server will then read the
initialization parameter file and prepare the instance according to the initialization
parameters contained within.
Note: You must have SYSDBA privilege. Authentication and the SYSDBA
privilege will be discussed in later lessons.

4

Database Administration I © All rights reserved

Initialization Parameter Files

• Entries are specific to the instance being started
• Two types of parameters:

– Explicit: Having an entry in the file
– Implicit: No entry within the file, but assuming the

Oracle default values
• Multiple initialization parameter files can exist
• Changes to entries in the file take effect based on

the type of initialization parameter file used:
– Static parameter file, PFILE
– Persistent server parameter file, SPFILE

Initialization Parameter Files
To start an instance, the Oracle server reads the initialization parameter file. Two
types of initialization parameter files exist:

Static parameter file, PFILE, commonly referred to as initSID.ora.
Persistent server parameter file, SPFILE, commonly referred to as
spfileSID.ora.

Initialization Parameter File Contents
A list of instance parameters
The name of the database the instance is associated with
Allocations for memory structures of the System Global Area (SGA)
What to do with filled online redo log files
The names and locations of control files
Information about undo segments

Multiple initialization parameter files can exist for an instance in order to optimize
performance in different situations.

5

Initialization Parameter Files (continued)
Using Oracle Enterprise Manager to View Initialization Parameters
From the OEM Console:

Navigate to Instance > Configuration.
Highlight Configuration.
Select All Initialization Parameters from the General tabbed page.

6

Database Administration I © All rights reserved

PFILE
initSID.ora

• Text file
• Modified with an operating system editor
• Modifications made manually
• Changes take effect on the next start up
• Only opened during instance start up
• Default location is $ORACLE_HOME/dbs

PFILE
The PFILE is a text file that can be maintained using a standard operating
system editor. The PFILE is read only during instance startup. If the file is
modified, the instance must be shut down and restarted in order to make the
new parameter values effective.
By default, the PFILE is located in the $ORACLE_HOME/dbs directory and
named initSID.ora.

7

Database Administration I © All rights reserved

Creating a PFILE

• Created from a sample init.ora file
– Sample installed by the Oracle Universal Installer
– Copy sample using operating system copy command
– Uniquely identified by database SID

• Modify the initSID.ora
– Edit the parameters
– Specific to database needs

cp init.ora $ORACLE_HOME/dbs/initdba01.ora

Creating a PFILE
A sample init.ora file is created by the Universal Installer during installation.
This sample init.ora file can be used to create an instance-specific
initSID.ora. A text editor can be used to modify the parameters within the
initSID.ora file.

8

Database Administration I © All rights reserved

PFILE Example
Initialization Parameter File: initdba01.ora

db_name = dba01

instance_name = dba01

control_files = (
/home/dba01/ORADATA/u01/control01dba01.ctl,

/home/dba01/ORADATA/u02/control01dba02.ctl)

db_block_size = 4096

db_cache_size = 4M

shared_pool_size = 50000000

java_pool_size = 50000000

max_dump_file_size = 10240

background_dump_dest = /home/dba01/ADMIN/BDUMP

user_dump_dest = /home/dba01/ADMIN/UDUMP

core_dump_dest = /home/dba01/ADMIN/CDUMP

undo_management = AUTO

undo_tablespace = UNDOTBS

. . .

PFILE Example
Specify the values in the following format: keyword=value.
The server has a default value for each parameter. This value may be
operating system dependent, depending on the parameter.
Parameters can be specified in any order, although there are some
exceptions.
Comment lines begin with the # symbol.
Enclose parameters in double quotation marks to include character
literals.
Additional files can be included with the keyword IFILE.
If case is significant for the operating system, then it is also significant in
filenames.
Multiple values are enclosed in parentheses and separated by commas.

Note: Develop a standard for listing parameters; either list them alphabetically or
group them by functionality. The PFILE varies from instance to instance and
does not necessarily look like the preceding example.

9

Database Administration I © All rights reserved

SPFILE
spfileSID.ora

• Binary file
• Maintained by the Oracle server
• Always resides on the server side
• Ability to make changes persistent across shut

down and start up
• Can self-tune parameter values
• Can have Recovery Manager support backing up to

the initialization parameter file

SPFILE
An SPFILE, new to Oracle9i, is a binary file. The file is not meant to be modified
manually and must always reside on the server side. After the file is created it is
maintained by the Oracle server. If modified manually, the SPFILE is rendered
useless. The SPFILE provides the ability to make changes to the database
persistent across shutdown and startup. It also provides the ability to self-tune
parameter values, which are recorded in the file. RMAN support for backing up
the initialization parameter file is possible because the SPFILE resides on the
server side. By default, the file is located in $ORACLE_HOME/dbs and has a
default name in the format of spfileSID.ora.

10

10
Database Administration I © All rights reserved

Creating an SPFILE

• Created from a PFILE file

where
– SPFILE-NAME: SPFILE to be created
– PFILE-NAME: PFILE creating the SPFILE

• Can be executed before or after instance start up

CREATE SPFILE = ‘$ORACLE_HOME/dbs/spfileDBA01.ora’
FROM PFILE = ‘$ORACLE_HOME/dbs/initDBA01.ora’;

Creating an SPFILE
An SPFILE is created from a PFILE file using the CREATE SPFILE command.
This command requires the SYSDBA privilege to execute. This command can be
executed before or after instance startup.

CREATE SPFILE [='SPFILE-NAME']
FROM PFILE[='PFILE-NAME'];

where:
SPFILE-NAME: Name of the SPFILE to be created
PFILE-NAME: Name of the PFILE being used to create the SPFILE. The
PFILE must be available on the server side

If the SPFILE-NAME and PFILE-NAME are not included in the syntax, Oracle
will use the default PFILE to generate an SPFILE with a system-generated
name.

SQL> CREATE SPFILE FROM PFILE;

11

Creating an SPFILE (continued)
Exporting an SPFILE
The contents of an SPFILE can be exported into a PFILE.

SQL> CREATE PFILE FROM SPFILE;

The PFILE is created as a text file on the server side. This command can be
executed either before or after instance startup. This provides an easy way to
view the SPFILE and make modifications by:

Exporting the SPFILE to a PFILE
Editing the PFILE
Re-creating the SPFILE from the edited PFILE

Exporting an SPFILE to a PFILE can also serve as another alternative to
creating a backup of the server parameter file.
Note: With Oracle9i, RMAN can also back up server parameter files.
V$SPPARAMETER

As shown above, there are several options for viewing the parameter settings
within the SPFILE. V$SPPARAMETER is another source for presenting and
viewing contents of the SPFILE.

12

Creating an SPFILE
Using Oracle Enterprise Manager to Create an SPFILE
From the OEM Console:

Navigate to Instance > Configuration
Highlight Configuration.
Select Object > Create spfile from the main menu.

Using Oracle Enterprise Manager to Export an SPFILE
From the OEM Console:

Navigate to Instance > Configuration
Highlight Configuration.
Select Object > Create pfile from the main menu.

13

Database Administration I © All rights reserved

SPFILE Example

*.background_dump_dest= '/home/dba01/ADMIN/BDUMP'

*.compatible='9.2.0'

*.control_files='/home/dba01/ORADATA/u01/ctrl01.ctl'
*.core_dump_dest= '/home/dba01/ADMIN/CDUMP'

*.db_block_size=4096

*.db_name='dba01'

*.db_domain= 'world'

*.global_names=TRUE

*.instance_name='dba01'

*.remote_login_passwordfile='exclusive'

*.java_pool_size=50000000

*.shared_pool_size=50000000

*.undo_management='AUTO'

*.undo_tablespace='UNDOTBS'

. . .

SPFILE Example
The comments specified on the same lines as a parameter setting in the PFILE
are maintained in the SPFILE. All other comments are ignored.
Although the text of an SPFILE is easily viewed in UNIX, the SPFILE is binary,
and manual modification of the SPFILE will render it unusable. If you need to
view the specific contents of an SPFILE or make some modification, export the
SPFILE to a PFILE.

14

Database Administration I © All rights reserved

Modifying Parameters in SPFILE

• Changing parameter values

• Specifying temporary or persistent changes

• Deleting or resetting values

ALTER SYSTEM SET undo_tablespace = UNDO2;

ALTER SYSTEM SET undo_tablespace = UNDO2
SCOPE=BOTH;

ALTER SYSTEM RESET undo_suppress_errors
SCOPE=BOTH SID='*';

Modifying Parameters in SPFILE
The ALTER SYSTEM SET command is used to change the value of instance
parameters.
ALTER SYSTEM SET parameter_name = parameter_value

[COMMENT 'text'] [SCOPE = MEMORY|SPFILE|BOTH]
[SID= 'sid'|'*']

where
parameter_name: Name of the parameter to be changed
parameter_value: Value the parameter is being changed to
COMMENT: A comment to be added into the SPFILE next to the parameter being
altered
SCOPE: Determines if change should be made in memory, SPFILE, or in both
areas
MEMORY: Changes the parameter value only in the currently running instance
SPFILE: Changes the parameter value in the SPFILE only
BOTH: Changes the parameter value in the currently running instance and the
SPFILE
SID: Identifies the ORACLE_SID for the SPFILE being used
'sid': Specific SID to be used in altering the SPFILE
' ' U th d f lt

15

Modifying Parameters in SPFILE (continued)
Example
SQL> SHOW PARAMETERS undo_suppress_errors

NAME TYPE VALUE

---------------------- ----------- -------

undo_suppress_errors boolean FALSE

SQL> ALTER SYSTEM SET undo_suppress_errors = TRUE

2 COMMENT = ‘temporary testing’ SCOPE=BOTH

3 SID=‘DBA01’;
SQL> SHOW PARAMETERS undo_suppress_errors

NAME TYPE VALUE

---------------------- ----------- -------

undo_suppress_errors boolean TRUE

The ALTER SYSTEM RESET command is used to delete or revert to the default value.
ALTER SYSTEM RESET parameter_name [SCOPE = MEMORY|SPFILE|BOTH]
[SID= ‘sid’|’*’]

Example
SQL> ALTER SYSTEM RESET undo_suppress_errors

2 SCOPE=BOTH SID=‘dba01’;
There are several ways to remove a parameter from the SPFILE:

Set the parameter back to its default value to simulate deleting using ALTER SYSTEM
SET.

Re-create the SPFILE using CREATE SPFILE FROM PFILE.
Use ALTER SYSTEM RESET to delete the parameter from the SPFILE.

16

Modifying Parameters in SPFILE (continued)
Using Oracle Enterprise Manager to Modify the SPFILE Configuration
From the OEM Console:

1. Navigate to Instance > Configuration.
2. Highlight Configuration.
3. Click All Initialization Parameters in the General tabbed page.
4. Modify a parameter in the value column.
5. Click Apply.

17

Database Administration I © All rights reserved

STARTUP Command Behavior

• Order of precedence:
– spfileSID.ora

– Default SPFILE
– initSID.ora

– Default PFILE
• Specified PFILE can override precedence.

• PFILE can indicate to use SPFILE.

STARTUP PFILE = $ORACLE_HOME/dbs/initDBA1.ora

SPFILE = /database/startup/spfileDBA1.ora

STARTUP Command Behavior
Order of Precedence

When the command STARTUP is used, the spfileSID.ora on the
server side is used to start up the instance.
If the spfileSID.ora is not found, the default SPFILE on the server
side is used to start the instance.
If the default SPFILE is not found, the initSID.ora on the server side
will be used to start the instance.

A specified PFILE can override the use of the default SPFILE to start the
instance.
A PFILE can optionally contain a definition to indicate use of an SPFILE. This is
the only way to start the instance with an SPFILE in a nondefault location.
To start the database with an SPFILE not in the default location:
SPFILE=<full path and filename> must be placed in the PFILE.
Example: SPFILE=$HOME/ADMIN/PFILE/$ORACLE_SID.ora.

18

Parameters That Should be Specified in the Initialization Parameter File

Note: The default values depend on the version of the Oracle server.
Commonly Modified Parameters

Names of the control filesCONTROL_FILES

Location where user debugging trace files are created
on behalf of a user process

USER_DUMP_DEST

Size in bytes of the shared poolSHARED_POOL_SIZE

Database identifier of eight characters or fewer. This
is the only parameter that is required when a new
database is created

DB_NAME

Specifies the size of the cache for standard block size
buffers

DB_CACHE_SIZE

Version of the server with which this instance should
be compatible

COMPATIBLE

Location where background process trace files are
written (LGWR, DBWn, and so on). Also the location
for the alert log file

BACKGROUND_DUMP_DEST

DescriptionParameter

Enables or disables timing in trace files and inTIMED STATISTICS

Enables or disables the SQL trace facility for
every user session

SQL_TRACE

Maximum number of operating system processes
that
can connect simultaneously to this instance

PROCESSES

Maximum size of the trace files, specified as
number of
operating system blocks

MAX_DUMP_FILE_SIZE

Number of bytes allocated to the redo log buffer in
the
SGA

LOG_BUFFER

Name of another parameter file to be embedded
within
the current parameter file. Up to three levels of
nesting
is possible.

IFILE

DescriptionParameter

19

Database Administration I © All rights reserved

Starting Up a Database
NOMOUNT

OPEN

MOUNT

NOMOUNT

SHUTDOWN

Instance
started

STARTUP

SHUTDOWN

Starting Up a Database
When starting the database, you select the state in which it starts. The following
scenarios describe different stages of starting up an instance.
Starting the Instance (NOMOUNT)
An instance would be started in the NOMOUNT stage only during database
creation or the re-creation of control files.
Starting an instance includes the following tasks:

Reading the initialization file from $ORACLE_HOME/dbs in the following
order:

First spfileSID.ora
If not found then, spfile.ora
If not found then, initSID.ora
Specifying the PFILE parameter with STARTUP overrides the
default behavior.

Allocating the SGA
Starting the background processes
Opening the alertSID.log file and the trace files

The database must be named with the DB_NAME parameter either in the
initialization parameter file or in the STARTUP command.

20

Database Administration I © All rights reserved

Starting Up a Database
MOUNT

OPEN

MOUNT

NOMOUNT

SHUTDOWN

Control file
opened for this
instance

Instance
started

STARTUP

SHUTDOWN

Starting Up a Database (continued)
Mounting the Database (MOUNT)
To perform specific maintenance operations, you start an instance and mount a
database but do not open the database.
For example, the database must be mounted but not open during the following
tasks:

Renaming data files
Enabling and disabling online redo log file archiving options
Performing full database recovery

Mounting a database includes the following tasks:
Associating a database with a previously started instance
Locating and opening the control files specified in the parameter file
Reading the control files to obtain the names and status of the data files
and online redo log files. However, no checks are performed to verify the
existence of the data files and online redo log files at this time.

21

Database Administration I © All rights reserved

Starting Up a Database
OPEN

OPEN

MOUNT

NOMOUNT

SHUTDOWN

All files opened as
described by the control
file for this instance

Control file
opened for this
instance

Instance
started

STARTUP

SHUTDOWN

Starting Up a Database (continued)
Opening the Database (OPEN)
Normal database operation means that an instance is started and the database
is mounted and open. With normal database operation, any valid user can
connect to the database and perform typical data access operations.
Opening the database includes the following tasks:

Opening the online data files
Opening the online redo log files

If any of the data files or online redo log files are not present when you attempt
to open the database, the Oracle server returns an error.
During this final stage, the Oracle server verifies that all the data files and online
redo log files can be opened and checks the consistency of the database. If
necessary, the SMON background process initiates instance recovery.

22

Database Administration I © All rights reserved

STARTUP Command

Start up the instance and open the database:

STARTUP

STARTUP PFILE=$ORACLE_HOME/dbs/initdb01.ora

STARTUP Command
To start up an instance, use the following command:

STARTUP [FORCE] [RESTRICT] [PFILE=filename]

[OPEN [RECOVER][database]

|MOUNT

|NOMOUNT]

Note: This is not the complete syntax.
where:

OPEN: Enables users to access the database
MOUNT: Mounts the database for certain DBA activities but does not
provide user access to the database
NOMOUNT: Creates the SGA and starts up the background processes but
does not provide access to the database
PFILE=parfile: Enables a nondefault initialization parameter file to be
used to configure the instance

23

STARTUP Command (continued)

FORCE: Aborts the running instance before performing a normal startup
RESTRICT: Enables only users with RESTRICTED SESSION privilege to
access the database
RECOVER: Begins media recovery when the database starts

Automating Database Startup
On UNIX:
Automating database start up and shut down can be controlled by the entries in a
special operating system file; for example, oratab in the /var/opt/oracle
directory.
Note: Refer to the installation guide of your operating system for more information.
Troubleshooting
If any errors are encountered while issuing the STARTUP command the SHUTDOWN
command must be issued before another STARTUP.
Note: STARTUP and SHUTDOWN commands are SQL*Plus commands, not SQL
commands.

24

STARTUP Command (continued)
Using Oracle Enterprise Manager to Start Up a Database
From the OEM Console:

1. Navigate to Instance > Configuration.
2. Highlight Configuration.
3. Select the Open option from the General tabbed page.
4. Click Apply.

Note: You must be connected to the database with SYSDBA privileges to
perform startup.

25

Database Administration I © All rights reserved

ALTER DATABASE Command

• Change the state of the database from NOMOUNT to
MOUNT:

• Open the database as a read-only database:

ALTER DATABASE db01 MOUNT;

ALTER DATABASE db01 OPEN READ ONLY;

ALTER DATABASE Command
To move the database from the NOMOUNT to a MOUNT stage or from the MOUNT
to an OPEN stage, use the ALTER DATABASE command:

ALTER DATABASE { MOUNT | OPEN }

To prevent data from being modified by user transactions, the database can be
opened in read-only mode.
To start up an instance, use the following command:

ALTER DATABASE OPEN [READ WRITE| READ ONLY]

where:
READ WRITE: Opens the database in read/write mode, so that users can
generate online redo log files.
READ ONLY: Restricts users to read-only transactions, preventing them
from generating online redo log file information.

26

Database Administration I © All rights reserved

Opening a Database in Restricted Mode

• Use the STARTUP command to restrict access to a
database:

• Use the ALTER SYSTEM command to place an
instance in restricted mode:

STARTUP RESTRICT

ALTER SYSTEM ENABLE RESTRICTED SESSION;

Opening a Database in Restricted Mode
A restricted session is useful, for example, when you perform structure
maintenance or a database export and import. The database can be started in
restricted mode so that it is available only to users with the RESTRICTED
SESSION privilege.
The database can also be put in restricted mode by using the ALTER SYSTEM
SQL command:

ALTER SYSTEM [{ENABLE|DISABLE} RESTRICTED SESSION]
where:

ENABLE RESTRICTED SESSION: Enables future logins only for users
who have the RESTRICTED SESSION privilege
DISABLE RESTRICTED SESSION: Disables RESTRICTED SESSION so
that users who do not have the privilege can log on

Terminate Sessions
After placing an instance in restricted mode, you may want to kill all current user
sessions before performing administrative tasks. This can be done by the
following:

ALTER SYSTEM KILL SESSION 'integer1,integer2'
where:

integer1: Value of the SID column in the V$SESSION view
integer2: Value of the SERIAL# column in the V$SESSION view

27

Opening a Database in Restricted Mode (continued)
Note: The session ID and serial number are used to uniquely identify a session.
This guarantees that the ALTER SYSTEM KILL SESSION command is applied
to the correct session even if the user logs off and a new session uses the same
session ID.
Effects of Terminating a Session
The ALTER SYSTEM KILL SESSION command causes the background
process PMON to perform the following steps upon execution:

Roll back the user’s current transaction.
Release all currently held table or row locks.
Free all resources currently reserved by the user.

28

Opening a Database in Restricted Mode (continued)
Using Oracle Enterprise Manager to Open a Database in Restricted Mode
From the OEM Console:

Navigate to Instance > Configuration.
Highlight Configuration.
Select the General tabbed page.
Select the Shutdown option under the Instance State.
Click Apply. The Shutdown Options dialog box will appear.
Select the Immediate option.
Click OK.
Select Close when processing is complete.
Select the Open option under Instance State.
Click OK. The Startup Options dialog box will appear.
Select the “Restrict access to database” option.
Click OK.
Click Close when processing complete.
Note: You must be connected to the database with SYSDBA privileges.

29

Database Administration I © All rights reserved

Opening a Database in Read-Only Mode

• Opening a database in read-only mode:

• Can be used to:
– Execute queries
– Execute disk sorts using locally managed tablespaces
– Take data files offline and online, but not tablespaces
– Perform recovery of offline data files and tablespaces

STARTUP MOUNT

ALTER DATABASE OPEN READ ONLY;

Opening a Database in Read-Only Mode
A database can be opened as read-only, as long as it is not already open in
read/write mode. The feature is especially useful for a standby database to
offload query processing from the production database.
If a query needs to use a temporary tablespace, for example, to do disk sorts,
the current user must have a locally managed tablespace assigned as the
default temporary tablespace; otherwise, the query fails.
Note: Locally managed tablespaces are discussed in a later lesson.
Read-only mode does not restrict database recovery or operations that change
the database state without generating redo data. For example, in read-only
mode:

Data files can be taken offline and online.
Recovery of offline data files and tablespaces can be performed.

Disk writes to other files, such as control files, operating system audit trails, trace
files, and alert log files, can continue in read-only mode.

30

Opening a Database in Read-Only Mode (continued)
Using Oracle Enterprise Manager to Start a Database in Read-Only Mode
From the OEM Console:

Navigate to Instance > Configuration.
Highlight Configuration.
Select the General tabbed page.
Select the Shutdown option under Instance State.
Click Apply. The Shutdown Options dialog box will appear.
Select the Immediate option.
Click OK.
Select Close when processing is complete.
Select the Open option under Instance State.
Click OK. The Startup Options dialog box will appear.
Select the Read Only Mode check box.
Click OK.
Click Close when processing complete.
Note: You must be connected to the database with SYSDBA privileges.

31

Database Administration I © All rights reserved

Shutting Down the Database

Shutdown mode:
• A = ABORT
• I = IMMEDIATE
• T = TRANSACTIONAL
• N = NORMAL

A

No

No

No

No

T

No

No

Yes

Yes

I

No

No

No

Yes

Shutdown Mode

Allow new connections

Wait until current sessions end

Wait until current transactions end

Force a checkpoint and close files

N

No

Yes

Yes

Yes

Shutting Down the Database
Shut down the database to make operating system offline backups of all physical
structures and to have modified static initialization parameters take effect when
restarted.
To shut down an instance you must connect as SYSOPER or SYSDBA and use
the following command:

SHUTDOWN [NORMAL | TRANSACTIONAL | IMMEDIATE | ABORT]

32

Database Administration I © All rights reserved

SHUTDOWN Options

On the way down:
• Database buffer

cache written to
the data files

• Uncommitted
changes rolled
back

• Resources released

On the way up:
• No instance

recovery

During

SHUTDOWN
NORMAL

or
SHUTDOWN

TRANSACTIONAL
or

SHUTDOWN
IMMEDIATE

Consistent database
(clean database)

SHUTDOWN Options
SHUTDOWN NORMAL

Normal is the default shut down mode. Normal database shut down proceeds
with the following conditions:

No new connections can be made.
The Oracle server waits for all users to disconnect before completing the
shutdown.
Database and redo buffers are written to disk.
Background processes are terminated, and the SGA is removed from
memory.
Oracle closes and dismounts the database before shutting down the
instance.
The next startup does not require an instance recovery.

SHUTDOWN TRANSACTIONAL

A transactional shut down prevents clients from losing work. A transactional
database shut down proceeds with the following conditions:

No client can start a new transaction on this particular instance.
A client is disconnected when the client ends the transaction that is in
progress.

33

SHUTDOWN Options (continued)
SHUTDOWN IMMEDIATE

Immediate database shut down proceeds with the following conditions:
Current SQL statements being processed by Oracle are not completed.
The Oracle server does not wait for the users, who are currently connected to
the database, to disconnect.
Oracle rolls back active transactions and disconnects all connected users.
Oracle closes and dismounts the database before shutting down the
instance.
The next start up does not require an instance recovery.

34

Database Administration I © All rights reserved

SHUTDOWN Options

On the way down:
• Modified buffers

are not written to
the data files

• Uncommitted
changes are not
rolled back

On the way up:
• Online redo log

files used to
reapply changes

• Undo segments
used to roll back
uncommitted
changes

• Resources
released

During

SHUTDOWN ABORT
or

Instance Failure
or

STARTUP FORCE

Inconsistent database
(dirty database)

SHUTDOWN Options (continued)
SHUTDOWN ABORT

If the NORMAL and IMMEDIATE shut down options do not work, you can abort
the current database instance. Aborting an instance proceeds with the following
conditions:

Current SQL statements being processed by the Oracle server are
immediately terminated.
Oracle does not wait for users currently connected to the database to
disconnect.
Database and redo buffers are not written to disk.
Uncommitted transactions are not rolled back.
The instance is terminated without closing the files.
The database is not closed or dismounted.
The next start up requires instance recovery, which occurs automatically.

Note: It is not advisable to back up a database that is in an inconsistent state.

35

SHUTDOWN Options (continued)
Using Oracle Enterprise Manager to Shut Down a Database
From the OEM Console:

1. Navigate to Instance > Configuration.
2. Highlight Configuration.
3. Select the Shutdown option from the General tabbed page.
4. Click Apply.
Note: You must be connected to the database with SYSDBA privileges to
perform a
database shut down.

36

Database Administration I © All rights reserved

• Diagnostic files
– Contain information about significant events

encountered
– Used to resolve problems
– Used to better manage the database on a day-to-day

basis
• Several types exist:

– alertSID.log file
– Background trace files
– User trace files

Monitoring an Instance Using
Diagnostic Files

Monitoring an Instance Using Diagnostic Files
Diagnostic files are a means to capture information about the database’s
activities. They are also useful tools for you when you are managing an instance.
Several types exist. The type of diagnostic file created depends on the problem
that occurred or the information that is needed to be disseminated.

Alert log file (alertSID.log): Information for day-to-day operation of
the database
Background trace files: Vital information when background processes,
such as SMON, PMON, DBWn, and others fail
User trace files: Vital information for fatal user errors or user forced traced
files

37

Database Administration I © All rights reserved

Alert Log File

• alertSID.log file:
– Records the commands
– Records results of major events
– Used for day-to-day operational information
– Used for diagnosing database errors

• Each entry has a time stamp associated with it
• Must be managed by DBA
• Location defined by BACKGROUND_DUMP_DEST

Alert Log File
Each Oracle instance has an alert log file. If not already created, it is created
during instance start up. The alert log file must be managed by the DBA. It
continues to grow while the database continues to work. The alert log file should
be the first place you look when diagnosing day-to-day operations or errors. The
alert log file also contains pointers to trace files for more detailed information.
The alert log file keeps a record of the following information:

When the database was started or shut down
A list of all nondefault initialization parameters
The start up of background processes
The thread being used by the instance
The log sequence number LGWR is writing to
Information regarding a log switch
Creation of tablespaces and undo segments
Alter statements that have been issued
Information regarding error messages such as ORA-600 and extent errors

38

Alert Log File (continued)
The alert_SID.log location is defined by the BACKGROUND_DUMP_DEST
initialization parameter.

39

Database Administration I © All rights reserved

Background Trace Files

• Background trace files
– Log errors detected by any background process
– Are used to diagnose and troubleshoot errors

• Created when a background process encounters an
error

• Location defined by BACKGROUND_DUMP_DEST

Background Trace Files
Background trace files are used to log errors that have been encountered by a
background process, such are SMON, PMON, DBWn, and other background
processes. These files exist only when an error requires writing to the trace
files.You use these files to diagnose and troubleshoot problems. Initially when a
background trace file is created it contains header information indicating the
version number of the data server and the operating system.
Naming convention for user trace file: sid_processname_PID.trc
(db01_lgwr_23845.trc).
Its location is defined by the BACKGROUND_DUMP_DEST initialization parameter.

40

Database Administration I © All rights reserved

User Trace Files

• User trace files
– Produced by the user process
– Can be generated by a server process
– Contain statistics for traced SQL statements
– Contain user error messages

• Created when a user encounters user session errors
• Location is defined by USER_DUMP_DEST
• Size defined by MAX_DUMP_FILE_SIZE

User Trace Files
User trace files contain statistics for traced SQL statements, which are useful for
SQL tuning. In addition, user trace files contain user error messages.
Naming convention for user trace file:
sid_ora_PID.trc(db01_ora_23845.trc).
Its location is defined by the USER_DUMP_DEST initialization parameter.

41

Database Administration I © All rights reserved

Enabling or Disabling User Tracing

• Session level:
– Using the ALTER SESSION command:
ALTER SESSION SET SQL_TRACE = TRUE

– Executing DBMS procedure:
dbms_system.SET_SQL_TRACE_IN_SESSION

• Instance level
– Setting the initialization parameter:
SQL_TRACE = TRUE

Enabling or Disabling User Tracing
Setting SQL_TRACE=TRUE at the instance level will produce a significant volume
of trace data. This option should be used with care.
User tracing is covered in detail in the Oracle9i SQL Statement Tuning course.

42

Enabling or Disabling User Tracing
Using Oracle Enterprise Manager to Enable or Disable User Tracing
From the OEM Console:

Navigate to Instance > Configuration.
Highlight Configuration.
Select All Initialization Parameters from the General tabbed page.
Set the parameter SQL_TRACE = TRUE.
Click Apply.

43

Database Administration I © All rights reserved

Summary

In this lesson, you should have learned how to:
• Create and manage initialization parameter files
• Start up and shut down an instance
• Monitor and use diagnostic files

