
Components Of CASE Tools

Layers Of CASE Tools

Contents

Components Of CASE Tools

What Is CASE Tools

Perspective Of CASE Tools

Benefits Of CASE Tools

Problems Of CASE Tools

Categories Of CASE Tools

(CASE)
COMPUTER AIDED SYSTEMS ENGINEERING

CASE is a term covering a whole range of tools and methods that SUPPORT
SOFTWARE SYSTEM DEVELOPMENT.

CASE tools are programs (software) that automate or support one or more phases of
a systems development life cycle.

A collection of tools used to support the software development process.

In other words,
1. Software that is used to support software process activities .

2. Provides software process support by
•automating some process activities
•providing information about the software being developed

3. Currently used in every phase/workflow of life cycle

Two types of tools used by software engineers:

1. Analytical tools
– Stepwise refinement
– Cost-benefit analysis
– Software metrics

2. CASE tools

Components Of CASE Tools

Components Of CASE Tools

1. Central Repository
 Centralized Database.
 Used to store Graphical Diagrams & Prototype

Forms and Reports of analysis and diagramming
workflow

 Act as
 Information Repository
 Data Dictionary

Components Of CASE Tools

2. Report Generator
Used to

 Create, modify and test prototypes of computer displays and
reports.

 Identify which data items to display or collect for each screen
or report

Components Of CASE Tools

3. Diagramming Tool
Allow you to represent a system and its components

visually.
Allows higher level processes to be easily decomposed.
Can examine processes or data models at high or low

level.

Components Of CASE Tools

4. Analysis tools
Generate reports that help identify possible

inconsistencies, redundancies and omissions.
Generally focus on

 diagram completeness and consistency.
 data structures and usage.

Components Of CASE Tools

5. Documentation Tool
Create standard reports based on contents of repository.
Need textual descriptions of needs, solutions, trade-offs,

diagrams of data and processes, prototype forms and
reports, program specifications and user documentation.

High-quality documentation leads to 80% reduction in
system maintenance effort in comparison to average
quality documentation.

Components Of CASE Tools

6. Code Generation Tool
Create code for the custom feature in object model.
Code Generation Tool helps in:

 Connect to the Repository.
 Select the Object Model.
 Select the custom features to generate code for.
 Define properties for each custom feature.
 Specify the output of the project.

Layers Of CASE Tools

Upper CASE ToolsUpper CASE Tools

Lower CASE ToolsLower CASE Tools

Integrated CASE ToolsIntegrated CASE Tools

12

CASE Tools
The application of a set of tools and methods to a software system
with the desired end result of high-quality, defect-free, and
maintainable software products.

Purpose of CASE Tools
To make it simpler to enact a single design philosophy with the goal to
speed up the development process.
To automate mundane tasks.
To promote a central location for referencing system development
activities and documents.
To get accuracy and increase the speed of the tasks.

1. Increasing costs of software development due to
the extreme intensive labor required.
2. Avoid simple human errors in software
development.
3. CASE offers an important opportunity to alleviate
the problems of application development and
maintenance.

USES:

COMPONENTS OF CASE
TOOLS

A CASE environment contains a collection of tools. Not all
environments provide all tools.

Upper
CASE

Lower
CASE i-CASE

TYPES OF CASE TOOLS
 Upper-CASE:-
 Upper CASE is focused in supporting project identification and selection,

project initiation, project planning, analysis and design. Describes tools
that automate or support the ‘upper’ or earliest phases of systems
development.

1. Supports Software Development activities implementation

2. Focuses on Analysis Phase
 Diagramming Tools
 Report Generator
 Analysis Tool

Lower-CASE:- Lower CASE provides support for the
implementation and maintenance phases. Describes tools
that automate or support the ‘lower’ or later phases of
systems development.

1. Supports Programming and Integration tasks.

2. Focuses on
Central Repository
Code Generator
Configuration Management

I-CASE (integrative case):- support the entire SDLC.
1. Supports both Upper CASE Tools and Lower CASE Tools.

2. Focuses on
Analysis
Code
Design
Database

Categories Of CASE Tools

Categories Of CASE Tools

Single-method
workbenches

General-purpose
workbenches

Multi-method
workbenches

Langua ge-specific
workbenches

Programming Testing
Analysis and

design

Integ rated
environments

Process-centr ed
en vironments

File
compar ators

CompilersEditors

EnvironmentsWor kbenchesTools

CASE
technolo g y

Perspective Of CASE Tools

Three Perspective
1. Functional perspective
– Tools are classified according to their specific function.

2. Process perspective
– Tools are classified according to process activities that

are supported.

3. Integration perspective
– Tools are classified according to their organisation into

integrated units.

Benefit Of CASE Tools

•Improve software quality
1. Enforce discipline
2. Help communication between development
team members
3. Information is illustrated through diagrams
that are typically easier to understand
4. Development information is centralized

•Reduction of time and effort
1. Tasks are much faster to complete and alter
2. Enhance reuse of models or models’
components
3. Can reduce maintenance costs

*Problems Of CASE Tools

1. Limitations in flexibility of documentation
2. Major danger: completeness and syntactic
correctness does NOT mean compliance with
requirements
3. Costs associated with the use of the tool
• Purchase price
• Training

CASE Usage Within the SDLC

SDLC Phase Key Activities CASE Tool Usage

Project identification
 and selection

Display and structure
high-level organizational
information

Diagramming and matrix
tools to create and
structure information

Project initiation
 and planning

Develop project scope
and feasibility

Repository and
documentation
generators to develop
project plans

Analysis Determine and structure
system requirements

Diagramming to create
process, logic and data
models

SDLC Phase Key Activities CASE Tool Usage

Design Create new system
designs

Form and report generators
to prototype designs;
analysis and documentation
generators to define
specifications

Implementatio
n

Translate designs into
an information system

Code generators and
analyzers, form and report
generators; documentation
generators to develop system
and user documentation

Maintenance Evolve information
systems

All tools are used .

CASE and the SDLC

Types of CASE Tools
1. Programming tools.
2. Documentation tools.
3. Static analysis tools.
4. Metrics management tools.
5. Quality assurance tools.
6. Diagramming tools.
7. Requirement tracing tools.
8. Programming tools.
9. Process modelling and management tools.
10. Prototyping tools.
11. Software configuration management tools.

CASE Tool Components

Advantages of CASE Tools
Increased speed
Increased accuracy
Reduced lifetime maintenance
Better documentation
Programming in the hand of programmers
Intangible benefits

May be difficult to customize
Requires training of maintenance staff
May be difficult to use with existing systems
Requires more extensive and accurate definition of users needs and

requirement.
It is costly if it is proprietary tool.

Disadvantages of CASE
Tools

The Good and Bad about CASE
 Development process

productivity and quality
increases are realizable

 Portability of new systems to
other platforms is greatly
enhanced

 Analyst skill set will improve
due to greater understanding
of the process

 Time to delivery of new
applications will decrease

 Conformity to development
standards will increase

CASE acquisition costs are
extremely high

Training of analysts and
administrators is costly
and time-consuming

Most organizations do not
have clear standards for
application development

CASE tools can be viewed
as a threat to job security

CASE tools do not have a
great reputation due to
early benefits not being
realized

Introduction
Process of creating a data model for an information

system by applying formal data modeling techniques.

Process used to define and analyze data requirements
needed to support the business processes.

Therefore, the process of data modeling involves
professional data modelers working closely with
business stakeholders, as well as potential users of the
information system.

What is Data Model
Data Model is a collection of conceptual tools for

describing data, data relationships, data semantics and
consistency constraint.

A data model is a conceptual representation of data
structures required for data base and is very powerful in
expressing and communicating the business requirements

A data model visually represents the nature of data,
business rules governing the data, and how it will be
organized in the database

A data model provides a way to describe the design of
a database at the physical, logical and view levels.

There are three different types of data models
produced while progressing from requirements to the
actual database to be used for the information system

Conceptual: describes WHAT the system contains
Logical: describes HOW the system will be
implemented, regardless of the DBMS
Physical: describes HOW the system will be
implemented using a specific DBMS

Different Data Models

 A data model consists of entities
related to each other on a diagram:

Example:
 Given that …
“Customer” is an entity.
“Product” is an entity.
For a “Customer” we need to know their
“customer number” attribute and “name”
attribute.
For a “Product” we need to know the
“product name” attribute and “price”
attribute.
“Sale” is an entity that is used to record
the interaction of “Customer” and
“Product”.

Here is the diagram that
encapsulates these rules:

Notes
By convention, entities are named in the

singular.
The attributes of “Customer” are “Customer

No” (which is the unique identifier or primary
key of the “Customer” entity and is shown by
the # symbol) and “Customer Name”.

“Sale” has a composite primary key made up of
the primary key of “Customer”, the primary key
of “Product” and the date of the sale.

Think of entities as tables, think of attributes
as columns on the table and think of instances
as rows on that table:

• If we want to know the price of a Sale, we can
‘find’ it by using the “Product Code” on the
instance of “Sale” we are interested in and look
up the corresponding “Price” on the “Product”
entity with the matching “Product Code”.

Types of Data Models
Entity-Relationship (E-R) Models
UML (unified modeling language)

Entity-Relationship Model
Entity Relationship Diagrams (ERD) as

this is the most widely used
ERDs have an advantage in that they are

capable of being normalized

Represent entities as rectangles
List attributes within the rectangle

Entity

Attributes

Primary key

Why and When
The purpose of a data model is to describe

the concepts relevant to a domain, the
relationships between those concepts, and
information associated with them

Used to model data in a standard, consistent,
predictable manner in order to manage it as a
resource.

To have a clear picture of the base data that your
business needs

To identify missing and redundant base data

To Establish a baseline for communication across
functional boundaries within your organization

Provides a basis for defining business rules

Makes it cheaper, easier, and faster to upgrade your
IT solutions

 CASE Summary
Overall use of CASE tools on a software system

improves software quality dramatically by –
Reducing errors
Improving designs throughout the development
Standardizing many tasks and development aspects
Providing many many well-tested automated

functions
Centralizing resources
CASE is so good for software development its

extremely rare to find a program that doesn’t include
some form of it within the last 2 decades

