
Lab Session 10

Pointers in C++ Language.

Objectives:

1. Illustration of Pointers.

2. To learn the syntax and semantics of the Pointer as arguments, and addressing.

3. Demonstrate a thorough understanding of Pointers as arguments, and addressing through

logic building and implementing programs logic.

Introduction to Pointers

Up until now, we’ve only been able to work with a fixed amount of memory, an amount decided

upfront before the program has even started. Whenever you declare a variable, it causes some

amount of memory to be allocated behind the scenes to hold the information stored in that variable.

When you declare a variable, the amount of memory allocated is chosen at compile time—you

can’t change it or add to it while the program is running. We’ve been able to create arrays of data

to get a lot of variables—a big chunk of memory—but the array can hold no more elements than

the number that you specified when writing the program. In the next few chapters, we’ll learn

about how to get access to more memory than we started our program with. You’ll learn how to

create an unlimited number of enemy spaceships all flying around at once (minus the flying

around...).

In order to get access to (nearly) unlimited amounts of memory, we need a kind of variable that

can refer directly to the memory that stores variables. This type of variable is called a pointer.

Pointers are aptly named: they are variables that "point" to locations in memory. A pointer is very

similar to a hyperlink. A webpage is located in one place—on some person’s web server. If you

want to send someone a copy of that web page, do you download the entire page and email it to

them? No, you just email a link. Similarly, a pointer allows you to store or send a “link” to a

variable, array or structure, rather than making a copy.

A pointer, like a hyperlink, stores the location of some other data. Because a pointer can store the

location (the address) of other data, you can use it to hold on to memory that you get from the

operating system. In other words, your program can ask for more memory and can access that

memory using pointers.

What is memory?

An easy way to visualize computer memory is to think of an Excel spreadsheet. Spreadsheets are

basically a large number of “cells” that can each store a piece of data. This, too, is what computer

memory is: a large number of sequential pieces of data. Unlike Excel, in memory, each “cell” can

store only a very small amount of data—1 byte, which can itself only store 256 possible values (0-

255). Also unlike Excel, memory is organized “linearly” rather than in a grid. In fact, you can even

think about memory as being a very long array of chars.

Just as each cell in an Excel spreadsheet has a way to locate it (using its row number and column

letter), each cell in memory has an address. This address is the value that a pointer stores, when it

holds the location of memory. (In Excel, a pointer would be a cell that holds the name of another

cell—for example, if cell C1 held the string A1).

Here’s a diagram that shows how you can think about a small chunk of memory. Notice that the

diagram is a lot like an array; an array is just a bunch of sequential memory:

The boxes here represent locations in memory where data can be stored; the numbers are the

memory addresses, which are the way to identify a location in memory. They’re marked in steps

of 4 because most variables in memory take up 4 bytes, so we’re looking at the memory associated

with 6 different variables of 4 bytes each.24 (By the way, you’ll often see memory addresses

written in hexadecimal form, which look quite a bit like gibberish if you’ve never seen them

before; I’ll use normal numbers.

Here, you can see the memory at address 4 stores a value that could be another memory address,

16. The memory at address 4 belongs to a pointer variable. The other values are marked as ?? to

indicate that they don’t have any particular known value, but of course there is something in each

memory address at all times. Until that memory is initialized, the value is not useful—it could be

anything.

Addresses and Pointers

The ideas behind pointers are not complicated. Here’s the first key concept: Every byte in the

computer’s memory has an address. Addresses are numbers, just as they are for houses on a street.

The numbers start at 0 and go up from there—1, 2, 3, and so on. If you have 1MB of memory, the

highest address is 1,048,575. (Of course you have much more.) Your program, when it is loaded

into memory, occupies a certain range of these addresses. That means that every variable and every

function in your program starts at a particular address. Figure 2 shows how this looks.

Variables vs. addresses

You might be confused by the distinction between a variable and an address. A variable is a

representation of a value; that value is actually stored at a particular location in memory, at a

particular memory address. In other words, the compiler uses memory addresses to implement the

variables in your program. Pointers are a special kind of variable that lets you store the address

that “backs” another variable.

The thing is that once you can talk about the address of a variable, you'll then be able to go to that

address and retrieve the data stored in it. If you happen to have a huge piece of data that you want

to pass into a function, it's a lot more efficient (when your program is running) to pass its location

to the function than it is to copy every element of the data—just as we saw with arrays. We can

also use this approach to avoid copying structures when passing them into functions. The idea is

to take the address that stores the data associated with the structure variable and pass that address

to the function instead of making a copy of the data stored in the structure.

The most important function of pointers is to enable you to get more memory at any time from the

operating system. How do you get that memory from the operating system? 26 The operating

system tells you the address of the memory. You need pointers to store the memory address. If you

need more memory later, you can just ask for more memory and change the value that you are

pointing to. Consequently, pointers let us go beyond a fixed amount of data, letting us choose at

run time how much memory we will need.

A note about terms

The word pointer can refer either to

1) A memory address itself

2) A variable that stores a memory address

Usually, the distinction isn't really that important: if you pass a pointer variable into a function,

you're passing the value stored in the pointer—the memory address. When I want to talk about a

memory address, I'll refer to it as a memory address or just an address; when I want a variable that

stores a memory address, I'll call it a pointer. When a variable stores the address of another

variable, I'll say that it is pointing to that variable.

Example 1

// my first pointer

#include <iostream>

using namespace std;

int main ()

{

 int firstvalue, secondvalue;

 int * mypointer;

 mypointer = &firstvalue;

 *mypointer = 10;

 mypointer = &secondvalue;

 *mypointer = 20;

 cout << "firstvalue is " << firstvalue << '\n';

 cout << "secondvalue is " << secondvalue << '\n';

 return 0;

}

Output:

firstvalue is 10

secondvalue is 20

Example 2

#include <iostream>

using namespace std;

int main ()

{

 int firstvalue = 5, secondvalue = 15;

 int * p1, * p2;

 p1 = &firstvalue; // p1 = address of firstvalue

 p2 = &secondvalue; // p2 = address of secondvalue

 *p1 = 10; // value pointed to by p1 = 10

 *p2 = *p1; // value pointed to by p2 = value pointed to by p1

 p1 = p2; // p1 = p2 (value of pointer is copied)

 *p1 = 20; // value pointed to by p1 = 20

 cout << "firstvalue is " << firstvalue << '\n';

 cout << "secondvalue is " << secondvalue << '\n';

 return 0;
}

Output

firstvalue is 10

secondvalue is 20

The Address-of Operator &

You can find the address occupied by a variable by using the address-of operator &. Here’s a

short program, VARADDR, that demonstrates how to do this:

// varaddr.cpp

// addresses of variables

#include <iostream>

using namespace std;

int main()

{

int var1 = 11; //define and initialize

int var2 = 22; //three variables

int var3 = 33;

cout << &var1 << endl //print the addresses

<< &var2 << endl //of these variables

<< &var3 << endl;

return 0;

}

This simple program defines three integer variables and initializes them to the values 11, 22, and

33. It then prints out the addresses of these variables.

The actual addresses occupied by the variables in a program depend on many factors, such as the

computer the program is running on, the size of the operating system, and whether any other

programs are currently in memory. For these reasons you probably won’t get the same addresses

we did when you run this program. (You may not even get the same results twice in a row.) Here’s

the output on our machine:

0x8f4ffff4 address of var1

0x8f4ffff2 address of var2

0x8f4ffff0 address of var3

Remember that the address of a variable is not at all the same as its contents. The contents of the

three variables are 11, 22, and 33. Figure 2 shows addresses and contents of variables of the three

variables in memory.

The << insertion operator interprets the addresses in hexadecimal arithmetic, as indicated by the

prefix 0x before each number. This is the usual way to show memory addresses. If you aren’t

familiar with the hexadecimal number system, don’t worry. All you really need to know is that

each variable starts at a unique address. However, you might note in the output that each address

differs from the next by exactly 2 bytes. That’s because integers occupy 2 bytes of memory (on a

16-bit system). If we had used variables of type char, they would have adjacent addresses, since a

char occupies 1 byte; and if we had used type double, the addresses would have differed by 8 bytes.

Pointers Must Have a Value

An address like 0x8f4ffff4 can be thought of as a pointer constant. A pointer like ptr can be thought

of as a pointer variable. Just as the integer variable var1 can be assigned the constant value 11, so

can the pointer variable ptr be assigned the constant value 0x8f4ffff4.

When we first define a variable, it holds no value (unless we initialize it at the same time). It may

hold a garbage value, but this has no

meaning. In the case of pointers, a

garbage value is the address of

something in memory, but probably

not of something that we want. So

before a pointer is used, a specific

address must be placed in it. In the

PTRVAR program, ptr is first assigned

the address of var1 in the line.

var1 in ptr

Following this, the program prints out

the value contained in ptr, which

should be the same address printed for

&var1. The same pointer variable ptr

is then assigned the address of var2,

and this value is printed out. Figure

10.3 shows the operation of the

PTRVAR program. Here’s the output of PTRVAR:

0x8f51fff4 address of var1

0x8f51fff2 address of var2

0x8f51fff4 ptr set to address of var1

0x8f51fff2 ptr set to address of var2

To summarize: A pointer can hold the address of any variable of the correct type; it’s a receptacle

awaiting an address. However, it must be given some value, or it will point to an address we don’t

want it to point to, such as into our program code or the operating system. Rogue pointer values

can result in system crashes and are difficult to debug, since the compiler gives no warning. The

moral: Make sure you give every pointer variable a valid address value before using it.

Memory layout

Where exactly does that memory come from? Why do you need to request it from the operating

system, anyway?

In Excel, you have one very large group of cells that you can access. In computer memory, you

also have a great deal of memory available. But that memory is more structured. Some parts of the

memory available to your program are already in use. One part of memory is used to store the

variables that you declare in the functions that are currently being executed—this part of memory

is called the stack. Its name comes from the fact that if you make several function calls, the local

variables for each function “stack up” on top of each other in this part of memory. All of the

variables we've worked with so far have been stored on the stack.

A second part of memory is the free store (sometimes known as the heap), which is unallocated

memory that you can request in chunks. This part of memory is managed by the operating system;

once a piece of memory is given out, it should only be used by the original code that allocated the

memory— or by code to which that address is provided by the memory allocator. Using pointers

will allow us to gain access to this memory.

Being able to access this memory is powerful, but with great power comes great responsibility.

Memory is a scarce resource. Not as scarce as it used to be before multiple gigabytes of RAM

became standard, but it’s still limited. Each piece of memory you have allocated from the free store

should eventually be released back to the free store when your program no longer needs it. The

part of the code responsible for releasing a particular piece of memory is called the owner of that

memory. When the owner of memory no longer needs it—for example, in a space shooter game,

if a ship is destroyed—the code that owns the memory should return it to the free store so that it

can be given out to other code. If you don't return the memory, eventually your program will start

to run out of memory, causing slowdowns or even crashes. You may have heard people complain

(or seen yourself) that the Firefox web browser used too much memory, causing the browser to

slow down to a crawl. That's because someone didn't free memory that they should have, causing

what’s known as a memory leak.

The concept of ownership is part of the interface between a function and its users—it is not

explicitly part of the language. When you write a function that takes a pointer, you should

document whether the function takes ownership of the memory or not. C++ will not track this for

you, and it will never free memory that you have explicitly allocated while your program is still

running unless you explicitly request it.

Pointer Variables

Addresses by themselves are rather limited. It’s nice to know that we can find out where things are

in memory, as we did in VARADDR, but printing out address values is not all that useful. The

potential for increasing our programming power requires an additional idea: variables that hold

address values. We’ve seen variable types that store characters, integers, floating-point numbers,

and so on. Addresses are stored similarly. A variable that holds an address value is called a pointer

variable, or simply a pointer.

What is the data type of pointer variables? It’s not the same as the variable whose address is being

stored; a pointer to int is not type int. You might think a pointer data type would be called

something like pointer or ptr. However, things are slightly more complicated. The next program,

PTRVAR, shows the syntax for pointer variables.

// ptrvar.cpp

// pointers (address variables)

#include <iostream>

using namespace std;

int main()

{

int var1 = 11; //two integer variables

int var2 = 22;

cout << &var1 << endl //print addresses of variables << &var2 << endl << endl;

int* ptr; //pointer to integers

ptr = &var1; //pointer points to var1

cout << ptr << endl; //print pointer value

ptr = &var2; //pointer points to var2

cout << ptr << endl; //print pointer value

return 0;

}

This program defines two integer variables, var1 and var2, and initializes them to the values 11

and 22. It then prints out their addresses.

The program next defines a pointer variable in the line

int* ptr;

To the uninitiated this is a rather bizarre syntax. The asterisk means pointer to. Thus the statement

defines the variable ptr as a pointer to int. This is another way of saying that this variable can hold

the addresses of integer variables.

What’s wrong with the idea of a general-purpose pointer type that holds pointers to any data

type? If we called it type pointer we could write declarations like

pointer ptr;

The problem is that the compiler needs to know what kind of variable the pointer points to.

(We’ll see why when we talk about pointers and arrays.) The syntax used in C++ allows pointers

to any type to be declared:

char* cptr; // pointer to char

int* iptr; // pointer to int

float* fptr; // pointer to float

Distance* distptr; // pointer to user-defined Distance class and so on.

Example:

The program 4 demonstrates the & and * pointer operators. Memory locations are output by <<

in this example as hexadecimal (i.e., base-16) integers. Number Systems. The hexadecimal

memory addresses output by this program are compiler and operating-system dependent, so you

may get different results when you run the program.

Output

Invalid pointers

One way that you can accidentally use invalid memory is to use a pointer without initializing it.

When you declare a pointer, it will initially have effectively random data inside it—it will point to

some place in memory that may or may not be valid, but it’s certainly quite dangerous to use. In

fact, it’s almost as though you had generated a random number! Using this value will result in

either a crash or data corruption. You must always initialize pointers before you use them!

Memory and arrays

Remember how I said that writing past the end of an array was a problem? Now that we know a

bit more about memory, you can see why this would be. An array has a specific amount of memory

associated with it, based on the size of the array. If you access an element past the end of the array,

it's accessing memory that isn't associated with the array—that memory is, well, it's just not the

array; exactly it is what will depend on the exact code and how the compiler is implemented. But

it won't be part of the array, so using it will almost definitely cause problems.

Other advantages (and disadvantages) of pointers

Now that you’ve learned a bit about the details of pointers, let’s go back to our previous analogy

and look at some of the tradeoffs of using pointers. Hyperlinks and pointers have a lot of the

same advantages and disadvantages.

1) You don’t have to make a copy—if the web page is quite large or complicated, this could

be hard (imagine trying to send someone a copy of all of Wikipedia!). Similarly, data in

memory might be quite complicated, and it might be hard to copy correctly (more on this

later) or just slow (copying a lot of memory may be time consuming).

2) You don’t have to worry about whether you’ve got the latest version of the webpage. If the

author updates the page, then you get the changes as soon as you revisit the link. If you

have a pointer to memory, you are always able to access the latest value at that memory

address.

Of course, there are also disadvantages to sending a link rather than a copy:

1) The page might be moved, or deleted. Similarly, memory can be returned to the operating

system, even if someone still has pointer to it. To avoid these issues, the code that owns

the memory must keep track of whether anyone else might be using it.

2) You have to be online to access it. This one generally doesn’t affect pointers.

Applications of Pointers:

 To pass arguments by reference. ...

 For accessing array elements. ...

 To return multiple values. ...

 Dynamic memory allocation : We can use pointers to dynamically allocate memory. ...

 To implement data structures. ...

 To do system level programming where memory addresses are useful.

Task:

1:

For each of the following, write a single statement that performs the specified task. Assume that

floating-point variables number1 and number2 have been declared and that number1 has been

initialized to 7.3. Assume that variable ptr is of type char *. Assume that arrays s1 and s2 are

each 100-element char arrays that are initialized with string literals.

a) Declare the variable fPtr to be a pointer to an object of type double.

b) Assign the address of variable number1 to pointer variable fPtr.

c) Print the value of the object pointed to by fPtr.

d) Assign the value of the object pointed to by fPtr to variable number2.

e) Print the value of number2.

f) Print the address of number1.

g) Print the address stored in fPtr. Is the value printed the same as the address of number1?

2:

Find the error in each of the following program segments. Assume the following declarations

and statements:

int *zPtr; // zPtr will reference array z

void *sPtr = 0;

int number;

int z[5] = { 1, 2, 3, 4, 5 };

a) ++zPtr;

b) // use pointer to get first value of array

number = zPtr;

c) // assign array element 2 (the value 3) to number

number = *zPtr[2];

d) // print entire array z

for (int i = 0; i <= 5; ++i)

cout << zPtr[i] << endl;

e) // assign the value pointed to by sPtr to number

number = *sPtr;

f) ++z;

