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Lecture 3

Lecturer: Muhammad Yaseen Topic: Representation of Functionals

Riesz Representation Theorem for Functionals

Theorem 3.1 Let H1 and H2 be Hilbert spaces and h : H1 × H2 → K be a

bounded sesquilinear form. Then h has representation

h(x, y) =< Sx, y >,

Where S : H1 → H2 is bounded linear operator uniquely determined by h and

has the norm ‖S‖ = ‖h‖.

Proof: (i) Consider h(x, y) with x ∈ H1 fixed. This is linear in y because of the

bar. Thus h is bounded linear functional. So by Riesz representation theorem

for functionals, for fixed x ∈ H1 we have

f(y) = h(x, y) =< y, z >, (1)

where z ∈ H2 is uniquely determined by f with ‖z‖ = ‖f‖ = ‖h‖. Then (1)

implies

h(x, y) =< z, y > . (2)

Here z ∈ H2 is unique but of course depends upon our choice of x ∈ H1. It

follows that (2) with variable x defines an operator S : H1 → H2 given by

Sx = z. Substituting z = Sx in (2), we obtain

h(x, y) =< Sx, y > (3)

(ii) S is Linear

From (3), we have

< S(αx1 + βx2), y > = h(αx1 + βx2, y)
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= αh(x1, y) + βh(x2, y) because h is linear in first argument.

= α < Sx1, y > +β < Sx2, y >

< αSx1 + βSx2, y > for all y ∈ H2

This implies that S(αx1 +βx2) = αSx1 +βSx2 (because if < v1, w >=< v2, w >

for all w, then v1 = v2). This proves that S is linear.

(iii) To prove that S is bounded: If S = 0, then it is bounded. If 6= 0, then

‖h‖ = sup
x,y 6=0

|h(x, y)|
‖x‖‖y‖

= sup
x,y 6=0

| < Sx, y > |
‖x‖‖y‖

≥ sup
x6=0

| < Sx, Sx > |
‖x‖‖Sx‖

= sup
x6=0

‖Sx‖2

‖x‖‖Sx‖

= sup
x6=0

‖Sx‖
‖x‖

= ‖S‖.

That is

‖S‖ ≤ ‖h‖ <∞ because h is bounded. (4)

Now consider

‖h‖ = sup
x,y 6=0

|h(x, y)|
‖x‖‖y‖

= sup
x,y 6=0

| < Sx, y > |
‖x‖‖y‖

≤ sup
x,y 6=0

‖Sx‖‖y‖
‖x‖‖y‖

by Schwarz inequality

= sup
x,y 6=0

‖Sx‖
‖x‖

This implies that

‖h‖ ≤ ‖S‖ (5)

From (4) and (5), we obtain ‖S‖ = ‖h‖.

(iv) S is unique
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Suppose that there exists T : H1 → H2 such that

h(x, y) =< Sx, y >=< Tx, y > ∀x ∈ H1, y ∈ H2

⇒ Sx = Tx ∀x ∈ H1

⇒ S = T.

This completes the proof.

Question 1: Show that the function < ·, · >: Rn × Rn → R defined by <

x, y >=
n∑

i=1

ξiηi is an inner product space on Rn.

Solution:

1. < x+ y, z >=
n∑

i=1

(ξi + ηi)ζi =
n∑

i=1

ξiζi +
n∑

i=1

ηiζi =< x, z > + < y, z >

2. < αx, y >=
n∑

i=1

(αξi)ηi = α
n∑

i=1

ξiηi = α < x, y > .

3. < x, y >=
n∑

i=1

ξiηi =
n∑

i=1

ηiξi =< y, x >.

4. < x, x >=
n∑

i=1

ξ2i = 0 ⇔ ξi = 0∀i ⇔ x = 0.

Question 2: Show that the function < ·, · >: Cn×Cn → C defined by < x, y >=
n∑

i=1

ξiηi is an inner product space on Cn.

Question 2: Let X be an n−dimensional vector space with basis {e1, · · · , en}.

Let x, y ∈ X have representaion of the form x =
n∑

i=1

λiei and y =
n∑

i=1

µiei. Show

that the function < ·, · >: X ×X → C defined by < x, y >=
n∑

i=1

λiµi is an inner

product space on X.

Question 3: Show that the function ‖ · ‖ : X → R defined by ‖x‖ =
√
< x, x >

is a norm on X.

Question 4: Let X be an inner product space and let (xn)∞1 and (yn)∞1 be
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convergent sequences in X with xn
‖·‖−→ x and yn

‖·‖−→ y. Then how that

lim
n→∞

< xn, yn >=< x, y >.

Solution: Consider

| < xn, yn > − < x, y > | = | < xn, yn > − < xn, y > + < xn, y > − < x, y > |

≤ | < xn, yn > − < xn, y > |+ | < xn, y > − < x, y > |

≤ | < xn, yn − y > |+ | < xn − x, y > |

≤ ‖xn‖‖yn − y‖+ ‖xn − x‖‖y‖

→ 0 as n→∞ (because since (xn)∞1 is bounded, therefore

‖xn‖ <∞ and xn → x, yn → y.)

This implies that lim
n→∞

< xn, yn >=< x, y >.


