Lecture 5

Definition 5.1 A vector space X is said to be the direct sum of two subspaces Y and Z of x written

$$
\boldsymbol{X}=\boldsymbol{Y} \oplus \boldsymbol{Y}
$$

if each $x \in X$ has unique representation of the form $x=y+z$, where $y \in Y$ and $z \in Z$.

Remark 5.2 In case of a general Hilbert space H, we are mainly interested in representing H as a direct sum of a closed subspace Y of H and its orthogonal complement,

$$
Y^{\perp}=\{z \in H \mid z \perp Y\}=\text { the set of all vectors orthogonal to } Y
$$

Theorem 5.3 Let Y be any closed subspace of a Hilbert space H, then

$$
\boldsymbol{H}=\boldsymbol{Y} \oplus \boldsymbol{Y}^{\perp}
$$

Riesz Representation theorem for functionals

Theorem 5.4 Every bounded linear functional f on a Hilbert space H can be represented by means of inner product as

$$
\begin{equation*}
f(x)=<x, z>, \quad \forall x \in \boldsymbol{H} \tag{1}
\end{equation*}
$$

where z which depends upon f is unique and has the norm

$$
\begin{equation*}
\|z\|=\|f\| . \tag{2}
\end{equation*}
$$

Proof: We need to prove that
(a) f has representation (1).
(b) z in (1) is unique.
(c) (2) hold.
(a): If $f=0$, then (1) and (2) hold trivially if we choose $z=0$. Let $f \neq 0$. To motivate the idea of the proof, let us investigate what properties z must have such that (1) holds. First of all $z \neq 0$ because otherwise $f=0$, which is a contradiction. If for some $x \in H, f(x)=<x, z>=0$, then $x \in \mathcal{N}(f)$ and $z \perp \mathcal{N}(f)^{\perp}$. This suggests that we must consider $\mathcal{N}(f)$ and $\mathcal{N}(f)^{\perp}$. Since $\mathcal{N}(f)$ is closed, therefore by previous theorem, we have

$$
\boldsymbol{H}=\boldsymbol{\mathcal { N }}(f) \oplus \mathcal{N}(f)^{\perp}
$$

Since $f \neq 0$, therefore, $H \neq \mathcal{N}(f)$ so that $\mathcal{N}(f) \neq\{0\}$. So choose $0 \neq z_{0} \in$ $\mathcal{N}(f)^{\perp}$ and define

$$
\begin{aligned}
v & =f(x) z_{0}-f\left(z_{0}\right) x \\
\Rightarrow f(v) & =f(x) f\left(z_{0}\right)-f\left(z_{0}\right) f(x)=0
\end{aligned}
$$

so that $v \in \mathcal{N}(f)$. Since $z_{0} \in \mathcal{N}(f)^{\perp}$, therefore,

$$
\begin{aligned}
0 & =<v, z_{0}> \\
& =<f(x) z_{0}-f\left(z_{0}\right) x, z_{0}> \\
& =f(x)<z_{0}, z_{0}>-f\left(z_{0}\right)<x, z_{0}> \\
\Rightarrow f(x)<z_{0}, z_{0}> & =f\left(z_{0}\right)<x, z_{0}> \\
\Rightarrow f(x) & =\frac{f\left(z_{0}\right)}{<z_{0}, z_{0}>}<x, z_{0}>=<x, \frac{f\left(z_{0}\right)}{<z_{0}, z_{0}>} z_{0}> \\
\Rightarrow f(x) & =<x, z>, \text { where } z=\frac{f\left(z_{0}\right)}{<z_{0}, z_{0}>} z_{0}
\end{aligned}
$$

(b): Suppose that for all $x \in X$,

$$
f(x)=<x, z>=<x, z_{1}>
$$

$$
\begin{array}{r}
\Rightarrow<x, z>-<x, z_{1}>=0 \\
\Rightarrow<x, z-z_{1}>=0
\end{array}
$$

Choose $x=z-z_{1}$ so that

$$
\begin{aligned}
<z-z_{1}, z-z_{1}> & =0 \\
\Rightarrow\left\|z-z_{1}\right\|^{2} & =0 \\
\Rightarrow\left\|z-z_{1}\right\| & =0 \\
\Rightarrow z-z_{1} & =0 \\
\Rightarrow z & =z_{1}
\end{aligned}
$$

So z in (1) is unique.
(C): If $f=0$ and $z=0$, then (2) holds trivially. Let $f \neq 0$ and $z \neq 0$ and replace x with z in (1) to get

$$
\begin{align*}
f(z) & =<z, z>=\|z\|^{2} \\
\Rightarrow\|z\|^{2}=f(z) & \leq|f(z)| \quad \text { (because a number is less equal its absolute value) } \\
& \leq\|f\|\|z\| \quad \text { (because } f \text { is bounded) } \\
\Rightarrow\|z\| & \leq\|f\| \tag{3}
\end{align*}
$$

Now consider

$$
\begin{align*}
f(x) & =<x, z> \\
\Rightarrow|f(x)| & =|<x, z>| \\
& \leq\|x\|\|z\| \quad(\text { by Schwarz Inequality }) \\
\Rightarrow \frac{|f(x)|}{\|x\|} & \leq\|z\| \\
\Rightarrow \sup _{x \neq 0} \frac{|f(x)|}{\|x\|} & \leq\|z\| \\
\Rightarrow\|f\| & \leq\|z\| . \tag{4}
\end{align*}
$$

From (3) and (4), we obtain $\|f\|=\|z\|$. This completes the proof.

