Functional Analysis

Spring 2020

Lecture 5

Lecturer: Muhammad Yaseen

 $Topic: Ries \ Representation \ theorem$

Definition 5.1 A vector space X is said to be the direct sum of two subspaces Y and Z of x written

$$X = Y \oplus Y$$

if each $x \in X$ has unique representation of the form x = y + z, where $y \in Y$ and $z \in Z$.

Remark 5.2 In case of a general Hilbert space H, we are mainly interested in representing H as a direct sum of a closed subspace Y of H and its orthogonal complement,

 $Y^{\perp} = \{z \in H | z \perp Y\} = the set of all vectors orthogonal to Y.$

Theorem 5.3 Let Y be any closed subspace of a Hilbert space H, then

$$H = Y \oplus Y^{\perp}.$$

Riesz Representation theorem for functionals

Theorem 5.4 Every bounded linear functional f on a Hilbert space H can be represented by means of inner product as

$$f(x) = \langle x, z \rangle, \quad \forall x \in H, \tag{1}$$

where z which depends upon f is unique and has the norm

$$\|\boldsymbol{z}\| = \|\boldsymbol{f}\|. \tag{2}$$

Proof: We need to prove that

- (a) f has representation (1).
- (b) z in (1) is unique.
- (c) (2) hold.

(a): If f = 0, then (1) and (2) hold trivially if we choose z = 0. Let $f \neq 0$. To motivate the idea of the proof, let us investigate what properties z must have such that (1) holds. First of all $z \neq 0$ because otherwise f = 0, which is a contradiction. If for some $x \in H$, $f(x) = \langle x, z \rangle = 0$, then $x \in \mathcal{N}(f)$ and $z \perp \mathcal{N}(f)^{\perp}$. This suggests that we must consider $\mathcal{N}(f)$ and $\mathcal{N}(f)^{\perp}$. Since $\mathcal{N}(f)$ is closed, therefore by previous theorem, we have

$$H = \mathcal{N}(f) \oplus \mathcal{N}(f)^{\perp}$$

Since $f \neq 0$, therefore, $H \neq \mathcal{N}(f)$ so that $\mathcal{N}(f) \neq \{0\}$. So choose $0 \neq z_0 \in \mathcal{N}(f)^{\perp}$ and define

$$egin{aligned} &v=f(x)z_0-f(z_0)x\ \Rightarrow f(v)=f(x)f(z_0)-f(z_0)f(x)=0, \end{aligned}$$

so that $v \in \mathcal{N}(f)$. Since $z_0 \in \mathcal{N}(f)^{\perp}$, therefore,

$$egin{aligned} 0 = &< v, z_0 > \ &= < f(x) z_0 - f(z_0) x, z_0 > \ &= f(x) < z_0, z_0 > - f(z_0) < x, z_0 > \ &= f(x) < z_0, z_0 > = f(z_0) < x, z_0 > \ &\Rightarrow f(x) = rac{f(z_0)}{< z_0, z_0 >} < x, z_0 > = < x, rac{\overline{f(z_0)}}{< z_0, z_0 >} z_0 > \ &\Rightarrow f(x) = < x, z >, ext{ where } z = rac{\overline{f(z_0)}}{< z_0, z_0 >} z_0. \end{aligned}$$

(b): Suppose that for all $x \in X$,

$$f(x) = < x, z > = < x, z_1 >$$

$$\Rightarrow < x, z > - < x, z_1 > = 0$$
 $\Rightarrow < x, z - z_1 > = 0$

Choose $x = z - z_1$ so that

$$\langle z - z_1, z - z_1
angle = 0$$

 $\Rightarrow \|z - z_1\|^2 = 0$
 $\Rightarrow \|z - z_1\| = 0$
 $\Rightarrow z - z_1 = 0$
 $\Rightarrow z = z_1.$

So z in (1) is unique.

(C): If f = 0 and z = 0, then (2) holds trivially. Let $f \neq 0$ and $z \neq 0$ and replace x with z in (1) to get

$$f(z) = \langle z, z \rangle = ||z||^{2}$$

$$\Rightarrow ||z||^{2} = f(z) \leq |f(z)| \quad \text{(because a number is less equal its absolute value)}$$

$$\leq ||f|| ||z|| \quad \text{(because } f \text{ is bounded)}$$

$$\Rightarrow ||z|| \leq ||f|| \qquad (3)$$

Now consider

$$f(x) = \langle x, z \rangle$$

$$\Rightarrow |f(x)| = |\langle x, z \rangle|$$

$$\leq ||x|| ||z|| \quad \text{(by Schwarz Inequality)}$$

$$\Rightarrow \frac{|f(x)|}{||x||} \leq ||z||$$

$$\Rightarrow \sup_{x \neq 0} \frac{|f(x)|}{||x||} \leq ||z||$$

$$\Rightarrow ||f|| \leq ||z||. \tag{4}$$

From (3) and (4), we obtain ||f|| = ||z||. This completes the proof.