
1.2 Basic Programming Constructs • 11

as complex numbers. If they were real numbers, then �(x + i y) would
simplify to x.

> abznorm(x+y*I);

�
�(x+ I y)2 + �(x+ I y)2

Many Maple commands return unevaluated in such cases. Thus, you
might alter abznorm to return abznorm(x+y*I) in the above example.
Later examples in this book show how to give your own procedures this
behavior.

1.2 Basic Programming Constructs

This section describes the programming constructs you require to get
started with real programming tasks. It covers assignment statements,
for loops and while loops, conditional statements (if statements), and
the use of local and global variables.

The Assignment Statement
Use assignment statements to associate names with computed values.
They have the following form.

variable := value ;

This syntax assigns the name on the left-hand side of := to the com-
puted value on the right-hand side. You have seen this statement used in
many of the earlier examples.

The use of := here is similar to the assignment statement in program-
ming languages, such as Pascal. Other programming languages, such as C
and Fortran, use = for assignments. Maple does not use = for assignments,
since it is such a natural choice for representing mathematical equations.

If you want to write a procedure called plotdiff which plots an
expression f(x) together with its derivative f �(x) on the interval [a, b],
you can accomplish this task by computing the derivative of f(x) with
the diff command and then plotting both f(x) and f �(x) on the same
interval with the plot command.

> y := x^3 - 2*x + 1;

12 • Chapter 1: Introduction

y := x3 − 2x+ 1

Find the derivative of y with respect to x.

> yp := diff(y, x);

yp := 3x2 − 2

Plot y and yp together.

> plot([y, yp], x=-1..1);

–2

–1

1

2

–1–0.8–0.6–0.4–0.2 0.2 0.4 0.6 0.8 1
x

The following procedure combines this sequence of steps.

> plotdiff := proc(y,x,a,b)
> local yp;
> yp := diff(y,x);
> plot([y, yp], x=a..b);
> end proc;

plotdiff := proc(y, x, a, b)

local yp;

yp := diff(y, x) ; plot([y, yp], x = a..b)

end proc

The procedure name is plotdiff. It has four parameters: y, the ex-
pression it differentiates; x, the name of the variable it uses to define the
expression; and a and b, the beginning and the end of the interval over
which it generates the plot. The procedure returns a Maple plot object
which you can either display, or use in further plotting routines.

By specifying that yp is a local variable, you ensure that its usage in
the procedure does not clash with any other usage of the variable that
you may have made elsewhere in the current session.

1.2 Basic Programming Constructs • 13

To use the procedure, simply invoke it with appropriate arguments.
Plot cos(t) and its derivative, for t running from 0 to 2π.

> plotdiff(cos(t), t, 0, 2*Pi);

–1

–0.5

0

0.5

1

1 2 3 4 5 6
t

The for Loop
Use looping constructs, such as the for loop, to repeat similar actions a
number of times. For example, you can calculate the sum of the first five
natural numbers in the following way.

> total := 0;

> total := total + 1;

> total := total + 2;

> total := total + 3;

> total := total + 4;

> total := total + 5;

You may instead perform the same calculations by using a for loop.

> total := 0:
> for i from 1 to 5 do
> total := total + i;
> end do;

14 • Chapter 1: Introduction

total := 1

total := 3

total := 6

total := 10

total := 15

For each cycle through the loop, Maple increments the value of i by
one and checks whether i is greater than 5. If it is not, then Maple executes
the body of the loop again. When the execution of the loop finishes, the
value of total is 15.

> total;

15

The following procedure uses a for loop to calculate the sum of the
first n natural numbers.

> SUM := proc(n)
> local i, total;
> total := 0;
> for i from 1 to n do
> total := total+i;
> end do;
> total;
> end proc:

The purpose of the total statement at the end of SUM is to ensure that
SUM returns the value total. Calculate the sum of the first 100 numbers.

> SUM(100);

5050

The for statement is an important part of the Maple language, but
the language also provides many more succinct and efficient looping con-
structs. For example, the command add.

> add(n, n=1..100);

5050

1.2 Basic Programming Constructs • 15

The Conditional Statement
The loop is one of the two most basic constructs in programming. The
other basic construct is the if or conditional statement . It arises in
many contexts. For example, you can use the if statement to implement
an absolute value function.

|x| =
�

x if x ≥ 0
−x if x < 0.

Below is a first implementation of ABS. Maple executes the if statement
as follows: If x < 0, then Maple calculates −x; otherwise it calculates x. In
either case, the absolute value of x is the last result that Maple computes
and so is the value that ABS returns.

The closing words end if completes the if statement.

> ABS := proc(x)
> if x<0 then
> -x;
> else
> x;
> end if;
> end proc;

ABS := proc(x) ifx < 0 then − x elsex end if end proc

> ABS(3); ABS(-2.3);

3

2.3

Returning Unevaluated The ABS procedure above cannot handle non-
numeric input.

> ABS(a);

Error, (in ABS) cannot evaluate boolean: a < 0

The problem is that since Maple knows nothing about a, it cannot
determine whether a is less than zero. In such cases, your procedure should
return unevaluated ; that is, ABS should return ABS(a). To achieve this
result, consider the following example.

> ’ABS’(a);

ABS(a)

16 • Chapter 1: Introduction

The single quotes tell Maple not to evaluate ABS. You can modify the ABS
procedure by using the type(..., numeric) command to test whether
x is a number.

> ABS := proc(x)
> if type(x,numeric) then
> if x<0 then -x else x end if;
> else
> ’ABS’(x);
> end if;
> end proc:

The above ABS procedure contains an example of a nested if statement,
that is, one if statement appearing within another. You need an even
more complicated nested if statement to implement the function

hat(x) =

0 if x ≤ 0
x if 0 < x ≤ 1
2− x if 1 < x ≤ 2
0 if x > 2.

Here is a first version of HAT.

> HAT := proc(x)
> if type(x, numeric) then
> if x<=0 then
> 0;
> else
> if x<=1 then
> x;
> else
> if x<=2 then
> 2-x;
> else
> 0;
> end if;
> end if;
> end if;
> else
> ’HAT’(x);
> end if;
> end proc:

The indentations make it easier to identify which statements belong to
which if conditions.

A better implementation uses the optional elif clause (else if) in the
second-level if statement.

> HAT := proc(x)
> if type(x, numeric) then
> if x<=0 then 0;
> elif x<=1 then x;
> elif x<=2 then 2-x;

1.2 Basic Programming Constructs • 17

> else 0;
> end if;
> else
> ’HAT’(x);
> end if;
> end proc:

You may use as many elif branches as you need.

Symbolic Transformations You can improve the ABS procedure from
the last section even further. Consider the product ab. Since ab is an
unknown, ABS returns unevaluated.

> ABS(a*b);

ABS(a b)

However, the absolute value of a product is the product of the absolute
values.

|ab|→ |a||b|
That is, ABS should map over products.

> map(ABS, a*b);

ABS(a)ABS(b)

You can use the type(..., ‘*‘) command to test whether an ex-
pression is a product and use the map command to apply ABS to each
operand of the product.

> ABS := proc(x)
> if type(x, numeric) then
> if x<0 then -x else x end if;
> elif type(x, ‘*‘) then
> map(ABS, x);
> else
> ’ABS’(x);
> end if;
> end proc:
> ABS(a*b);

ABS(a)ABS(b)

This feature is especially useful if some of the factors are numbers.

> ABS(-2*a);

18 • Chapter 1: Introduction

2ABS(a)

You may want to improve ABS further so that it can calculate the
absolute value of a complex number.

Parameter Type Checking Sometimes when you write a procedure, you
intend it to handle only a certain type of input. Calling the procedure
with a different type of input may not make any sense. You can use type
checking to verify that the inputs to your procedure are of the correct
type. Type checking is especially important for complicated procedures
as it helps you to identify mistakes early .

Consider the original implementation of SUM.

> SUM := proc(n)
> local i, total;
> total := 0;
> for i from 1 to n do
> total := total+i;
> end do;
> total;
> end proc:

Clearly, n should be an integer. If you try to use the procedure on symbolic
data, it breaks.

> SUM("hello world");

Error, (in SUM) final value in for loop must be numeric
or character

The error message indicates what went wrong inside the for statement
while trying to execute the procedure. The test in the for loop failed
because "hello world" is a string, not a number, and Maple could
not determine whether to execute the loop. The following implemen-
tation of SUM provides a much more informative error message. The
type(...,integer) command determines whether n is an integer.

> SUM := proc(n)
> local i,total;
> if not type(n, integer) then
> error("input must be an integer");
> end if;
> total := 0;
> for i from 1 to n do total := total+i end do;
> total;
> end proc:

Now the error message is more helpful.

1.2 Basic Programming Constructs • 19

> SUM("hello world");

Error, (in SUM) input must be an integer

Using type to check inputs is such a common task that Maple provides
a simple means of declaring the type of an argument to a procedure. For
example, you can rewrite the SUM procedure in the following manner. An
informative error message helps you to find and correct a mistake quickly.

> SUM := proc(n::integer)
> local i, total;
> total := 0;
> for i from 1 to n do total := total+i end do;
> total;
> end proc:

> SUM("hello world");

Error, invalid input: SUM expects its 1st argument, n,
to be of type integer, but received hello world

Maple understands a large number of types. In addition, you can
combine existing types algebraically to form new types, or you can define
entirely new types. See ?type.

The while Loop
The while loop is an important type of structure. It has the following
structure.

while condition do commands end do;

Maple tests the condition and executes the commands inside the loop
over and over again until the condition fails.

You can use the while loop to write a procedure that divides an inte-
ger n by two as many times as is possible. The iquo and irem commands
calculate the quotient and remainder, respectively, using integer division.

> iquo(7, 3);

2

> irem(7, 3);

20 • Chapter 1: Introduction

1

Thus, you can write a divideby2 procedure in the following manner.

> divideby2 := proc(n::posint)
> local q;
> q := n;
> while irem(q, 2) = 0 do
> q := iquo(q, 2);
> end do;
> q;
> end proc:

Apply divideby2 to 32 and 48.

> divideby2(32);

1

> divideby2(48);

3

The while and for loops are both special cases of a more general
repetition statement; see section 4.3.

Modularization
When you write procedures, identifying subtasks and writing these as
separate procedures is a good idea. Doing so makes your procedures easier
to read, and you may be able to reuse some of the subtask procedures in
another application.

Consider the following mathematical problem. Suppose you have a
positive integer, in this case, forty.

> 40;

40

Divide the integer by two, as many times as possible; the divideby2

procedure above does just that for you.

> divideby2(%);

5

1.2 Basic Programming Constructs • 21

Multiply the result by three and add one.

> 3*% + 1;

16

Again, divide by two.

> divideby2(%);

1

Multiply by three and add one.

> 3*% + 1;

4

Divide.

> divideby2(%);

1

The result is 1 again, so from now on you will get 4, 1, 4, 1,
Mathematicians have conjectured that you always reach the number 1 in
this way, no matter with which positive integer you begin. You can study
this conjecture, known as the 3n+ 1 conjecture, by writing a procedure
which calculates how many iterations you need to get to the number 1.
The following procedure makes a single iteration.

> iteration := proc(n::posint)
> local a;
> a := 3*n + 1;
> divideby2(a);
> end proc:

The checkconjecture procedure counts the number of iterations.

> checkconjecture := proc(x::posint)
> local count, n;
> count := 0;
> n := divideby2(x);
> while n>1 do
> n := iteration(n);
> count := count + 1;
> end do;
> count;

22 • Chapter 1: Introduction

> end proc:

You can now check the conjecture for different values of x.

> checkconjecture(40);

1

> checkconjecture(4387);

49

You could write checkconjecture as one self-contained procedure
without references to iteration or divideby2. But then, you would have
to use nested while statements, thus making the procedure much harder
to read.

Recursive Procedures
Just as you can write procedures that call other procedures, you can also
write a procedure that calls itself. This is called recursive programming .
As an example, consider the Fibonacci numbers, which are defined in the
following procedure.

fn = fn−1 + fn−2 for n ≥ 2,

where f0 = 0, and f1 = 1. The following procedure calculates fn for any
n.

> Fibonacci := proc(n::nonnegint)
> if n<2 then
> n;
> else
> Fibonacci(n-1)+Fibonacci(n-2);
> end if;
> end proc:

Here is a sequence of the first sixteen Fibonacci numbers.

> seq(Fibonacci(i), i=0..15);

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610

The time command tells you the number of seconds a procedure takes
to execute. Fibonacci is not very efficient.

> time(Fibonacci(20));

1.2 Basic Programming Constructs • 23

.450

The reason is that Fibonacci recalculates the same results over and
over again. To find f20, it must find f19 and f18; to find f19, it must
find f18 again and f17; and so on. One solution to this efficiency problem
is to tell Fibonacci to remember its results. That way, Fibonacci only
has to calculate f18 once. The remember option makes a procedure store
its results in a remember table . Section 2.5 further discusses remember
tables.

> Fibonacci := proc(n::nonnegint)
> option remember;
> if n<2 then
> n;
> else
> Fibonacci(n-1)+Fibonacci(n-2);
> end if;
> end proc:

This version of Fibonacci is much faster.

> time(Fibonacci(20));

0.

> time(Fibonacci(2000));

.133

If you use remember tables indiscriminately, Maple may run out of
memory. You can often rewrite recursive procedures by using a loop, but
recursive procedures are often easier to read. On the other hand, iterative
procedures are more efficient. The procedure below is a loop version of
Fibonacci.

> Fibonacci := proc(n::nonnegint)
> local temp, fnew, fold, i;
> if n<2 then
> n;
> else
> fold := 0;
> fnew := 1;
> for i from 2 to n do
> temp := fnew + fold;
> fold := fnew;
> fnew := temp;
> end do;

24 • Chapter 1: Introduction

> fnew;
> end if;
> end proc:

> time(Fibonacci(2000));

.133

When you write recursive procedures, you must weigh the benefits of
remember tables against their use of memory. Also, you must make sure
that your recursion stops.

The return Statement AMaple procedure by default returns the result
of the last computation within the procedure. You can use the return

statement to override this behavior. In the version of Fibonacci below, if
n < 2 then the procedure returns n and Maple does not execute the rest
of the procedure.

> Fibonacci := proc(n::nonnegint)
> option remember;
> if n<2 then
> return n;
> end if;
> Fibonacci(n-1)+Fibonacci(n-2);
> end proc:

Using the return statement can make your recursive procedures easier
to read; the usually complicated code that handles the general step of the
recursion does not end up inside a nested if statement.

Exercise
1. The Fibonacci numbers satisfy the following recurrence.

F (2n) = 2F (n− 1)F (n) + F (n)2 where n > 1

and
F (2n+ 1) = F (n+ 1)2 + F (n)2 where n > 1

Use these new relations to write a recursive Maple procedure which
computes the Fibonacci numbers. How much recomputation does this
procedure do?

