
692 10 / Graphs

10.2.5 Bipartite Graphs and Matchings
Bipartite graphs can be used to model many types of applications that involve matching the
elements of one set to elements of another, as Example 14 illustrates.

EXAMPLE 14 Job Assignments Suppose that there are m employees in a group and n different jobs that
need to be done, where m ≥ n. Each employee is trained to do one or more of these n jobs. We
would like to assign an employee to each job. To help with this task, we can use a graph to model
employee capabilities. We represent each employee by a vertex and each job by a vertex. For
each employee, we include an edge from that employee to all jobs that the employee has been
trained to do. Note that the vertex set of this graph can be partitioned into two disjoint sets, the
set of employees and the set of jobs, and each edge connects an employee to a job. Consequently,
this graph is bipartite, where the bipartition is (E, J) where E is the set of employees and J is
the set of jobs. We now consider two different scenarios.

First, suppose that a group has four employees: Alvarez, Berkowitz, Chen, and Davis;
and suppose that four jobs need to be done to complete Project 1: requirements, architecture,
implementation, and testing. Suppose that Alvarez has been trained to do requirements and
testing; Berkowitz has been trained to do architecture, implementation, and testing; Chen has
been trained to do requirements, architecture, and implementation; and Davis has only been
trained to do requirements. We model these employee capabilities using the bipartite graph in
Figure 10(a).

Alvarez Berkowitz Chen Davis

requirements architecture implementation testing

Washington Xuan Ybarra Ziegler

requirements architecture implementation testing
(a) (b)

FIGURE 10 Modeling the jobs for which employees have been trained.

Second, suppose that a second group also has four employees: Washington, Xuan, Ybarra,
and Ziegler; and suppose that the same four jobs need to be done to complete Project 2 as
are needed to complete Project 1. Suppose that Washington has been trained to do architecture;
Xuan has been trained to do requirements, implementation, and testing; Ybarra has been trained
to do architecture; and Ziegler has been trained to do requirements, architecture and testing. We
model these employee capabilities using the bipartite graph in Figure 10(b).

To complete Project 1, we must assign an employee to each job so that every job has an
employee assigned to it, and so that no employee is assigned more than one job. We can do this
by assigning Alvarez to testing, Berkowitz to implementation, Chen to architecture, and Davis
to requirements, as shown in Figure 10(a) (where blue lines show this assignment of jobs).

To complete Project 2, we must also assign an employee to each job so that every job has
an employee assigned to it and no employee is assigned more than one job. However, this is
impossible because there are only two employees, Xuan and Ziegler, who have been trained for
at least one of the three jobs of requirements, implementation, and testing. Consequently, there
is no way to assign three different employees to these three jobs so that each job is assigned an
employee with the appropriate training. ◂

Finding an assignment of jobs to employees can be thought of as finding a matching in
the graph model, where a matching M in a simple graph G = (V, E) is a subset of the set E of
edges of the graph such that no two edges are incident with the same vertex. In other words, a
matching is a subset of edges such that if {s, t} and {u, v} are distinct edges of the matching,

10.2 Graph Terminology and Special Types of Graphs 693

then s, t, u, and v are distinct. A vertex that is the endpoint of an edge of a matching M is said to
be matched in M; otherwise it is said to be unmatched. A maximum matching is a matching
with the largest number of edges. We say that a matching M in a bipartite graph G = (V, E)
with bipartition (V1, V2) is a complete matching from V1 to V2 if every vertex in V1 is the
endpoint of an edge in the matching, or equivalently, if |M| = |V1|. For example, to assign jobs
to employees so that the largest number of jobs are assigned employees, we seek a maximum
matching in the graph that models employee capabilities. To assign employees to all jobs we
seek a complete matching from the set of jobs to the set of employees. In Example 14, we found
a complete matching from the set of jobs to the set of employees for Project 1, and this matching
is a maximum matching, and we showed that no complete matching exists from the set of jobs
to the employees for Project 2.

We now give an example of how matchings can be used to model marriages.
EXAMPLE 15 Marriages on an Island Suppose that there are m men and n women on an island. Each person

has a list of members of the opposite gender acceptable as a spouse. We construct a bipartite
graph G = (V1, V2) where V1 is the set of men and V2 is the set of women so that there is an edge
between a man and a woman if they find each other acceptable as a spouse. A matching in this
graph consists of a set of edges, where each pair of endpoints of an edge is a husband-wife pair.
A maximum matching is a largest possible set of married couples, and a complete matching of
V1 is a set of married couples where every man is married, but possibly not all women. ◂

NECESSARY AND SUFFICIENT CONDITIONS FOR COMPLETE MATCHINGS We
now turn our attention to the question of determining whether a complete matching from V1to V2 exists when (V1, V2) is a bipartition of a bipartite graph G = (V, E). We will introduce a
theorem that provides a set of necessary and sufficient conditions for the existence of a complete
matching. This theorem was proved by Philip Hall in 1935.

Hall’s marriage theorem
is an example of a
theorem where obvious
necessary conditions are
sufficient too.

THEOREM 5 HALL’S MARRIAGE THEOREM The bipartite graph G = (V, E) with bipartition
(V1, V2) has a complete matching from V1 to V2 if and only if |N(A)| ≥ |A| for all subsets
A of V1.

Proof: We first prove the only if part of the theorem. To do so, suppose that there is a complete
matching M from V1 to V2. Then, if A ⊆ V1, for every vertex v ∈ A, there is an edge in M
connecting v to a vertex in V2. Consequently, there are at least as many vertices in V2 that are
neighbors of vertices in V1 as there are vertices in V1. It follows that |N(A)| ≥ |A|.

Courtesy of the Edinburgh
Mathematical Society

PHILIP HALL (1904–1982) Philip Hall grew up in London, where his mother was a dressmaker. He won a
Links

scholarship for board school reserved for needy children, and later a scholarship to King’s College of Cambridge
University. He received his bachelors degree in 1925. In 1926, unsure of his career goals, he took a civil service
exam, but decided to continue his studies at Cambridge after failing.

In 1927 Hall was elected to a fellowship at King’s College; soon after, he made his first important
discovery in group theory. The results he proved are now known as Hall’s theorems. In 1933 he was ap-
pointed as a Lecturer at Cambridge, where he remained until 1941. During World War II he worked as
a cryptographer at Bletchley Park breaking Italian and Japanese codes. At the end of the war, Hall re-
turned to King’s College, and was soon promoted. In 1953 he was appointed to the Sadleirian Chair.
His work during the 1950s proved to be extremely influential to the rapid development of group theory
during the 1960s.

Hall loved poetry and recited it beautifully in Italian and Japanese, as well as English. He was interested in art, music, and
botany. He was quite shy and disliked large groups of people. Hall had an incredibly broad and varied knowledge, and was respected
for his integrity, intellectual standards, and judgement. He was beloved by his students.

694 10 / Graphs

To prove the if part of the theorem, the more difficult part, we need to show that if
|N(A)| ≥ |A| for all A ⊆ V1, then there is a complete matching M from V1 to V2. We will use
strong induction on |V1| to prove this.
Basis step: If |V1| = 1, then V1 contains a single vertex v0. Because |N({v0})| ≥ |{v0}| = 1,
there is at least one edge connecting v0 and a vertex w0 ∈ V2. Any such edge forms a complete
matching from V1 to V2.
Inductive step: We first state the inductive hypothesis.
Inductive hypothesis: Let k be a positive integer. If G = (V, E) is a bipartite graph with bipartition
(V1, V2), and |V1| = j ≤ k, then there is a complete matching M from V1 to V2 whenever the
condition that |N(A)| ≥ |A| for all A ⊆ V1 is met.

Now suppose that H = (W, F) is a bipartite graph with bipartition (W1, W2) and |W1| = k +
1. We will prove that the inductive holds using a proof by cases, using two case. Case (i) applies
when for all integers j with 1 ≤ j ≤ k, the vertices in every set of j elements from W1 are adjacent
to at least j + 1 elements of W2. Case (ii) applies when for some j with 1 ≤ j ≤ k there is a subset
W′

1 of j vertices such that there are exactly j neighbors of these vertices in W2. Because either
Case (i) or Case (ii) holds, we need only consider these cases to complete the inductive step.
Case (i): Suppose that for all integers j with 1 ≤ j ≤ k, the vertices in every subset of j elements
from W1 are adjacent to at least j + 1 elements of W2. Then, we select a vertex v ∈ W1 and an
element w ∈ N({v}), which must exist by our assumption that |N({v}| ≥ |{v}| = 1. We delete
v and w and all edges incident to them from H. This produces a bipartite graph H′ with biparti-
tion (W1 − {v}, W2 − {w}). Because |W1 − {v}| = k, the inductive hypothesis tells us there is a
complete matching from W1 − {v} to W2 − {w}. Adding the edge from v to w to this complete
matching produces a complete matching from W1 to W2.
Case (ii): Suppose that for some j with 1 ≤ j ≤ k, there is a subset W′

1 of j vertices such that
there are exactly j neighbors of these vertices in W2. Let W ′

2 be the set of these neighbors. Then,
by the inductive hypothesis there is a complete matching from W′

1 to W ′
2. Remove these 2j

vertices from W1 and W2 and all incident edges to produce a bipartite graph K with bipartition
(W1 − W ′

1, W2 − W ′
2).

We will show that the graph K satisfies the condition |N(A)| ≥ |A| for all subsets A of W1 −
W ′

1. If not, there would be a subset of t vertices of W1 − W ′
1 where 1 ≤ t ≤ k + 1 − j such that the

vertices in this subset have fewer than t vertices of W2 − W ′
2 as neighbors. Then, the set of j + t

vertices of W1 consisting of these t vertices together with the j vertices we removed from W1 has
fewer than j + t neighbors in W2, contradicting the hypothesis that |N(A)| ≥ |A| for all A ⊆ W1.

Hence, by the inductive hypothesis, the graph K has a complete matching. Combining this
complete matching with the complete matching from W′

1 to W ′
2, we obtain a complete matching

from W1 to W2.
We have shown that in both cases there is a complete matching from W1 to W2. This com-

pletes the inductive step and completes the proof.

We have used strong induction to prove Hall’s marriage theorem. Although our proof is
elegant, it does have some drawbacks. In particular, we cannot construct an algorithm based on
this proof that finds a complete matching in a bipartite graph. For a constructive proof that can
be used as the basis of an algorithm, see [Gi85].

10.2.6 Some Applications of Special Types of Graphs
We conclude this section by introducing some additional graph models that involve the special
types of graph we have discussed in this section.

10.2 Graph Terminology and Special Types of Graphs 695

EXAMPLE 16 Local Area Networks The various computers in a building, such as minicomputers and per-

Links

sonal computers, as well as peripheral devices such as printers and plotters, can be connected
using a local area network. Some of these networks are based on a star topology, where all
devices are connected to a central control device. A local area network can be represented using
a complete bipartite graph K1,n, as shown in Figure 11(a). Messages are sent from device to
device through the central control device.

(a) (b) (c)

FIGURE 11 Star, ring, and hybrid topologies for local area networks.

Other local area networks are based on a ring topology, where each device is connected to
exactly two others. Local area networks with a ring topology are modeled using n-cycles, Cn,
as shown in Figure 11(b). Messages are sent from device to device around the cycle until the
intended recipient of a message is reached.

Finally, some local area networks use a hybrid of these two topologies. Messages may be
sent around the ring, or through a central device. This redundancy makes the network more
reliable. Local area networks with this redundancy can be modeled using wheels Wn, as shown
in Figure 11(c). ◂

EXAMPLE 17 Interconnection Networks for Parallel Computation For many years, computers executed
programs one operation at a time. Consequently, the algorithms written to solve problems were
designed to perform one step at a time; such algorithms are called serial. (Almost all algo-
rithms described in this book are serial.) However, many computationally intense problems,
such as weather simulations, medical imaging, and cryptanalysis, cannot be solved in a reason-
able amount of time using serial operations, even on a supercomputer. Furthermore, there is a
physical limit to how fast a computer can carry out basic operations, so there will always be
problems that cannot be solved in a reasonable length of time using serial operations.

Parallel processing, which uses computers made up of many separate processors, each
with its own memory, helps overcome the limitations of computers with a single processor.
Parallel algorithms, which break a problem into a number of subproblems that can be solved
concurrently, can then be devised to rapidly solve problems using a computer with multiple
processors. In a parallel algorithm, a single instruction stream controls the execution of the
algorithm, sending subproblems to different processors, and directs the input and output of
these subproblems to the appropriate processors.

When parallel processing is used, one processor may need output generated by another
processor. Consequently, these processors need to be interconnected. We can use the appropriate
type of graph to represent the interconnection network of the processors in a computer with
multiple processors. In the following discussion, we will describe the most commonly used
types of interconnection networks for parallel processors. The type of interconnection network
used to implement a particular parallel algorithm depends on the requirements for exchange of
data between processors, the desired speed, and, of course, the available hardware.

The simplest, but most expensive, network-interconnecting processors include a two-way
link between each pair of processors. This network can be represented by Kn, the complete graph
on n vertices, when there are n processors. However, there are serious problems with this type
of interconnection network because the required number of connections is so large. In reality,
the number of direct connections to a processor is limited, so when there are a large number of

696 10 / Graphs

P1 P2 P3 P4 P5 P6

FIGURE 12 A linear
array for six processors.

P(0, 0) P(0, 1) P(0, 2) P(0, 3)

P(1, 0) P(1, 1) P(1, 2) P(1, 3)

P(2, 0) P(2, 1) P(2, 2) P(2, 3)

P(3, 0) P(3, 1) P(3, 2) P(3, 3)

FIGURE 13 A mesh network for
16 processors.

processors, a processor cannot be linked directly to all others. For example, when there are 64
processors, C(64, 2) = 2016 connections would be required, and each processor would have to
be directly connected to 63 others.

On the other hand, perhaps the simplest way to interconnect n processors is to use an ar-
rangement known as a linear array. Each processor Pi, other than P1 and Pn, is connected to its
neighbors Pi−1 and Pi+1 via a two-way link. P1 is connected only to P2, and Pn is connected only
to Pn−1. The linear array for six processors is shown in Figure 12. The advantage of a linear array
is that each processor has at most two direct connections to other processors. The disadvantage
is that it is sometimes necessary to use a large number of intermediate links, called hops, for
processors to share information.

The mesh network (or two-dimensional array) is a commonly used interconnection net-
work. In such a network, the number of processors is a perfect square, say n = m2. The n proces-
sors are labeled P(i, j), 0 ≤ i ≤ m − 1, 0 ≤ j ≤ m − 1. Two-way links connect processor P(i, j)
with its four neighbors, processors P(i ± 1, j) and P(i, j ± 1), as long as these are processors in
the mesh. (Note that four processors, on the corners of the mesh, have only two adjacent pro-
cessors, and other processors on the boundaries have only three neighbors. Sometimes a variant
of a mesh network in which every processor has exactly four connections is used; see Exercise
74.) The mesh network limits the number of links for each processor. Communication between
some pairs of processors requires O(√n) = O(m) intermediate links. (See Exercise 75.) The
graph representing the mesh network for 16 processors is shown in Figure 13.

One important type of interconnection network is the hypercube. For such a network, the
number of processors is a power of 2, n = 2m. The n processors are labeled P0, P1,… , Pn−1.
Each processor has two-way connections to m other processors. Processor Pi is linked to the
processors with indices whose binary representations differ from the binary representation
of i in exactly one bit. The hypercube network balances the number of direct connections for
each processor and the number of intermediate connections required so that processors can
communicate. Many computers have been built using a hypercube network, and many paral-
lel algorithms have been devised that use a hypercube network. The graph Qm, the m-cube,
represents the hypercube network with n = 2m processors. Figure 14 displays the hypercube
network for eight processors. (Figure 14 displays a different way to draw Q3 than was shown in
Figure 6.) ◂

10.2.7 New Graphs from Old
Sometimes we need only part of a graph to solve a problem. For instance, we may care only
about the part of a large computer network that involves the computer centers in New York,
Denver, Detroit, and Atlanta. Then we can ignore the other computer centers and all telephone
lines not linking two of these specific four computer centers. In the graph model for the large

10.2 Graph Terminology and Special Types of Graphs 697

P0 P7P1 P2 P3 P4 P5 P6

FIGURE 14 A hypercube network for eight processors.

d c

a

be

c

a

b
e

FIGURE 15 A subgraph of K5.

network, we can remove the vertices corresponding to the computer centers other than the four
of interest, and we can remove all edges incident with a vertex that was removed. When edges
and vertices are removed from a graph, without removing endpoints of any remaining edges, a
smaller graph is obtained. Such a graph is called a subgraph of the original graph.

Definition 7 A subgraph of a graph G = (V, E) is a graph H = (W, F), where W ⊆ V and F ⊆ E. A sub-
graph H of G is a proper subgraph of G if H ≠ G.

Given a set of vertices of a graph, we can form a subgraph of this graph with these vertices
and the edges of the graph that connect them.

Definition 8 Let G = (V, E) be a simple graph. The subgraph induced by a subset W of the vertex set V
is the graph (W, F), where the edge set F contains an edge in E if and only if both endpoints
of this edge are in W.

EXAMPLE 18 The graph G shown in Figure 15 is a subgraph of K5. If we add the edge connecting c and e to
G, we obtain the subgraph induced by W = {a, b, c, e}. ◂

REMOVING OR ADDING EDGES OF A GRAPH Given a graph G = (V, E) and an edge
e ∈ E, we can produce a subgraph of G by removing the edge e. The resulting subgraph, denoted
by G − e, has the same vertex set V as G. Its edge set is E − {e}. Hence,

G − e = (V, E − {e}).
Similarly, if E′ is a subset of E, we can produce a subgraph of G by removing the edges in E′

from the graph. The resulting subgraph has the same vertex set V as G. Its edge set is E − E′.
We can also add an edge e to a graph to produce a new larger graph when this edge connects

two vertices already in G. We denote by G + e the new graph produced by adding a new edge e,
connecting two previously nonincident vertices, to the graph G. Hence,

G + e = (V, E ∪ {e}).
The vertex set of G + e is the same as the vertex set of G and the edge set is the union of the
edge set of G and the set {e}. (See Example19 for examples of removing an edge from a graph
and adding an edge to a graph.)
EDGE CONTRACTIONS Sometimes when we remove an edge from a graph, we do not want
to retain the endpoints of this edge as separate vertices in the resulting subgraph. In such a case
we perform an edge contraction, which removes an edge e with endpoints u and v and merges u

698 10 / Graphs

and w into a new single vertex w, and for each edge with u or v as an endpoint replaces the edge
with one with w as endpoint in place of u or v and with the same second endpoint. Hence, the
contraction of the edge e with endpoints u and v in the graph G = (V, E) produces a new graph
G′ = (V ′, E′) (which is not a subgraph of G), where V ′ = V − {u, v} ∪ {w} and E′ contains the
edges in E which do not have either u or v as endpoints and an edge connecting w to every
neighbor of either u or v in V . For example, the contraction of the edge connecting the vertices
e and c in the graph G1 in Figure 16 produces a new graph G′

1 with vertices a, b, d, and w. As
in G1, there is an edge in G′

1 connecting a and b and an edge connecting a and d. There also is
an edge in G′

1 that connects b and w that replaces the edges connecting b and c and connecting
b and e in G1 and an edge in G′

1 that connects d and w replacing the edge connecting d and e in
G1. (Also, see Example 19 for an example of the contraction of an edge in a graph.)
REMOVING VERTICES FROM A GRAPH When we remove a vertex v and all edges
incident to it from G = (V, E), we produce a subgraph, denoted by G − v. Observe that
G − v = (V − {v}, E′), where E′ is the set of edges of G not incident to v. Similarly, if V ′ is a
subset of V , then the graph G − V ′ is the subgraph (V − V ′, E′), where E′ is the set of edges of G
not incident to a vertex in V ′. (See Example 19 for an example of the removal of a vertex from a
graph.)

EXAMPLE 19 Figure 16 displays an undirected graph G with four different graphs that are the result of different
operations on G. These are:
(a) G − {b, c}, constructed from G by removing the edge {b, c}
(b) G + {e, d}, constructed from G by adding the edge {e, d}
(c) the contraction of G, constructed from G by replacing the edge {b, c} with a new vertex f ,

and replacing the edges {c, d}, {a, b}, {b, e}, and {c, e} with the new edges {a, f }, {f, d},
and {f, e}

(d) G − c, constructed from G by removing the vertex c and the edges {b, c}, {c, d} and {c, e}
◂

GRAPH UNIONS Two or more graphs can be combined in various ways. The new graph that
contains all the vertices and edges of these graphs is called the union of the graphs. We will
give a more formal definition for the union of two simple graphs.

G contracted by replacing
 {b, c} by f

G – c

e

ba

G G – {b, c}

ba c

e

d

e

ba c d

G + {e, d}

e

ba c d

(a)

e

fa d

(b)

(c) (d)

FIGURE 16 The graph G and four graphs resulting from different operations on G.

10.2 Graph Terminology and Special Types of Graphs 699

d e

ba c

G1

(a)

d

ba

G2

c

f

(b)

d

ba c

e f

G1 G2

FIGURE 17 (a) The simple graphs G1 and G2. (b) Their union G1 ∪ G2.

Definition 9 The union of two simple graphs G1 = (V1, E1) and G2 = (V2, E2) is the simple graph with
vertex set V1 ∪ V2 and edge set E1 ∪ E2. The union of G1 and G2 is denoted by G1 ∪ G2.

EXAMPLE 20 Find the union of the graphs G1 and G2 shown in Figure 17(a). ◂

Solution: The vertex set of the union G1 ∪ G2 is the union of the two vertex sets, namely,
{a, b, c, d, e, f }. The edge set of the union is the union of the two edge sets. The union is displayed
in Figure 17(b).

Exercises

In Exercises 1–3 find the number of vertices, the number of
edges, and the degree of each vertex in the given undirected
graph. Identify all isolated and pendant vertices.

1. a b c

f e d

2. a b

e d
c

3. a b c d

i h g ef

4. Find the sum of the degrees of the vertices of each graph
in Exercises 1–3 and verify that it equals twice the num-
ber of edges in the graph.

5. Can a simple graph exist with 15 vertices each of degree
five?

6. Show that the sum, over the set of people at a party, of
the number of people a person has shaken hands with, is
even. Assume that no one shakes his or her own hand.

In Exercises 7–9 determine the number of vertices and edges
and find the in-degree and out-degree of each vertex for the
given directed multigraph.

7.
a

b

cd

8. a b

d c

9.

cd

ba

e

10. For each of the graphs in Exercises 7–9 determine the
sum of the in-degrees of the vertices and the sum of the
out-degrees of the vertices directly. Show that they are
both equal to the number of edges in the graph.

