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Solution: The in-degrees in G are deg−(a) = 2, deg−(b) = 2, deg−(c) = 3, deg−(d) = 2,
deg−(e) = 3, and deg−(f ) = 0. The out-degrees are deg+(a) = 4, deg+(b) = 1, deg+(c) = 2,
deg+(d) = 2, deg+(e) = 3, and deg+( f ) = 0. ◂

Because each edge has an initial vertex and a terminal vertex, the sum of the in-degrees and
the sum of the out-degrees of all vertices in a graph with directed edges are the same. Both of
these sums are the number of edges in the graph. This result is stated as Theorem 3.

THEOREM 3 Let G = (V, E) be a graph with directed edges. Then
∑
v∈V

deg−(v) = ∑
v∈V

deg+(v) = |E|.

There are many properties of a graph with directed edges that do not depend on the direction
of its edges. Consequently, it is often useful to ignore these directions. The undirected graph that
results from ignoring directions of edges is called the underlying undirected graph. A graph
with directed edges and its underlying undirected graph have the same number of edges.

10.2.3 Some Special Simple Graphs
We will now introduce several classes of simple graphs. These graphs are often used as examples
and arise in many applications.

EXAMPLE 5 Complete Graphs A complete graph on n vertices, denoted by Kn, is a simple graph
that contains exactly one edge between each pair of distinct vertices. The graphs Kn, for
n = 1, 2, 3, 4, 5, 6, are displayed in Figure 3. A simple graph for which there is at least one pair
of distinct vertex not connected by an edge is called noncomplete. ◂

K1 K2 K3 K4 K5 K6

FIGURE 3 The graphs Kn for 1 ≤ n ≤ 6.

EXAMPLE 6 Cycles A cycle Cn, n ≥ 3, consists of n vertices v1, v2,… , vn and edges {v1, v2}, {v2, v3},… ,
{vn−1, vn}, and {vn, v1}. The cycles C3, C4, C5, and C6 are displayed in Figure 4. ◂

C3 C4 C5 C6

FIGURE 4 The cycles C3, C4, C5, and C6.
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EXAMPLE 7 Wheels We obtain a wheel Wn when we add an additional vertex to a cycle Cn, for n ≥ 3, and
connect this new vertex to each of the n vertices in Cn, by new edges. The wheels W3, W4, W5,
and W6 are displayed in Figure 5. ◂

W3 W4 W5 W6

FIGURE 5 The wheels W3, W4, W5, and W6.

EXAMPLE 8 n-Cubes An n-dimensional hypercube, or n-cube, denoted by Qn, is a graph that has vertices
representing the 2n bit strings of length n. Two vertices are adjacent if and only if the bit strings
that they represent differ in exactly one bit position. We display Q1, Q2, and Q3 in Figure 6.

Q1 Q2

0 1

00 01

10 11

Q3

000 001

100 101

111110

010 011

FIGURE 6 The n-cube Qn, n = 1, 2, 3.

Note that you can construct the (n + 1)-cube Qn+1 from the n-cube Qn by making two copies
of Qn, prefacing the labels on the vertices with a 0 in one copy of Qn and with a 1 in the other
copy of Qn, and adding edges connecting two vertices that have labels differing only in the first
bit. In Figure 6, Q3 is constructed from Q2 by drawing two copies of Q2 as the top and bottom
faces of Q3, adding 0 at the beginning of the label of each vertex in the bottom face and 1 at
the beginning of the label of each vertex in the top face. (Here, by face we mean a face of a
cube in three-dimensional space. Think of drawing the graph Q3 in three-dimensional space
with copies of Q2 as the top and bottom faces of a cube and then drawing the projection of the
resulting depiction in the plane.) ◂

10.2.4 Bipartite Graphs
Sometimes a graph has the property that its vertex set can be divided into two disjoint subsets

Links

such that each edge connects a vertex in one of these subsets to a vertex in the other subset.
For example, consider the graph representing marriages between men and women in a village,
where each person is represented by a vertex and a marriage is represented by an edge. In this
graph, each edge connects a vertex in the subset of vertices representing males and a vertex in
the subset of vertices representing females. This leads us to Definition 5.

Definition 6 A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint
sets V1 and V2 such that every edge in the graph connects a vertex in V1 and a vertex in V2(so that no edge in G connects either two vertices in V1 or two vertices in V2). When this
condition holds, we call the pair (V1, V2) a bipartition of the vertex set V of G.
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In Example 9 we will show that C6 is bipartite, and in Example 10 we will show that K3 is
not bipartite.

EXAMPLE 9 C6 is bipartite, as shown in Figure 7, because its vertex set can be partitioned into the two sets
V1 = {v1, v3, v5} and V2 = {v2, v4, v6}, and every edge of C6 connects a vertex in V1 and a vertex
in V2. ◂

EXAMPLE 10 K3 is not bipartite. To verify this, note that if we divide the vertex set of K3 into two disjoint
sets, one of the two sets must contain two vertices. If the graph were bipartite, these two vertices
could not be connected by an edge, but in K3 each vertex is connected to every other vertex by
an edge. ◂

EXAMPLE 11 Are the graphs G and H displayed in Figure 8 bipartite?

V1 V2
v1
v3

v5

v2
v4

v6

FIGURE 7 Showing that C6 is
bipartite.

a b

c

e d

f

g

G

a b

e d

H

f c

FIGURE 8 The undirected graphs G and H.

Solution: Graph G is bipartite because its vertex set is the union of two disjoint sets, {a, b, d}
and {c, e, f, g}, and each edge connects a vertex in one of these subsets to a vertex in the other
subset. (Note that for G to be bipartite it is not necessary that every vertex in {a, b, d} be adjacent
to every vertex in {c, e, f, g}. For instance, b and g are not adjacent.)

Graph H is not bipartite because its vertex set cannot be partitioned into two subsets so
that edges do not connect two vertices from the same subset. (The reader should verify this by
considering the vertices a, b, and f .) ◂

Theorem 4 provides a useful criterion for determining whether a graph is bipartite.

THEOREM 4 A simple graph is bipartite if and only if it is possible to assign one of two different colors to
each vertex of the graph so that no two adjacent vertices are assigned the same color.

Proof: First, suppose that G = (V, E) is a bipartite simple graph. Then V = V1 ∪ V2, where V1and V2 are disjoint sets and every edge in E connects a vertex in V1 and a vertex in V2. If we
assign one color to each vertex in V1 and a second color to each vertex in V2, then no two
adjacent vertices are assigned the same color.

Now suppose that it is possible to assign colors to the vertices of the graph using just two
colors so that no two adjacent vertices are assigned the same color. Let V1 be the set of vertices
assigned one color and V2 be the set of vertices assigned the other color. Then, V1 and V2are disjoint and V = V1 ∪ V2. Furthermore, every edge connects a vertex in V1 and a vertex
in V2 because no two adjacent vertices are either both in V1 or both in V2. Consequently, G
is bipartite.
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We illustrate how Theorem 4 can be used to determine whether a graph is bipartite in
Example 12.

EXAMPLE 12 Use Theorem 4 to determine whether the graphs in Example 11 are bipartite.
Solution: We first consider the graph G. We will try to assign one of two colors, say red and
blue, to each vertex in G so that no edge in G connects a red vertex and a blue vertex. Without
loss of generality we begin by arbitrarily assigning red to a. Then, we must assign blue to c, e,
f , and g, because each of these vertices is adjacent to a. To avoid having an edge with two blue
endpoints, we must assign red to all the vertices adjacent to either c, e, f , or g. This means that
we must assign red to both b and d (and means that a must be assigned red, which it already has
been). We have now assigned colors to all vertices, with a, b, and d red and c, e, f , and g blue.
Checking all edges, we see that every edge connects a red vertex and a blue vertex. Hence, by
Theorem 4 the graph G is bipartite.

Next, we will try to assign either red or blue to each vertex in H so that no edge in H connects
a red vertex and a blue vertex. Without loss of generality we arbitrarily assign red to a. Then, we
must assign blue to b, e, and f , because each is adjacent to a. But this is not possible because e
and f are adjacent, so both cannot be assigned blue. This argument shows that we cannot assign
one of two colors to each of the vertices of H so that no adjacent vertices are assigned the same
color. It follows by Theorem 4 that H is not bipartite. ◂

Theorem 4 is an example of a result in the part of graph theory known as graph colorings.
Graph colorings is an important part of graph theory with important applications. We will study
graph colorings further in Section 10.8.

Another useful criterion for determining whether a graph is bipartite is based on the notion
of a path, a topic we study in Section 10.4. A graph is bipartite if and only if it is not possible
to start at a vertex and return to this vertex by traversing an odd number of distinct edges. We
will make this notion more precise when we discuss paths and circuits in graphs in Section 10.4
(see Exercise 63 in that section).

EXAMPLE 13 Complete Bipartite Graphs A complete bipartite graph Km,n is a graph that has its vertex
set partitioned into two subsets of m and n vertices, respectively with an edge between two
vertices if and only if one vertex is in the first subset and the other vertex is in the second
subset. The complete bipartite graphs K2,3, K3,3, K3,5, and K2,6 are displayed in Figure 9. ◂

K2,3 K3,3

K3,5 K2,6

FIGURE 9 Some complete bipartite graphs.


