Solution: The in-degrees in G are $\operatorname{deg}^{-}(a)=2, \operatorname{deg}^{-}(b)=2, \operatorname{deg}^{-}(c)=3, \operatorname{deg}^{-}(d)=2$, $\operatorname{deg}^{-}(e)=3$, and $\operatorname{deg}^{-}(f)=0$. The out-degrees are $\operatorname{deg}^{+}(a)=4, \operatorname{deg}^{+}(b)=1, \operatorname{deg}^{+}(c)=2$, $\operatorname{deg}^{+}(d)=2, \operatorname{deg}^{+}(e)=3$, and $\operatorname{deg}^{+}(f)=0$.

Because each edge has an initial vertex and a terminal vertex, the sum of the in-degrees and the sum of the out-degrees of all vertices in a graph with directed edges are the same. Both of these sums are the number of edges in the graph. This result is stated as Theorem 3.

Let $G=(V, E)$ be a graph with directed edges. Then

$$
\sum_{v \in V} \operatorname{deg}^{-}(v)=\sum_{v \in V} \operatorname{deg}^{+}(v)=|E| .
$$

There are many properties of a graph with directed edges that do not depend on the direction of its edges. Consequently, it is often useful to ignore these directions. The undirected graph that results from ignoring directions of edges is called the underlying undirected graph. A graph with directed edges and its underlying undirected graph have the same number of edges.

10.2.3 Some Special Simple Graphs

We will now introduce several classes of simple graphs. These graphs are often used as examples and arise in many applications.

EXAMPLE 5 Complete Graphs A complete graph on \boldsymbol{n} vertices, denoted by K_{n}, is a simple graph that contains exactly one edge between each pair of distinct vertices. The graphs K_{n}, for $n=1,2,3,4,5,6$, are displayed in Figure 3. A simple graph for which there is at least one pair of distinct vertex not connected by an edge is called noncomplete.

FIGURE 3 The graphs $\boldsymbol{K}_{\boldsymbol{n}}$ for $\mathbf{1} \leq \boldsymbol{n} \leq \mathbf{6}$.

EXAMPLE 6 Cycles A cycle $\boldsymbol{C}_{\boldsymbol{n}}, n \geq 3$, consists of n vertices $v_{1}, v_{2}, \ldots, v_{n}$ and edges $\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots$, $\left\{v_{n-1}, v_{n}\right\}$, and $\left\{v_{n}, v_{1}\right\}$. The cycles C_{3}, C_{4}, C_{5}, and C_{6} are displayed in Figure 4 .

C_{3}

C_{4}

C_{5}

C_{6}

FIGURE 4 The cycles C_{3}, C_{4}, C_{5}, and C_{6}.

EXAMPLE 7 Wheels We obtain a wheel $\boldsymbol{W}_{\boldsymbol{n}}$ when we add an additional vertex to a cycle C_{n}, for $n \geq 3$, and connect this new vertex to each of the n vertices in C_{n}, by new edges. The wheels W_{3}, W_{4}, W_{5}, and W_{6} are displayed in Figure 5.

FIGURE 5 The wheels W_{3}, W_{4}, W_{5}, and W_{6}.
EXAMPLE $8 \quad \boldsymbol{n}$-Cubes An \boldsymbol{n}-dimensional hypercube, or \boldsymbol{n}-cube, denoted by $\boldsymbol{Q}_{\boldsymbol{n}}$, is a graph that has vertices representing the 2^{n} bit strings of length n. Two vertices are adjacent if and only if the bit strings that they represent differ in exactly one bit position. We display Q_{1}, Q_{2}, and Q_{3} in Figure 6.

FIGURE 6 The n-cube $Q_{n}, n=1,2,3$.
Note that you can construct the $(n+1)$-cube Q_{n+1} from the n-cube Q_{n} by making two copies of Q_{n}, prefacing the labels on the vertices with a 0 in one copy of Q_{n} and with a 1 in the other copy of Q_{n}, and adding edges connecting two vertices that have labels differing only in the first bit. In Figure $6, Q_{3}$ is constructed from Q_{2} by drawing two copies of Q_{2} as the top and bottom faces of Q_{3}, adding 0 at the beginning of the label of each vertex in the bottom face and 1 at the beginning of the label of each vertex in the top face. (Here, by face we mean a face of a cube in three-dimensional space. Think of drawing the graph Q_{3} in three-dimensional space with copies of Q_{2} as the top and bottom faces of a cube and then drawing the projection of the resulting depiction in the plane.)

10.2.4 Bipartite Graphs

Sometimes a graph has the property that its vertex set can be divided into two disjoint subsets such that each edge connects a vertex in one of these subsets to a vertex in the other subset. For example, consider the graph representing marriages between men and women in a village, where each person is represented by a vertex and a marriage is represented by an edge. In this graph, each edge connects a vertex in the subset of vertices representing males and a vertex in the subset of vertices representing females. This leads us to Definition 5.

A simple graph G is called bipartite if its vertex set V can be partitioned into two disjoint sets V_{1} and V_{2} such that every edge in the graph connects a vertex in V_{1} and a vertex in V_{2} (so that no edge in G connects either two vertices in V_{1} or two vertices in V_{2}). When this condition holds, we call the pair $\left(V_{1}, V_{2}\right)$ a bipartition of the vertex set V of G.

In Example 9 we will show that C_{6} is bipartite, and in Example 10 we will show that K_{3} is not bipartite.

EXAMPLE $9 \quad C_{6}$ is bipartite, as shown in Figure 7, because its vertex set can be partitioned into the two sets $V_{1}=\left\{v_{1}, v_{3}, v_{5}\right\}$ and $V_{2}=\left\{v_{2}, v_{4}, v_{6}\right\}$, and every edge of C_{6} connects a vertex in V_{1} and a vertex in V_{2}.

EXAMPLE $10 \quad K_{3}$ is not bipartite. To verify this, note that if we divide the vertex set of K_{3} into two disjoint sets, one of the two sets must contain two vertices. If the graph were bipartite, these two vertices could not be connected by an edge, but in K_{3} each vertex is connected to every other vertex by an edge.

EXAMPLE 11 Are the graphs G and H displayed in Figure 8 bipartite?

FIGURE 7 Showing that \boldsymbol{C}_{6} is bipartite.

FIGURE 8 The undirected graphs G and H.

Solution: Graph G is bipartite because its vertex set is the union of two disjoint sets, $\{a, b, d\}$ and $\{c, e, f, g\}$, and each edge connects a vertex in one of these subsets to a vertex in the other subset. (Note that for G to be bipartite it is not necessary that every vertex in $\{a, b, d\}$ be adjacent to every vertex in $\{c, e, f, g\}$. For instance, b and g are not adjacent.)

Graph H is not bipartite because its vertex set cannot be partitioned into two subsets so that edges do not connect two vertices from the same subset. (The reader should verify this by considering the vertices a, b, and f.)

Theorem 4 provides a useful criterion for determining whether a graph is bipartite.

A simple graph is bipartite if and only if it is possible to assign one of two different colors to each vertex of the graph so that no two adjacent vertices are assigned the same color.

Proof: First, suppose that $G=(V, E)$ is a bipartite simple graph. Then $V=V_{1} \cup V_{2}$, where V_{1} and V_{2} are disjoint sets and every edge in E connects a vertex in V_{1} and a vertex in V_{2}. If we assign one color to each vertex in V_{1} and a second color to each vertex in V_{2}, then no two adjacent vertices are assigned the same color.

Now suppose that it is possible to assign colors to the vertices of the graph using just two colors so that no two adjacent vertices are assigned the same color. Let V_{1} be the set of vertices assigned one color and V_{2} be the set of vertices assigned the other color. Then, V_{1} and V_{2} are disjoint and $V=V_{1} \cup V_{2}$. Furthermore, every edge connects a vertex in V_{1} and a vertex in V_{2} because no two adjacent vertices are either both in V_{1} or both in V_{2}. Consequently, G is bipartite.

We illustrate how Theorem 4 can be used to determine whether a graph is bipartite in Example 12.

EXAMPLE 12 Use Theorem 4 to determine whether the graphs in Example 11 are bipartite.
Solution: We first consider the graph G. We will try to assign one of two colors, say red and blue, to each vertex in G so that no edge in G connects a red vertex and a blue vertex. Without loss of generality we begin by arbitrarily assigning red to a. Then, we must assign blue to c, e, f, and g, because each of these vertices is adjacent to a. To avoid having an edge with two blue endpoints, we must assign red to all the vertices adjacent to either c, e, f, or g. This means that we must assign red to both b and d (and means that a must be assigned red, which it already has been). We have now assigned colors to all vertices, with a, b, and d red and c, e, f, and g blue. Checking all edges, we see that every edge connects a red vertex and a blue vertex. Hence, by Theorem 4 the graph G is bipartite.

Next, we will try to assign either red or blue to each vertex in H so that no edge in H connects a red vertex and a blue vertex. Without loss of generality we arbitrarily assign red to a. Then, we must assign blue to b, e, and f, because each is adjacent to a. But this is not possible because e and f are adjacent, so both cannot be assigned blue. This argument shows that we cannot assign one of two colors to each of the vertices of H so that no adjacent vertices are assigned the same color. It follows by Theorem 4 that H is not bipartite.

Theorem 4 is an example of a result in the part of graph theory known as graph colorings. Graph colorings is an important part of graph theory with important applications. We will study graph colorings further in Section 10.8.

Another useful criterion for determining whether a graph is bipartite is based on the notion of a path, a topic we study in Section 10.4. A graph is bipartite if and only if it is not possible to start at a vertex and return to this vertex by traversing an odd number of distinct edges. We will make this notion more precise when we discuss paths and circuits in graphs in Section 10.4 (see Exercise 63 in that section).

EXAMPLE 13 Complete Bipartite Graphs A complete bipartite graph $\boldsymbol{K}_{\boldsymbol{m}, \boldsymbol{n}}$ is a graph that has its vertex set partitioned into two subsets of m and n vertices, respectively with an edge between two vertices if and only if one vertex is in the first subset and the other vertex is in the second subset. The complete bipartite graphs $K_{2,3}, K_{3,3}, K_{3,5}$, and $K_{2,6}$ are displayed in Figure 9.

FIGURE 9 Some complete bipartite graphs.

