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Definition 4.1 An element x of an inner product space X is said to be orthogo-

nal to an element yinX if < x, y >= 0 and we write x ⊥ y. If A,B ⊆ X, then

we write x ⊥ A if x ⊥ a, ∀ a ∈ A. We say that A ⊥ B if a ⊥ b ∀ a ∈ A

and ∀ b ∈ B.

Existence and Uniqueness Problem

Let X be a metric space and M ⊂ X. Then the distance δ from an element

x ∈ X to M is defined as

δ = inf
y∈M

d(x, y).

If X is normed space, then

δ = inf
y∈M
‖x− y‖.

It is important to know that whether there exists a y ∈M such that

δ = ‖x− y‖.
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If such an element exists, whether it is unique?

Definition 4.2 A segment joining two given elements x and y of a vector space

X is defined to be αx+ (1− α)y, α ∈ [0, 1].

Definition 4.3 A subset M of X is said to be convex if for every x, y ∈ M ,

the line segment joining x and y is contained in M that is for all x, y ∈
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M, αx+ (1− α)y, α ∈ [0, 1].

Remark 4.4 Every subspace of a vector space is convex set.

Theorem 4.5 Let X be an inner product space and M 6= φ a convex subset of

X which is complete (under the metric induced by the inner product). Then

for every x ∈ X, there exists a unique y ∈M such that

δ = inf
y∈M
‖x− y‖.

Proof: Existence of y.

We have

δ = inf
y∈M
‖x− y‖

. Then by definition of infimum , there exists a sequence (yn)∞1 in M such that

deltan = ‖x−yn‖ → δ as n→∞. Let vn = x−yn. Then ‖vn‖ = ‖x−yn‖ = δn.

Now

‖vn + vm‖ = ‖(x− yn) + (x− ym)‖

= ‖2x− (yn + ym)‖
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= 2‖x−
1

2
(yn + ym)‖

= 2‖x− (
1

2
yn + (1−

1

2
)ym)‖, (where

1

2
yn + (1−

1

2
)ym ∈M because M

is convex)

≥ 2δ (∵ δ = inf
y∈M
‖x− y‖, ∴ δ ≤ ‖x− y‖ ∀y ∈M)

i.e.

‖vn + vm‖ ≥ 2δ (1)

Now consider

‖yn − ym‖2 = ‖(x− vn) + (x− vm)‖

= ‖vn − vm‖2

= −‖vn + vm‖2 + 2(‖vn‖2 + ‖vm‖2)

≤ −4δ2 + 2(δ2n + δ2m)

→ −4δ2 + 2(δ2 + δ2) = 0 as n,m→∞

i.e. ‖yn − ym‖2 → 0 as n,m→∞. So (yn)∞1 is a Cauchy sequence in M . Since

M is complete, there exists a y ∈M such that yn → y as n→∞. Since y ∈M ,

therefore by definition of infimum

‖x− y‖ ≥ δ (2)

Now

‖x− y‖ ≤ ‖x− yn‖+ ‖yn − y‖

= δn + ‖yn − y‖

→ δ + 0 (∵ δn → δ and yn → y as n→∞)

. i.e.

‖x− y‖ ≤ δ (3)
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Then (2) and (3) imply ‖x− y‖ = δ

Uniqueness of y. Suppose that there exist y, y0 ∈ M such that δ = ‖x− y‖

and 1δ = ‖x− y0‖. Then

‖y − y0‖2 = ‖(y − x)− (y0 − x)‖2

= −‖(y − x) + (y0 − x)‖2 + 2(‖(y − x)‖2 + ‖(y0 − x)‖2)

= −‖ − 2x+ (y + y0)‖2 + 2(δ2 + δ2)

= −4‖x−
1

2
(y + y0)‖2 + 4δ2

= −4‖x− (
1

2
y + (1−

1

2
)y0)‖2 + 4δ2

∵ M is convex ∴
1

2
y + (1−

1

2
)y0 ∈M so that ‖x− (

1

2
y + (1−

1

2
)y0)‖ ≤ δ

⇒ ‖y − y0‖2 ≤ −4δ2 + +4δ2 = 0

i.e. ‖y − y0‖ ≤ 0. But by definition, ‖y − y0‖ ≥ 0 so that ‖y − y0‖ = 0. This

implies that y − y0 = 0, that is y = y0. This proves that y is unique.


