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Definition 1.1 The restriction of an operator T : D(T ) → Y to a subset B ⊂

D(T ) is denoted by T |B : B → Y and is defined by

T |B(x) = Tx, ∀ x ∈ B.

An extension of T to a set M ⊃ D(T ) is the operator T̃ : M → Y such that

T̃ |D(T ) = T i.e. T̃ |D(T )(x) = Tx ∀ x ∈ D(T ).

Theorem 1.2 Let T : D(T ) → Y be a bounded linear operator, where D(T )

lies in a normed space and Y is a Banach space. Then T has an extension

T̃ : D(T )→ Y such that T̃ is bounded and linear operator with ‖T̃‖ = ‖T‖.

Proof: First of all, we show the existence of T̃ .

1



2

Let x ∈ D(T ). Then by a previous theorem there exists a sequence (xn)∞1 in

D(T ) such that xn → x. Since T is bounded and linear, therefore,

‖Txn − Txm‖ = ‖T (xn − xm)‖ (because T is linear)

≤ ‖T‖‖xn − xm‖ → 0 as m,n→ 0 (because T is bounded)

where we have used the fact that (xn)∞1 being convergent is Cauchy. So (Txn)∞1

is a Cauchy sequence in Y . Since Y is complete, there exists a y ∈ Y such that

Txn → y i.e. lim
n→∞

Txn = y. Using this y as an image of x ∈ D(T ), we can define

T̃ as T̃ x = lim
n→∞

Txn = y, where xn → x. Clearly T̃ x = Tx, ∀ x ∈ D(T )(∵ if

x ∈ D(T ), then the sequence x, x, · · · , is in D(T ) and converges to x so that

T̃ x = lim
n→∞

Txn = lim
n→∞

Tx = Tx).

Now we show that this definition of T̃ is independent of the choice of sequence

in D(T ) converging to x.
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Suppose that xn → x and zn → x. Since (xn)∞1 is Cauchy (because it is conver-

gent), therefore (Txn)∞1 is a Cauchy sequence in Y (as shown in the beginning of

the proof ). Since Y is complete, (Txn)∞1 converges. As lim
n→∞

xn = lim
n→∞

zn = x,

therefore, lim
n→∞

(xn − zn) = 0. Then

‖Txn − Tzn‖ = ‖T (xn − zn)‖ ≤ ‖T‖‖xn − zn‖ → 0 as n→∞

so that Txn → Tzn as n→∞ i.e.

lim
n→∞

Txn = lim
n→∞

Tzn = T̃ x = y.

Thus T̃ is an extension and is uniquely defined at each point of D(T ).

To Prove that T̃ is linear

Consider

T̃ (αx+ βy) = lim
n→∞

T (αxn + βyn) where xn → x, yn → y

= lim
n→∞

(αTxn + βTyn) (because T is linear)

= α lim
n→∞

Txn + β lim
n→∞

Tyn

= αT̃x+ βT̃y.

So T̃ is linear.

To Prove that T̃ is bounded
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Let xn → x and consider

‖T̃ x‖ = ‖ lim
n→∞

Txn‖ = lim
n→∞

‖Txn‖

≤ lim
n→∞

‖T‖‖xn‖ = ‖T‖ lim
n→∞

‖xn‖ (because T is bounded)

= ‖T‖‖ lim
n→∞

xn‖ = ‖T‖‖x‖

i.e.

‖T̃ x‖ ≤ ‖T‖‖x‖ (1)

so that T̃ is bounded. Now (1) implies

‖T̃ x‖
‖x‖

≤ ‖T‖ ∀ x 6= 0

⇒ sup
x∈D(T )

x6=0

‖T̃ x‖
‖x‖

≤ ‖T‖

⇒ ‖T̃‖ ≤ ‖T‖ (2)

Since D(T ) ⊃ D(T ), therefore,

‖T̃‖ ≥ ‖T‖ (3)

From (2) and (3), it follows that ‖T̃‖ = ‖T‖. This completes the proof.

Definition 1.3 A linear functional f is a linear operator with domain a vector

space and range in the scaler field K of the vector space X i.e.

f : X → K,

where K = R if X is real vector space and K = C if X is complex vector space.

Definition 1.4 A bounded linear functional f is a bounded linear operator with

domain a vector space and range in the scaler field K. So if f is bounded,

then there exists c > 0 such that

|f(x)| ≤ c‖x‖ or |f(x)| ≤ ‖f‖‖x‖.
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In this case the norm of f exists and is defined as

‖f‖ = sup
x∈D(f)
x6=0

|f(x)|
‖x‖

= sup
x∈D(f)
‖x‖=1

|f(x)|.

Remark 1.5 The results that we proved for bounded linear operators continue

to hold true for bounded linear functionals.

Example 1.6 The norm ‖ · ‖ : X → R on a vector space X is a functional on

X and it is nonlinear because

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Example 1.7 Consider f : R3 → R defined by f(x) = x·a, where x = (ξ1, ξ2, ξ3) ∈

R3 and a = (a1, a2, a3) is a fixed vector in R3. Show that f is bounded.

Solution: f is bounded because

|f(x)| = |x · a| ∀ x ∈ R3

≤ ‖x‖‖a‖ ∀ x ∈ R3

⇒ |f(x)| ≤ ‖a‖‖x‖ ∀ x ∈ R3 (4)

Now (4) implies that

|f(x)|
‖x‖

≤ ‖a‖ ∀ x 6= 0

⇒ sup
x∈D(f)

|f(x)|
‖x‖

≤ ‖a‖ ∀ x 6= 0

⇒ ‖f‖ ≤ ‖a‖ (5)

Now

‖f‖ = sup
x∈D(T )

x6=0

|f(x)|
‖x‖

= sup
x∈D(f)

|x · a|
‖x‖

≥
|a.a|
‖a‖

=
‖a‖2

‖a‖

⇒ ‖f‖ ≥ ‖a‖ (6)
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From (5) and (6), we see that ‖f‖ = ‖a‖.

Example 1.8 Consider f : c[a, b]→ R defined by f(x) =
b∫
a

x(t)dt ∀ x ∈ c[a, b].

Show that f is bounded.

Solution: f is bounded because

|f(x)| = |
b∫

a

x(t)dt| ∀ x ∈ c[a, b]

≤
b∫

a

|x(t)|dt ∀ x ∈ c[a, b]

≤ (b− a) max
x∈[a,b]

|x(t)| ∀ x ∈ c[a, b]

⇒ |f(x)| ≤ (b− a)‖x‖ ∀ x ∈ c[a, b]. (7)

Now (7) implies that

|f(x)|
‖x‖

≤ (b− a) ∀ x 6= 0

⇒ sup
x∈D(f)
x6=0

|f(x)|
‖x‖

≤ (b− a)

⇒ ‖f‖ ≤ (b− a) (8)
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Also

‖f‖ = sup
x∈D(f)
x6=0

|f(x)|
‖x‖

≥
|f(1)|
‖1‖

=

b∫
a

1dt

max
t∈[a,b]

(1)
= (b− a)

⇒ ‖f‖ ≥ (b− a). (9)

From (8) and (9) it follows that ‖f‖ = (b− a).

Example 1.9 Consider the space l2 and choose a fixed sequence a = (αi)
∞
1 ∈ l2.

Define a functional on l2 by f(x) =
∞∑
1

ξiαi ∀ x = (ξi)
∞
1 ∈ l2. Show that f is

linear and bounded.

Solution: f is linear because

f(αx+ βy) =
∞∑
1

(αξi + βηi)αi

= α
∞∑
1

ξiαi + β
∞∑
1

ηiαi

= αf(x) + βf(y)

f is also bounded because

|f(x)| = |
∞∑
1

ξiαi|

≤ (
∞∑
1

|ξi|2)1/2(
∞∑
1

|αi|2)1/2(M. I. forp = q = 2)

⇒ |f(x)| ≤ ‖x‖‖a‖ (10)
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Now (10) implies that

|f(x)|
‖x‖

≤ ‖a‖

⇒ sup
x∈D(f)
x6=0

|f(x)|
‖x‖

≤ ‖a‖

⇒ ‖f‖ ≤ ‖a‖ (11)

Now consider

‖f‖ = sup
x∈D(f)
x6=0

|f(x)|
‖x‖

≥
|f(a)|
‖a‖

=

∞∑
1

|αi|2

‖a‖

=
‖a‖2

‖a‖
= ‖a‖

⇒ ‖f‖ ≥ ‖a‖ (12)

From (11) and (12), we have ‖f‖ = ‖a‖

Definition 1.10 Let X be a vector space. Then the space of all linear functionals

on X is denoted by X∗ and is called the algebraic dual space of X. It is easy

to see that X∗ forms a vector space under the operations

(f1 + f2)(x) = f1(x) + f2(x) ∀ f1, f2 ∈ X∗

(αf)(x) = αf(x) ∀ f ∈ X∗ and ∀ α ∈ K.

We may go one step further and define linear functionals on X∗. The set of all

linear functionals on X∗ is denoted by X∗∗ and is called the second algebraic

dual space of X.

Definition 1.11 Let X and Y be normed spaces over the same field. Then

B(X,Y ) is the set of all bounded linear operators from X into Y . B(X,Y )
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forms a vector space under the operations

(T1 + T2)(x) = T1) + T2x ∀ T1, T2 ∈ B(X,Y )

(αT )(x) = αTx ∀ T ∈ B(X,Y ) and ∀ α ∈ K.

(13)

Also B(X,Y ) forms a normed space under the norm defined by

‖T‖ = sup
x∈D(T )

x6=0

‖Tx‖
‖x‖

= sup
x∈D(T )
‖x‖=1

‖Tx‖.

Theorem 1.12 If Y is a Banach space then B(X,Y ) is a Banach space.

Proof: Let (Tn)∞1 be a Cauchy sequence in B(X,Y ). Then for each ε > 0, there

exists N ∈ N such that

‖Tn − Tm‖ < ε ∀ n,m > N

For any x ∈ X, the sequence (Tnx)∞1 is in Y and consider

‖Tnx− Tmx‖ = ‖(Tn − Tm)x‖

≤ ‖Tn − Tm‖‖x‖ (∵ Tn, Tm ∈ B(X,Y ), ∴ Tn − Tm ∈ B(X,Y )

so that Tn − Tm is bounded)

≤ ε‖x‖∀ m,n > N (14)

This implies that (Tnx)∞1 is a Cauchy sequence in Y . Since Y is complete, there

exists a y ∈ Y such that Tnx → y as n → ∞ (i.e. lim
n→∞

Tnx = y). Clearly, the

limit y depends upon our choice of x ∈ X. This defines an operator T : X → Y

by Tx = lim
n→∞

Tnx = y. To prove that B(X,Y ) is complete, we have to show

that T ∈ B(X,Y ) and Tn
‖x‖−−→ T

T is linear

T (αx+ βy) = lim
n→∞

Tn(αx+ βy)

= α lim
n→∞

Tn(x) + β lim
n→∞

Tn(y)

= αT (x) + βT (y).
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T is bounded

From (14), we have

‖Tnx− Tmx‖ ≤ ε‖x‖ ∀ m,n > N.

Letting m→∞ in it, we obtain

‖Tnx− Tx‖ ≤ ε‖x‖ ∀ n > N

⇒ ‖(Tn − T )x‖ ≤ ε‖x‖ ∀ n > N

(15)

⇒ Tn − T is bounded so that T = Tn − (Tn − T ) is also bounded. Thus T ∈

B(X,Y ).

Now from (14), we have

‖Tnx− Tx‖
‖x‖

≤ ε ∀ n > N

sup
x∈D(T )

x6=0

‖Tnx− Tx‖
‖x‖

≤ ε ∀ n > N

sup
x∈D(T )

x6=0

‖(Tn − T )x‖
‖x‖

≤ ε ∀ n > N

⇒ ‖Tn − T‖ ≤ ε ∀ n > N

⇒ Tn
‖x‖−−→ T

Hence B(X,Y ) is a normed space.


