Functional Analysis Spring 2020

Lecture 1

Lecturer: Muhammad Yaseen Topic: Bounded Linear Operators

Definition 1.1 The restriction of an operator T : D(T) — Y to a subset B C
D(T) is denoted by T'|g : B — Y and is defined by

T|\g(x) =Tz, V x € B.
An extension of T to a set M DO D(T) is the operator T : M — Y such that

T\pay =T i.e. T|lpar)(x) =Tz ¥V x € D(T).

Theorem 1.2 Let T : D(T) — Y be a bounded linear operator, where D(T)
lies in a normed space and Y is a Banach space. Then T has an extension

T : D(T) — Y such that T is bounded and linear operator with ||T|| = ||T||.

Proof: First of all, we show the existence of T.



Let x € D(T). Then by a previous theorem there exists a sequence (x,){° in

D(T) such that x,, — x. Since T is bounded and linear, therefore,

| Tz, — Txpw|| = ||T(xn — m)|| (because T is linear)

< |IT|||n — m|]| — 0 as m,n — 0 (because T is bounded)

where we have used the fact that (x,){° being convergent is Cauchy. So (T'z,){°
is a Cauchy sequence in Y. Since Y is complete, there exists a y € Y such that
Tx, — yi.e. 7111_)1&;10 Tz, = y. Using this y as an image of ¢ € W, we can define
T as Tx = le Tx, =y, where z,, — z. Clearly T = Tz, ¥V € D(T)( . if
x € D(T), 1?heorc1> the sequence x,x,:-- , is in D(T) and converges to x so that
Tx = lim T, = lim Tz = Tx).

Now we show that this definition of T is independent of the choice of sequence

in D(T) converging to .



Suppose that x, — « and z,, — x. Since (x,){° is Cauchy (because it is conver-

gent), therefore (T'x,){° is a Cauchy sequence in Y (as shown in the beginning of

the proof ). Since Y is complete, (T'xz,){° converges. As lim z, = lim z, = z,
n—oo n— oo
therefore, lim (x,, — z,) = 0. Then
n—oo
Tz, — Tzn|| = |T(2n — z0) || < | T||[|[2n — 2nl| = 0as n — oo

so that T'xz,, —» Tz, as n — o0 i.e.

lim Tx,, = lim Tz, = Tx = Y.
n—oo n—oo

Thus T is an extension and is uniquely defined at each point of D(T).

To Prove that T is linear

Consider

T(am + By) = lim T(ax, + By,) where x,, > x, y, > Yy
n—oo
= lim (aTx, + BTy,) (because T is linear)
n—oo
=« lim Tz, + 8 lim Ty,
= aTz + BTy.

So T is linear.

To Prove that T is bounded




Let x,, — x and consider

|ITz|| = || lim Tz,| = lim ||Tx,||
n—00 n— 00
< lim ||T||||zn| = ||T]| lim ||z,|| (because T is bounded)
n—-o00 n—ro0
—ITI lim @l = Tl
i.e.
[ Tz]| < T[]l (1)

so that T is bounded. Now (1) implies

1T
<|T|Va#0
1]l
T2 _
= < [Tl
zen(r) ||z
x#0
= ||IT|| < |IT| (2)
Since D(T) D D(T), therefore,
1T > |IT| (3)
From (2) and (3), it follows that ||T|| = ||T||. This completes the proof. n

Definition 1.3 A linear functional f is a linear operator with domain a vector

space and range in the scaler field K of the vector space X i.e.
f: X > K,

where K = R #f X 1s real vector space and K = C if X is complex vector space.

Definition 1.4 A bounded linear functional f is a bounded linear operator with
domain a vector space and range in the scaler field K. So if f is bounded,

then there exists ¢ > 0 such that

| (@)| < cllzll or [f(x)| < |Iflx]]-



In this case the norm of f exists and is defined as

| f ()]
|fll = sup ———— = sup |f(x)].
zeD(f) ||| x€D(f)
240 lzli=1

Remark 1.5 The results that we proved for bounded linear operators continue

to hold true for bounded linear functionals.
Example 1.6 The norm || - || : X — R on a vector space X is a functional on
X and it is nonlinear because

lz +yll < [lzll + llyll-

Example 1.7 Consider f : R?> — R defined by f(x) = z-a, where x = (&1,€2,£3) €

R?® and a = (ay,as,a3) is a fized vector in R3. Show that f is bounded.

Solution: f is bounded because

|f(x)| = |z - al V x € R®
< l|z|llla]] ¥ x € R®

= |f(@)| < llallllz]| V2 €R® (4)
Now (4) implies that
F@E o) v 20
|||
£
= sup IO o vazo
zen(s) |||l
= 11l < llall (5)
Now
_ |f(=)| |z - al
|fll = sup = sup
zen(r) ||zl 2epr) [zl
xF#0
a.a| _ |la|®
= el lall

= £l = llall (6)



From (5) and (6), we see that || f| = ||a]|. u

b
Example 1.8 Consider f : c[a,b] — R defined by f(x) = [x(t)dt V x € cla,b].

Show that f is bounded. *

Solution: f is bounded because

F(@)] = | / z(t)dt] V z € cla, b]

< /|w(t)|dt vV x € cla,b]

a

<(b—a) m[a>§] |z(t)] V x € cla,b]
xz€|a,

= |f(@)] < (b —a)|lz]| Vz € cla,b]. (7)

Now (7) implies that

“ﬂ(;”)' <(b—a) V& #0
N | f ()] < (b—a)
zep(s) |zl

x#0

= Ifll < (b —a) (8)



Also
1fl| = |f ()]
zen(f) |||l
x#£0
f
1dt
It max(1)
= IflIl = (b — a). (9)
From (8) and (9) it follows that ||f|| = (b — a). u

Example 1.9 Consider the space l?> and choose a fized sequence a = (o) € 2.
Define a functional on I? by f(x) = Y &a; YV z = (&) € 2. Show that f is
1

linear and bounded.

Solution: f is linear because

flax + By) = Y (ak + Bm)a;

=a25iai+ﬂ§;mai
1

= af(z) + Bf(y)

f is also bounded because

f@)] =13 &ail

< (S IEPYAS o) 2(M. L. forp = q = 2)
1 1

= |f(@)] < llzllllall (10)



Now (10) implies that

|f(z)]
——— < ||a]|
|||l
T
= sup Oy
zen(s) |||
x#0
= I£Il < llall (11)
Now consider
. |f ()]
IfIl =
zen(f) |zl
x#0
(873
F(a) ol
— lall llal|
lla||?
llal|
llall
= £l = llall (12)
From (11) and (12), we have || f|| = ||a|| n

Definition 1.10 Let X be a vector space. Then the space of all linear functionals
on X 1is denoted by X* and is called the algebraic dual space of X. It is easy

to see that X* forms a vector space under the operations

(fr + F2)(®) = fi(z) + fo(x) V f1, 2 € X7
(af)(x) =af(x) Vfe€ X" andV a € K.

We may go one step further and define linear functionals on X*. The set of all
linear functionals on X* is denoted by X** and is called the second algebraic

dual space of X.

Definition 1.11 Let X and Y be normed spaces over the same field. Then
B(X,Y) is the set of all bounded linear operators from X into Y. B(X,Y)



forms a vector space under the operations
(Tl —|— Tz)(al) = Tl) —|— T233 \v Tl, T2 € B(X, Y)
(aT)(x) =aTx VT € B(X,Y) andV a € K.
(13)

Also B(X,Y) forms a normed space under the norm defined by

B |Tz|
IT|| = sup = sup |[|Tz|.
z€D(T) ||z || z€D(T)
z£0 llz||=1

Theorem 1.12 If Y is a Banach space then B(X,Y) is a Banach space.

Proof: Let (T,)$° be a Cauchy sequence in B(X,Y). Then for each € > 0, there
exists N € IN such that

T —Twl|l <€ Vn,m>N

For any x € X, the sequence (T,x){° is in Y and consider
| Thz — Trnz|| = (T, — Ton) ||

< | T — Twllllzl] ¢ Thy Tm € B(X,Y), ... T, — Ty, € B(X,Y)

so that T,, — T,, is bounded)

<e€lz||Vm,n>N (14)
This implies that (T,,x){° is a Cauchy sequence in Y. Since Y is complete, there
exists a y € Y such that T,,x — y as n — oo (i.e. lim T,z = y). Clearly, the

n—oo

limit y depends upon our choice of x € X. This defines an operator T': X — Y

by Tx = lim T,x = y. To prove that B(X,Y) is complete, we have to show

n—>00

that T € B(X,Y) and T, 12 T

T is linear
T(ax + By) = lim T,(ax + By)
=« nll_)l’{.lo T,(x) + ﬁnll_{{.lo T,.(y)

= aT'(z) + BT (y).



10

T is bounded
From (14), we have

| Thx — Thnx|| < €||lz|| V m,n > N.
Letting m — oo in it, we obtain

|Thx — Ta|| < eljz]| Vn > N
= (T — T)z|| < €l|lz|| Vn > N
(15)

= T, — T is bounded so that T = T,, — (T,, — T) is also bounded. Thus T €
B(X,Y).

Now from (14), we have

| Tz — Ta|
<eVn>N
||l
| Thx — Tx||
sup <eVn>N
z€D(T) [E4]
x#£0
(T, — T)x||
S <eVn>N
2€D(T) [E4]

= T, —T|| <eVn>N

[l |l

=T, —T

Hence B(X,Y) is a normed space. n



