Lecture 1

Definition 1.1 The restriction of an operator $T: \mathcal{D}(T) \rightarrow Y$ to a subset $B \subset$ $\mathcal{D}(T)$ is denoted by $\left.T\right|_{B}: B \rightarrow Y$ and is defined by

$$
\left.T\right|_{B}(x)=T x, \quad \forall x \in B
$$

An extension of T to a set $M \supset \mathcal{D}(T)$ is the operator $\tilde{T}: M \rightarrow Y$ such that

$$
\left.\tilde{T}\right|_{\mathcal{D}(T)}=T \text { i.e. }\left.\tilde{T}\right|_{\mathcal{D}(T)}(x)=T x \forall x \in \mathcal{D}(T)
$$

Theorem 1.2 Let $T: \mathcal{D}(T) \rightarrow Y$ be a bounded linear operator, where $\mathcal{D}(T)$ lies in a normed space and Y is a Banach space. Then T has an extension $\tilde{T}: \overline{\mathcal{D}(T)} \rightarrow Y$ such that \tilde{T} is bounded and linear operator with $\|\tilde{T}\|=\|T\|$.

Proof: First of all, we show the existence of \tilde{T}.

Let $x \in \overline{\mathcal{D}(T)}$. Then by a previous theorem there exists a sequence $\left(x_{n}\right)_{1}^{\infty}$ in $\mathcal{D}(T)$ such that $x_{n} \rightarrow x$. Since T is bounded and linear, therefore,

$$
\begin{aligned}
\left\|T x_{n}-T x_{m}\right\| & =\left\|T\left(x_{n}-x_{m}\right)\right\| \quad \text { (because } T \text { is linear) } \\
& \leq\|T\|\left\|x_{n}-x_{m}\right\| \rightarrow 0 \text { as } m, n \rightarrow 0 \quad \text { (because } T \text { is bounded) }
\end{aligned}
$$

where we have used the fact that $\left(x_{n}\right)_{1}^{\infty}$ being convergent is Cauchy. So $\left(T x_{n}\right)_{1}^{\infty}$ is a Cauchy sequence in \boldsymbol{Y}. Since \boldsymbol{Y} is complete, there exists a $\boldsymbol{y} \in \boldsymbol{Y}$ such that $T x_{n} \rightarrow y$ i.e. $\lim _{n \rightarrow \infty} T x_{n}=y$. Using this y as an image of $x \in \overline{\mathcal{D}(T)}$, we can define \tilde{T} as $\tilde{T} x=\lim _{n \rightarrow \infty} T x_{n}=y$, where $x_{n} \rightarrow x$. Clearly $\tilde{T} x=T x, \forall x \in \mathcal{D}(T)(\because$ if $x \in \mathcal{D}(T)$, then the sequence x, x, \cdots, is in $\mathcal{D}(T)$ and converges to x so that $\left.\tilde{\boldsymbol{T}} \boldsymbol{x}=\lim _{n \rightarrow \infty} \boldsymbol{T} \boldsymbol{x}_{n}=\lim _{n \rightarrow \infty} \boldsymbol{T} \boldsymbol{x}=\boldsymbol{T} \boldsymbol{x}\right)$.
Now we show that this definition of \tilde{T} is independent of the choice of sequence in $\mathcal{D}(T)$ converging to x.

Suppose that $x_{n} \rightarrow x$ and $z_{n} \rightarrow x$. Since $\left(x_{n}\right)_{1}^{\infty}$ is Cauchy (because it is convergent), therefore $\left(\boldsymbol{T} \boldsymbol{x}_{n}\right)_{1}^{\infty}$ is a Cauchy sequence in Y (as shown in the beginning of the proof $)$. Since Y is complete, $\left(T x_{n}\right)_{1}^{\infty}$ converges. As $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} z_{n}=x$, therefore, $\lim _{n \rightarrow \infty}\left(x_{n}-z_{n}\right)=0$. Then

$$
\left\|T x_{n}-T z_{n}\right\|=\left\|T\left(x_{n}-z_{n}\right)\right\| \leq\|T\|\left\|x_{n}-z_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty
$$

so that $T x_{n} \rightarrow T z_{n}$ as $n \rightarrow \infty$ i.e.

$$
\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty} T z_{n}=\tilde{T} x=y
$$

Thus \tilde{T} is an extension and is uniquely defined at each point of $\overline{\mathcal{D}(T)}$. To Prove that \tilde{T} is linear
Consider

$$
\begin{aligned}
\tilde{T}(\alpha x+\beta y) & =\lim _{n \rightarrow \infty} T\left(\alpha x_{n}+\beta y_{n}\right) \text { where } x_{n} \rightarrow x, y_{n} \rightarrow y \\
& =\lim _{n \rightarrow \infty}\left(\alpha T x_{n}+\beta T y_{n}\right) \text { (because } T \text { is linear) } \\
& =\alpha \lim _{n \rightarrow \infty} T x_{n}+\beta \lim _{n \rightarrow \infty} T y_{n} \\
& =\alpha \tilde{T} x+\beta \tilde{T} y
\end{aligned}
$$

So \tilde{T} is linear.
To Prove that \tilde{T} is bounded

Let $x_{n} \rightarrow x$ and consider

$$
\begin{aligned}
\|\tilde{T} x\| & =\left\|\lim _{n \rightarrow \infty} T x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|T x_{n}\right\| \\
& \leq \lim _{n \rightarrow \infty}\|T\|\left\|x_{n}\right\|=\|T\| \lim _{n \rightarrow \infty}\left\|x_{n}\right\| \text { (because } T \text { is bounded) } \\
& =\|T\|\left\|\lim _{n \rightarrow \infty} x_{n}\right\|=\|T\|\|x\|
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\|\tilde{T} x\| \leq\|T\|\|x\| \tag{1}
\end{equation*}
$$

so that \tilde{T} is bounded. Now (1) implies

$$
\begin{gather*}
\frac{\|\tilde{T} x\|}{\|x\|} \leq\|T\| \forall x \neq 0 \\
\Rightarrow \sup _{\substack{x \in \mathcal{D}(T) \\
x \neq 0}} \frac{\|\tilde{T} x\|}{\|x\|} \leq\|T\| \\
\Rightarrow\|\tilde{T}\| \tag{2}
\end{gather*}
$$

Since $\overline{\mathcal{D}(T)} \supset \mathcal{D}(T)$, therefore,

$$
\begin{equation*}
\|\tilde{T}\| \geq\|T\| \tag{3}
\end{equation*}
$$

From (2) and (3), it follows that $\|\tilde{T}\|=\|T\|$. This completes the proof.

Definition 1.3 A linear functional f is a linear operator with domain a vector space and range in the scaler field K of the vector space X i.e.

$$
f: X \rightarrow K
$$

where $K=\mathbb{R}$ if X is real vector space and $K=\mathbb{C}$ if X is complex vector space.

Definition 1.4 A bounded linear functional f is a bounded linear operator with domain a vector space and range in the scaler field K. So if f is bounded, then there exists $c>0$ such that

$$
|f(x)| \leq c\|x\| \text { or }|f(x)| \leq\|f\|\|x\|
$$

In this case the norm of f exists and is defined as

$$
\|f\|=\sup _{\substack{x \in \mathcal{D}(f) \\ x \neq 0}} \frac{|f(x)|}{\|x\|}=\sup _{\substack{x \in \mathcal{D}(f) \\\|x\|=1}}|f(x)| .
$$

Remark 1.5 The results that we proved for bounded linear operators continue to hold true for bounded linear functionals.

Example 1.6 The norm $\|\cdot\|: X \rightarrow \mathbb{R}$ on a vector space X is a functional on X and it is nonlinear because

$$
\|x+y\| \leq\|x\|+\|y\| .
$$

Example 1.7 Consider $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined by $f(x)=x \cdot a$, where $x=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in$ \mathbb{R}^{3} and $a=\left(a_{1}, a_{2}, a_{3}\right)$ is a fixed vector in \mathbb{R}^{3}. Show that f is bounded.

Solution: f is bounded because

$$
\begin{align*}
|f(x)| & =|x \cdot a| \quad \forall x \in \mathbb{R}^{3} \\
& \leq\|x\|\|a\| \quad \forall x \in \mathbb{R}^{3} \\
\Rightarrow|f(x)| & \leq\|a\|\|x\| \quad \forall x \in \mathbb{R}^{3} \tag{4}
\end{align*}
$$

Now (4) implies that

$$
\begin{align*}
\frac{|f(x)|}{\|x\|} & \leq\|a\| \quad \forall x \neq 0 \\
\Rightarrow \sup _{x \in \mathcal{D}(f)} \frac{|f(x)|}{\|x\|} & \leq\|a\| \quad \forall x \neq 0 \\
\Rightarrow\|f\| & \leq\|a\| \tag{5}
\end{align*}
$$

Now

$$
\begin{align*}
\|f\| & =\sup _{\substack{x \in \mathcal{D}(T) \\
x \neq 0}} \frac{|f(x)|}{\|x\|}=\sup _{x \in \mathcal{D}(f)} \frac{|x \cdot a|}{\|x\|} \\
& \geq \frac{|a \cdot a|}{\|a\|}=\frac{\|a\|^{2}}{\|a\|} \\
\Rightarrow\|f\| & \geq\|a\| \tag{6}
\end{align*}
$$

From (5) and (6), we see that $\|f\|=\|a\|$.
Example 1.8 Consider $f: c[a, b] \rightarrow \mathbb{R}$ defined by $f(x)=\int_{a}^{b} x(t) d t \quad \forall x \in c[a, b]$. Show that f is bounded.

Solution: f is bounded because

$$
\begin{align*}
|f(x)| & =\left|\int_{a}^{b} x(t) d t\right| \quad \forall x \in c[a, b] \\
& \leq \int_{a}^{b}|x(t)| d t \quad \forall x \in c[a, b] \\
& \leq(b-a) \max _{x \in[a, b]}|x(t)| \quad \forall x \in c[a, b] \\
\Rightarrow|f(x)| & \leq(b-a)\|x\| \quad \forall x \in c[a, b] \tag{7}
\end{align*}
$$

Now (7) implies that

$$
\begin{align*}
\frac{|f(x)|}{\|x\|} & \leq(b-a) \quad \forall x \neq 0 \\
\Rightarrow \sup _{\substack{x \in \mathcal{D}(f) \\
x \neq 0}} \frac{|f(x)|}{\|x\|} & \leq(b-a) \\
\Rightarrow\|f\| & \leq(b-a) \tag{8}
\end{align*}
$$

Also

$$
\begin{align*}
\|f\| & =\sup _{\substack{x \in \mathcal{D}(f) \\
x \neq 0}} \frac{|f(x)|}{\|x\|} \\
& \geq \frac{|f(1)|}{\|1\|}=\frac{\int_{a}^{b} 1 d t}{\max _{t \in[a, b]}(1)}=(b-a) \\
\Rightarrow\|f\| & \geq(b-a) \tag{9}
\end{align*}
$$

From (8) and (9) it follows that $\|f\|=(b-a)$.

Example 1.9 Consider the space l^{2} and choose a fixed sequence $a=\left(\alpha_{i}\right)_{1}^{\infty} \in l^{2}$. Define a functional on l^{2} by $f(x)=\sum_{1}^{\infty} \xi_{i} \alpha_{i} \quad \forall x=\left(\xi_{i}\right)_{1}^{\infty} \in l^{2}$. Show that f is linear and bounded.

Solution: f is linear because

$$
\begin{aligned}
f(\alpha x+\beta y) & =\sum_{1}^{\infty}\left(\alpha \xi_{i}+\beta \eta_{i}\right) \alpha_{i} \\
& =\alpha \sum_{1}^{\infty} \xi_{i} \alpha_{i}+\beta \sum_{1}^{\infty} \eta_{i} \alpha_{i} \\
& =\alpha f(x)+\beta f(y)
\end{aligned}
$$

f is also bounded because

$$
\begin{align*}
|f(x)| & =\left|\sum_{1}^{\infty} \xi_{i} \alpha_{i}\right| \\
& \leq\left(\sum_{1}^{\infty}\left|\xi_{i}\right|^{2}\right)^{1 / 2}\left(\sum_{1}^{\infty}\left|\alpha_{i}\right|^{2}\right)^{1 / 2}(\text { M. I. for } p=q=2) \\
\Rightarrow|f(x)| & \leq\|x\|\|a\| \tag{10}
\end{align*}
$$

Now (10) implies that

$$
\begin{array}{r}
\frac{|f(x)|}{\|x\|} \leq\|a\| \\
\Rightarrow \sup _{\substack{x \in \mathcal{D}(f) \\
x \neq 0}} \frac{|f(x)|}{\|x\|} \leq\|a\| \\
\Rightarrow\|f\| \leq\|a\| \tag{11}
\end{array}
$$

Now consider

$$
\begin{align*}
\|f\| & =\sup _{\substack{x \in \mathcal{D}(f) \\
x \neq 0}} \frac{|f(x)|}{\|x\|} \\
& \geq \frac{|f(a)|}{\|a\|}=\frac{\sum_{1}^{\infty}\left|\alpha_{i}\right|^{2}}{\|a\|} \\
& =\frac{\|a\|^{2}}{\|a\|}=\|a\| \\
\Rightarrow\|f\| & \geq\|a\| \tag{12}
\end{align*}
$$

From (11) and (12), we have $\|f\|=\|a\|$

Definition 1.10 Let X be a vector space. Then the space of all linear functionals on X is denoted by X^{*} and is called the algebraic dual space of X. It is easy to see that X^{*} forms a vector space under the operations

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)(x) & =f_{1}(x)+f_{2}(x) \quad \forall f_{1}, f_{2} \in X^{*} \\
(\alpha f)(x) & =\alpha f(x) \quad \forall f \in X^{*} \text { and } \forall \alpha \in K .
\end{aligned}
$$

We may go one step further and define linear functionals on X^{*}. The set of all linear functionals on X^{*} is denoted by $X^{* *}$ and is called the second algebraic dual space of X.

Definition 1.11 Let X and Y be normed spaces over the same field. Then $B(X, Y)$ is the set of all bounded linear operators from X into Y. $B(X, Y)$
forms a vector space under the operations

$$
\begin{align*}
\left(T_{1}+T_{2}\right)(x) & \left.=T_{1}\right)+T_{2} x \quad \forall T_{1}, T_{2} \in B(X, Y) \\
(\alpha T)(x) & =\alpha T x \quad \forall T \in B(X, Y) \text { and } \forall \alpha \in K . \tag{13}
\end{align*}
$$

Also $B(X, Y)$ forms a normed space under the norm defined by

$$
\|T\|=\sup _{\substack{x \in \mathcal{D}(T) \\ x \neq 0}} \frac{\|T x\|}{\|x\|}=\sup _{\substack{x \in \mathcal{D}(T) \\\|x\|=1}}\|T x\|
$$

Theorem 1.12 If Y is a Banach space then $B(X, Y)$ is a Banach space.

Proof: Let $\left(T_{n}\right)_{1}^{\infty}$ be a Cauchy sequence in $B(X, Y)$. Then for each $\epsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\left\|T_{n}-T_{m}\right\|<\epsilon \quad \forall n, m>N
$$

For any $x \in X$, the sequence $\left(T_{n} x\right)_{1}^{\infty}$ is in Y and consider

$$
\begin{align*}
\left\|T_{n} x-T_{m} x\right\| & =\left\|\left(T_{n}-T_{m}\right) x\right\| \\
& \leq\left\|T_{n}-T_{m}\right\|\|x\| \quad\left(\because T_{n}, T_{m} \in B(X, Y), \therefore T_{n}-T_{m} \in B(X, Y)\right. \\
& \left.\quad \text { so that } T_{n}-T_{m} \text { is bounded }\right) \\
& \leq \epsilon\|x\| \forall m, n>N \tag{14}
\end{align*}
$$

This implies that $\left(T_{n} x\right)_{1}^{\infty}$ is a Cauchy sequence in Y. Since Y is complete, there exists a $y \in Y$ such that $T_{n} x \rightarrow y$ as $n \rightarrow \infty$ (i.e. $\lim _{n \rightarrow \infty} T_{n} x=y$). Clearly, the limit \boldsymbol{y} depends upon our choice of $\boldsymbol{x} \in X$. This defines an operator $T: X \rightarrow Y$ by $T x=\lim _{n \rightarrow \infty} T_{n} x=y$. To prove that $B(X, Y)$ is complete, we have to show that $T \in B(X, Y)$ and $T_{n} \xrightarrow{\|x\|} T$ T is linear

$$
\begin{aligned}
T(\alpha x+\beta y) & =\lim _{n \rightarrow \infty} T_{n}(\alpha x+\beta y) \\
& =\alpha \lim _{n \rightarrow \infty} T_{n}(x)+\beta \lim _{n \rightarrow \infty} T_{n}(y) \\
& =\alpha T(x)+\beta T(y)
\end{aligned}
$$

T is bounded
From (14), we have

$$
\left\|T_{n} x-T_{m} x\right\| \leq \epsilon\|x\| \forall m, n>N
$$

Letting $m \rightarrow \infty$ in it, we obtain

$$
\begin{align*}
\left\|T_{n} x-T x\right\| & \leq \epsilon\|x\| \forall n>N \\
\Rightarrow\left\|\left(T_{n}-T\right) x\right\| & \leq \epsilon\|x\| \forall n>N \tag{15}
\end{align*}
$$

$\Rightarrow T_{n}-T$ is bounded so that $T=T_{n}-\left(T_{n}-T\right)$ is also bounded. Thus $T \in$ $B(X, Y)$.
Now from (14), we have

$$
\begin{aligned}
& \frac{\left\|T_{n} x-T x\right\|}{\|x\|} \leq \epsilon \forall n>N \\
& \sup _{\substack{x \in \mathcal{D}(T) \\
x \neq 0}} \frac{\left\|T_{n} x-T x\right\|}{\|x\|} \leq \epsilon \forall n>N \\
& \sup _{\substack{x \in \mathcal{D}(T) \\
x \neq 0}} \frac{\left\|\left(T_{n}-T\right) x\right\|}{\|x\|} \leq \epsilon \forall n>N \\
& \Rightarrow\left\|T_{n}-T\right\| \leq \epsilon \forall n>N \\
& \Rightarrow T_{n} \xrightarrow{\|x\|} T
\end{aligned}
$$

Hence $B(X, Y)$ is a normed space.

