Gkapter 8 - Improper Integrals.

Subject: Real Analysis (Mathematics) Level: M.Sc.

Source: Syed Gul Shah (Chairman, Department of Mathematics, US Sargodha)

Collected & Composed by: Atiq ur Rehman (atiq@mathcity.org), http://www.mathcity.org

We discussed Riemann-Stieltjes's integrals of the form $\int_a^b f \, d\alpha$ under the restrictions that both f and α are defined and bounded on a finite interval [a,b]. To extend the concept, we shall relax these restrictions on f and α .

> Definition

The integral $\int_a^b f \, d\alpha$ is called an improper integral of first kind if $a = -\infty$ or $b = +\infty$ or both i.e. one or both integration limits is infinite.

> Definition

The integral $\int_a^b f \, d\alpha$ is called an improper integral of second kind if f(x) is unbounded at one or more points of $a \le x \le b$. Such points are called singularities of f(x).

> Notations

We shall denote the set of all functions f such that $f \in R(\alpha)$ on [a,b] by $R(\alpha;a,b)$. When $\alpha(x)=x$, we shall simply write R(a,b) for this set. The notation $\alpha \uparrow$ on $[a,\infty)$ will mean that α is monotonically increasing on $[a,\infty)$.

> Definition

Assume that $f \in R(\alpha; a, b)$ for every $b \ge a$. Keep a, α and f fixed and define a function I on $[a, \infty)$ as follows:

$$I(b) = \int_{a}^{b} f(x)d\alpha(x) \quad \text{if} \quad b \ge a \quad \dots \quad (i)$$

The function I so defined is called an infinite (or an improper) integral of first kind and is denoted by the symbol $\int_a^\infty f(x)d\alpha(x)$ or by $\int_a^\infty f\,d\alpha$.

The integral $\int_{a}^{\infty} f d\alpha$ is said to converge if the limit

$$\lim_{b\to\infty}I(b) \ldots (ii)$$

exists (finite). Otherwise, $\int_{a}^{\infty} f d\alpha$ is said to diverge.

If the limit in (ii) exists and equals A, the number A is called the value of the integral and we write $\int_a^\infty f \, d\alpha = A$

> Example

Consider
$$\int_1^b x^{-p} dx$$
.

$$\int_{1}^{b} x^{-p} dx = \frac{\left(1 - b^{1-p}\right)}{p-1} \quad \text{if } p \neq 1, \text{ the integral } \int_{1}^{\infty} x^{-p} dx \text{ diverges if } p < 1. \text{ When }$$

p > 1, it converges and has the value $\frac{1}{p-1}$.

If
$$p=1$$
, we get $\int_1^b x^{-1} dx = \log b \to \infty$ as $b \to \infty$. $\Rightarrow \int_1^\infty x^{-1} dx$ diverges.

> Example

Consider $\int_{0}^{b} \sin 2\pi x \, dx$ $(1 - \cos 2\pi h)$

$$\therefore \int_{0}^{b} \sin 2\pi x \, dx = \frac{(1 - \cos 2\pi b)}{2\pi} \to \infty \quad \text{as} \quad b \to \infty.$$

 \therefore the integral $\int_{0}^{\infty} \sin 2\pi x \, dx$ diverges.

> Note

If $\int_{-\infty}^{a} f \, d\alpha$ and $\int_{a}^{\infty} f \, d\alpha$ are both convergent for some value of a, we say that

the integral $\int_{-\infty}^{\infty} f d\alpha$ is convergent and its value is defined to be the sum

$$\int_{-\infty}^{\infty} f \, d\alpha = \int_{-\infty}^{a} f \, d\alpha + \int_{a}^{\infty} f \, d\alpha$$

The choice of the point a is clearly immaterial.

If the integral $\int_{-\infty}^{\infty} f \, d\alpha$ converges, its value is equal to the limit: $\lim_{b \to +\infty} \int_{-b}^{b} f \, d\alpha$.

> Theorem

Assume that $\alpha \uparrow$ on $[a,+\infty)$ and suppose that $f \in R(\alpha;a,b)$ for every $b \ge a$. Assume that $f(x) \ge 0$ for each $x \ge a$. Then $\int_a^\infty f \, d\alpha$ converges if, and only if, there exists a constant M > 0 such that

$$\int_{a}^{b} f \, d\alpha \leq M \quad \text{for every} \quad b \geq a.$$

Proof

We have $I(b) = \int_{a}^{b} f(x) d\alpha(x), \quad b \ge a$ $\Rightarrow I \uparrow \text{ on } [a, +\infty)$

Then $\lim_{b\to +\infty} I(b) = \sup\{I(b) \mid b \ge a\} = M > 0$ and the theorem follows

 $\Rightarrow \int_{a}^{b} f \, d\alpha \leq M \text{ for every } b \geq a \text{ whenever the integral converges.}$

> Theorem: (Comparison Test)

Assume that $\alpha \uparrow$ on $[a,+\infty)$. If $f \in R(\alpha;a,b)$ for every $b \ge a$, if

 $0 \le f(x) \le g(x)$ for every $x \ge a$, and if $\int_a^\infty g \, d\alpha$ converges, then $\int_a^\infty f \, d\alpha$ converges

and we have

$$\int_{a}^{\infty} f \, d\alpha \leq \int_{a}^{\infty} g \, d\alpha$$

Proof

From (i) and (ii) we have $I_1(b) \le M$, $b \ge a$.

 $\Rightarrow \lim_{b \to \infty} I_1(b)$ exists and is finite.

$$\Rightarrow \int_{a}^{\infty} f d\alpha$$
 converges.

Also
$$\lim_{b \to \infty} I_1(b) \le \lim_{b \to \infty} I_2(b) \le M$$

$$\Rightarrow \int_{a}^{\infty} f \, d\alpha \leq \int_{a}^{\infty} g \, d\alpha \, .$$

> Theorem (Limit Comparison Test)

Assume that $\alpha \uparrow$ on $[a,+\infty)$. Suppose that $f \in R(\alpha;a,b)$ and that $g \in R(\alpha;a,b)$ for every $b \ge a$, where $f(x) \ge 0$ and $g(x) \ge 0$ if $x \ge a$. If

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$$

then $\int_{a}^{\infty} f d\alpha$ and $\int_{a}^{\infty} g d\alpha$ both converge or both diverge.

Proof

For all $b \ge a$, we can find some N > 0 such that

$$\left| \frac{f(x)}{g(x)} - 1 \right| < \varepsilon \qquad \forall x \ge N \text{ for every } \varepsilon > 0.$$

$$\Rightarrow 1 - \varepsilon < \frac{f(x)}{g(x)} < 1 + \varepsilon$$

Let $\varepsilon = \frac{1}{2}$, then we have

$$\frac{1}{2} < \frac{f(x)}{g(x)} < \frac{3}{2}$$

$$\Rightarrow g(x) < 2f(x) \dots (i) \quad \text{and} \quad 2f(x) < 3g(x) \dots (ii)$$

From (i)
$$\int_{a}^{\infty} g \, d\alpha < 2 \int_{a}^{\infty} f \, d\alpha$$

 $\Rightarrow \int_{a}^{\infty} g \, d\alpha \quad \text{converges if } \int_{a}^{\infty} f \, d\alpha \quad \text{converges and } \int_{a}^{\infty} f \, d\alpha \quad \text{diverges if } \int_{a}^{\infty} f \, d\alpha$ diverges.

From (ii)
$$2\int_{a}^{\infty} f d\alpha < 3\int_{a}^{\infty} g d\alpha$$

 $\Rightarrow \int_{a}^{\infty} f \, d\alpha \quad \text{converges if } \int_{a}^{\infty} g \, d\alpha \quad \text{converges and } \int_{a}^{\infty} g \, d\alpha \quad \text{diverges if } \int_{a}^{\infty} f \, d\alpha$ diverges.

 \Rightarrow The integrals $\int_{a}^{\infty} f d\alpha$ and $\int_{a}^{\infty} g d\alpha$ converge or diverge together.

> Note

The above theorem also holds if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = c$, provided that $c \neq 0$. If c = 0, we can only conclude that convergence of $\int_{-\infty}^{\infty} g \, d\alpha$ implies convergence of $\int_{-\infty}^{\infty} f \, d\alpha$.

> Example

For every real p, the integral $\int_{1}^{\infty} e^{-x} x^{p} dx$ converges.

This can be seen by comparison of this integral with $\int_{1}^{\infty} \frac{1}{x^2} dx$.

Since
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{e^{-x}x^p}{\frac{1}{x^2}}$$
 where $f(x) = e^{-x}x^p$ and $g(x) = \frac{1}{x^2}$.

$$\Rightarrow \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} e^{-x} x^{p+2} = \lim_{x \to \infty} \frac{x^{p+2}}{e^x} = 0$$

and $: \int_{1}^{\infty} \frac{1}{x^2} dx$ is convergent

 \therefore the given integral $\int_{1}^{\infty} e^{-x} x^{p} dx$ is also convergent.

> Theorem

Assume $\alpha \uparrow$ on $[a, +\infty)$. If $f \in R(\alpha; a, b)$ for every $b \ge a$ and if $\int_a^\infty |f| d\alpha$ converges, then $\int_a^\infty f d\alpha$ also converges.

Or: An absolutely convergent integral is convergent.

Proof

If
$$x \ge a$$
, $\pm f(x) \le |f(x)|$
 $\Rightarrow |f(x)| - f(x) \ge 0$
 $\Rightarrow 0 \le |f(x)| - f(x) \le 2|f(x)|$

$$\Rightarrow \int_{a}^{\infty} (|f| - f) d\alpha \text{ converges.}$$

Subtracting from $\int_{a}^{\infty} |f| d\alpha$ we find that $\int_{a}^{\infty} f d\alpha$ converges.

(: Difference of two convergent integrals is convergent)

> Note

 $\int_{a}^{\infty} f \, d\alpha$ is said to converge absolutely if $\int_{a}^{\infty} |f| \, d\alpha$ converges. It is said to be

convergent conditionally if $\int_{a}^{\infty} f d\alpha$ converges but $\int_{a}^{\infty} |f| d\alpha$ diverges.

> Remark

Every absolutely convergent integral is convergent.

> Theorem

Let f be a positive decreasing function defined on $[a,+\infty)$ such that $f(x) \to 0$ as $x \to +\infty$. Let α be bounded on $[a,+\infty)$ and assume that $f \in R(\alpha;a,b)$ for every $b \ge a$. Then the integral $\int_a^\infty f \, d\alpha$ is convergent.

Proof

Integration by parts gives

$$\int_{a}^{b} f \, d\alpha = \left| f(x) \cdot \alpha(x) \right|_{a}^{b} - \int_{a}^{b} \alpha(x) \, df$$
$$= f(b) \cdot \alpha(b) - f(a) \cdot \alpha(a) + \int_{a}^{b} \alpha \, d(-f)$$

It is obvious that $f(b)\alpha(b) \to 0$ as $b \to +\infty$

 $(:: \alpha \text{ is bounded and } f(x) \rightarrow 0 \text{ as } x \rightarrow +\infty)$

and $f(a)\alpha(a)$ is finite.

 \therefore the convergence of $\int_a^b f \, d\alpha$ depends upon the convergence of $\int_a^b \alpha \, d(-f)$.

Actually, this integral converges absolutely. To see this, suppose $|\alpha(x)| \le M$ for all $x \ge a$ (:: $\alpha(x)$ is given to be bounded)

$$\Rightarrow \int_{a}^{b} |\alpha(x)| d(-f) \le \int_{a}^{b} M d(-f)$$
But
$$\int_{a}^{b} M d(-f) = M |-f|_{a}^{b} = M f(a) - M f(b) \to M f(a) \text{ as } b \to \infty.$$

$$\Rightarrow \int_{a}^{\infty} M d(-f) \text{ is convergent.}$$

 \therefore -f is an increasing function.

$$\therefore \int_{a}^{\infty} |\alpha| d(-f) \text{ is convergent.} \quad \text{(Comparison Test)}$$

$$\Rightarrow \int_{a}^{\infty} f d\alpha$$
 is convergent.

> Theorem (Cauchy condition for infinite integrals)

Assume that $f \in R(\alpha; a, b)$ for every $b \ge a$. Then the integral $\int_a^\infty f \, d\alpha$ converges if, and only if, for every $\varepsilon > 0$ there exists a B > 0 such that c > b > B implies

$$\left| \int_{b}^{c} f(x) d\alpha(x) \right| < \varepsilon$$

Proof

Let $\int_{a}^{\infty} f d\alpha$ be convergent. Then $\exists B > 0$ such that

$$\left| \int_{a}^{b} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| < \frac{\varepsilon}{2} \quad \text{for every} \quad b \ge B \quad \dots (i)$$

Also for c > b > B,

$$\left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| < \frac{\varepsilon}{2} \, \dots \, (ii)$$

Consider

$$\left| \int_{b}^{c} f \, d\alpha \right| = \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right|$$

$$= \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha + \int_{a}^{\infty} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right|$$

$$\leq \left| \int_{a}^{c} f \, d\alpha - \int_{a}^{\infty} f \, d\alpha \right| + \left| \int_{a}^{\infty} f \, d\alpha - \int_{a}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\Rightarrow \left| \int_{b}^{c} f \, d\alpha \right| < \varepsilon \quad \text{when} \quad c > b > B.$$

Conversely, assume that the Cauchy condition holds.

Define
$$a_n = \int_a^{a} f d\alpha$$
 if $n = 1, 2, \dots$

The sequence $\{a_n\}$ is a Cauchy sequence \Rightarrow it converges.

Let
$$\lim_{n\to\infty} a_n = A$$

Given $\varepsilon > 0$, choose B so that $\left| \int_{b}^{c} f \, d\alpha \right| < \frac{\varepsilon}{2}$ if c > b > B.

and also that $|a_n - A| < \frac{\varepsilon}{2}$ whenever $a + n \ge B$.

Choose an integer N such that a+N>B i.e. N>B-aThen, if b>a+N, we have

$$\left| \int_{a}^{b} f \, d\alpha - A \right| = \left| \int_{a}^{a+N} f \, d\alpha - A + \int_{a+N}^{b} f \, d\alpha \right|$$

$$\leq \left| a_{N} - A \right| + \left| \int_{a+N}^{b} f \, d\alpha \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

$$\Rightarrow \int_{a}^{\infty} f \, d\alpha = A$$

This completes the proof.

> Remarks

It follows from the above theorem that convergence of $\int_a^\infty f \, d\alpha$ implies $\lim_{b\to\infty} \int_b^{b+\varepsilon} f \, d\alpha = 0$ for every fixed $\varepsilon > 0$.

However, this does not imply that $f(x) \to 0$ as $x \to \infty$.

> Theorem

Every convergent infinite integral $\int_a^\infty f(x)d\alpha(x)$ can be written as a convergent infinite series. In fact, we have

$$\int_{a}^{\infty} f(x) d\alpha(x) = \sum_{k=1}^{\infty} a_k \quad \text{where} \quad a_k = \int_{a+k-1}^{a+k} f(x) d\alpha(x) \quad \dots (1)$$

Proof

$$\therefore \int_{a}^{\infty} f \, d\alpha \text{ converges, the sequence } \left\{ \int_{a}^{a+n} f \, d\alpha \right\} \text{ also converges.}$$

But
$$\int_{a}^{a+n} f \, d\alpha = \sum_{k=1}^{n} a_k$$
. Hence the series $\sum_{k=1}^{\infty} a_k$ converges and equals $\int_{a}^{\infty} f \, d\alpha$.

> Remarks

It is to be noted that the convergence of the series in (1) does not always imply convergence of the integral. For example, suppose $a_k = \int\limits_{k-1}^k \sin 2\pi x \, dx$. Then each $a_k = 0$ and $\sum a_k$ converges.

However, the integral
$$\int_{0}^{\infty} \sin 2\pi x \, dx = \lim_{b \to \infty} \int_{0}^{b} \sin 2\pi x \, dx = \lim_{b \to \infty} \frac{1 - \cos 2\pi b}{2\pi}$$
 diverges.

IMPROPER INTEGRAL OF THE SECOND KIND

> Definition

Let f be defined on the half open interval (a,b] and assume that $f \in R(\alpha;x,b)$ for every $x \in (a,b]$. Define a function I on (a,b] as follows:

$$I(x) = \int_{a}^{b} f d\alpha$$
 if $x \in (a,b]$ (i)

The function I so defined is called an improper integral of the second kind and is denoted by the symbol $\int_{a+}^{b} f(t) d\alpha(t)$ or $\int_{a+}^{b} f d\alpha$.

The integral $\int_{a+}^{b} f d\alpha$ is said to converge if the limit

$$\lim_{x \to a^+} I(x) \quad \dots \quad (ii) \quad \text{exists (finite)}.$$

Otherwise, $\int_{a+}^{b} f d\alpha$ is said to diverge. If the limit in (ii) exists and equals A, the

number A is called the value of the integral and we write $\int_{a}^{b} f d\alpha = A$.

Similarly, if f is defined on [a,b) and $f \in R(\alpha;a,x) \ \forall \ x \in [a,b)$ then $I(x) = \int f d\alpha$ if $x \in [a,b)$ is also an improper integral of the second kind and is denoted as $\int_{a}^{b-1} f d\alpha$ and is convergent if $\lim_{x \to b-1} I(x)$ exists (finite).

> Example

 $f(x) = x^{-p}$ is defined on (0,b] and $f \in R(x,b)$ for every $x \in (0,b]$.

$$I(x) = \int_{x}^{b} x^{-p} dx \quad \text{if} \quad x \in (0, b]$$

$$= \int_{0+}^{b} x^{-p} dx = \lim_{\varepsilon \to 0} \int_{0+\varepsilon}^{b} x^{-p} dx$$

$$= \lim_{\varepsilon \to 0} \left| \frac{x^{1-p}}{1-p} \right|_{\varepsilon}^{b} = \lim_{\varepsilon \to 0} \frac{b^{1-p} - \varepsilon^{1-p}}{1-p} \quad , \quad (p \neq 1)$$

$$= \begin{bmatrix} \text{finite} & , & p < 1 \\ \text{infinite} & , & p > 1 \end{bmatrix}$$

When p=1, we get $\int_{\varepsilon}^{b} \frac{1}{x} dx = \log b - \log \varepsilon \to \infty$ as $\varepsilon \to 0$. $\Rightarrow \int_{0}^{\infty} x^{-1} dx \text{ also diverges.}$

Hence the integral converges when p < 1 and diverges when $p \ge 1$.

> Note

If the two integrals $\int_{a+}^{c} f d\alpha$ and $\int_{c}^{b-} f d\alpha$ both converge, we write

$$\int_{a+}^{b-} f \, d\alpha = \int_{a+}^{c} f \, d\alpha + \int_{c}^{b-} f \, d\alpha$$

The definition can be extended to cover the case of any finite number of sums. We can also consider mixed combinations such as

$$\int_{a+}^{b} f \, d\alpha + \int_{b}^{\infty} f \, d\alpha \quad \text{which can be written as} \quad \int_{a+}^{\infty} f \, d\alpha \, .$$

> Example

Consider
$$\int_{0+}^{\infty} e^{-x} x^{p-1} dx , \quad (p > 0)$$

This integral must be interpreted as a sum as

$$\int_{0+}^{\infty} e^{-x} x^{p-1} dx = \int_{0+}^{1} e^{-x} x^{p-1} dx + \int_{1}^{\infty} e^{-x} x^{p-1} dx$$

$$= I_1 + I_2 \dots \dots \dots \dots \dots (i)$$
 I_2 , the second integral, converges for every real p as proved earlier.

To test
$$I_1$$
, put $t = \frac{1}{x}$ $\Rightarrow dx = -\frac{1}{t^2} dt$

$$\Rightarrow I_1 = \lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} e^{-x} x^{p-1} dx = \lim_{\varepsilon \to 0} \int_{1/\varepsilon}^{1} e^{-\frac{1}{t}} t^{1-p} \left(-\frac{1}{t^2} dt \right) = \lim_{\varepsilon \to 0} \int_{1}^{1/\varepsilon} e^{-\frac{1}{t}} t^{-p-1} dt$$

Take
$$f(t) = e^{-\frac{1}{t}} t^{-p-1}$$
 and $g(t) = t^{-p-1}$

Then $\lim_{t\to\infty} \frac{f(t)}{g(t)} = \lim_{t\to\infty} \frac{e^{-\frac{1}{t}} \cdot t^{-p-1}}{t^{-p-1}} = 1$ and since $\int_{1}^{\infty} t^{-p-1} dt$ converges when p > 0

$$\therefore \int_{1}^{\infty} e^{-\frac{1}{t}} t^{-p-1} dt \text{ converges when } p > 0$$

Thus
$$\int_{0+}^{\infty} e^{-x} x^{p-1} dx$$
 converges when $p > 0$.

When p > 0, the value of the sum in (i) is denoted by $\Gamma(p)$. The function so defined is called the Gamma function.

> Note

The tests developed to check the behaviour of the improper integrals of Ist kind are applicable to improper integrals of IInd kind after making necessary modifications.

> A Useful Comparison Integral

$$\int_{a}^{b} \frac{dx}{(x-a)^{n}}$$

We have, if $n \neq 1$,

$$\int_{a+\varepsilon}^{b} \frac{dx}{(x-a)^{n}} = \left| \frac{1}{(1-n)(x-a)^{n-1}} \right|_{a+\varepsilon}^{b}$$
$$= \frac{1}{(1-n)} \left(\frac{1}{(b-a)^{n-1}} - \frac{1}{\varepsilon^{n-1}} \right)$$

Which tends to $\frac{1}{(1-n)(b-a)^{n-1}}$ or $+\infty$ according as n < 1 or n > 1, as $\varepsilon \to 0$.

Again, if n=1,

$$\int_{a+\varepsilon}^{b} \frac{dx}{x-a} = \log(b-a) - \log \varepsilon \to +\infty \quad \text{as} \quad \varepsilon \to 0.$$

Hence the improper integral $\int_{a}^{b} \frac{dx}{(x-a)^{n}}$ converges iff n < 1.

> Question

Examine the convergence of

(i)
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{3}} (1+x^{2})}$$
 (ii) $\int_{0}^{1} \frac{dx}{x^{2} (1+x)^{2}}$ (iii) $\int_{0}^{1} \frac{dx}{x^{\frac{1}{2}} (1-x)^{\frac{1}{3}}}$

Solution

(i)
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{3}} (1+x^{2})}$$

Here '0' is the only point of infinite discontinuity of the integrand.

$$f(x) = \frac{1}{x^{1/3} (1 + x^2)}$$

Take
$$g(x) = \frac{1}{x^{1/3}}$$

Then
$$\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{1}{1+x^2} = 1$$

$$\Rightarrow \int_0^1 f(x) dx$$
 and $\int_0^1 g(x) dx$ have identical behaviours.

$$\therefore \int_{0}^{1} \frac{dx}{x^{\frac{1}{3}}} \text{ converges } \therefore \int_{0}^{1} \frac{dx}{x^{\frac{1}{3}} (1 + x^{2})} \text{ also converges.}$$

(ii)
$$\int_{0}^{1} \frac{dx}{x^{2}(1+x)^{2}}$$

Here '0' is the only point of infinite discontinuity of the given integrand. We have

$$f(x) = \frac{1}{x^2 (1+x)^2}$$

Take
$$g(x) = \frac{1}{x^2}$$

Then
$$\lim_{x\to 0} \frac{f(x)}{g(x)} = \lim_{x\to 0} \frac{1}{(1+x)^2} = 1$$

$$\Rightarrow \int_0^1 f(x) dx$$
 and $\int_0^1 g(x) dx$ behave alike.

But n = 2 being greater than 1, the integral $\int_0^1 g(x) dx$ does not converge. Hence the given integral also does not converge.

(iii)
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{2}} (1-x)^{\frac{1}{3}}}$$

Here '0' and '1' are the two points of infinite discontinuity of the integrand. We have

$$f(x) = \frac{1}{x^{\frac{1}{2}} (1 - x)^{\frac{1}{3}}}$$

We take any number between 0 and 1, say $\frac{1}{2}$, and examine the convergence of

the improper integrals $\int_{0}^{\frac{1}{2}} f(x)dx$ and $\int_{\frac{1}{2}}^{1} f(x)dx$.

To examine the convergence of $\int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx$, we take $g(x) = \frac{1}{x^{\frac{1}{2}}}$

Then

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{1}{(1-x)^{\frac{1}{3}}} = 1$$

$$\therefore \int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}} dx \text{ converges } \therefore \int_{0}^{\frac{1}{2}} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx \text{ is convergent.}$$

To examine the convergence of $\int_{1/2}^{1} \frac{1}{x^{1/2}(1-x)^{1/3}} dx$, we take $g(x) = \frac{1}{(1-x)^{1/3}}$

Then

$$\lim_{x \to 1} \frac{f(x)}{g(x)} = \lim_{x \to 1} \frac{1}{x^{1/2}} = 1$$

$$\therefore \int_{\frac{1}{2}}^{1} \frac{1}{(1-x)^{\frac{1}{3}}} dx \text{ converges } \therefore \int_{\frac{1}{2}}^{1} \frac{1}{x^{\frac{1}{2}}(1-x)^{\frac{1}{3}}} dx \text{ is convergent.}$$

Hence $\int_0^1 f(x) dx$ converges.

> Question

Show that $\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$ exists iff m, n are both positive.

Solution

The integral is proper if $m \ge 1$ and $n \ge 1$.

The number '0' is a point of infinite discontinuity if m < 1 and the number '1' is a point of infinite discontinuity if n < 1.

Let m < 1 and n < 1.

We take any number, say $\frac{1}{2}$, between 0 & 1 and examine the convergence of

the improper integrals
$$\int_{0}^{\frac{1}{2}} x^{m-1} (1-x)^{n-1} dx$$
 and $\int_{\frac{1}{2}}^{1} x^{m-1} (1-x)^{n-1} dx$ at '0' and '1'

respectively.

Convergence at 0:

We write

$$f(x) = x^{m-1} (1-x)^{n-1} = \frac{(1-x)^{n-1}}{x^{1-m}}$$
 and take $g(x) = \frac{1}{x^{1-m}}$

Then
$$\frac{f(x)}{g(x)} \rightarrow 1$$
 as $x \rightarrow 0$

As
$$\int_{0}^{\frac{1}{2}} \frac{1}{x^{1-m}} dx$$
 is convergent at 0 iff $1-m < 1$ i.e. $m > 0$

We deduce that the integral $\int_{0}^{\frac{1}{2}} x^{m-1} (1-x)^{n-1} dx$ is convergent at 0, iff m is +ive.

Convergence at 1:

We write
$$f(x) = x^{m-1}(1-x)^{n-1} = \frac{x^{m-1}}{(1-x)^{1-n}}$$
 and take $g(x) = \frac{1}{(1-x)^{1-n}}$

Then
$$\frac{f(x)}{g(x)} \to 1$$
 as $x \to 1$

As
$$\int_{1/2}^{1} \frac{1}{(1-x)^{1-n}} dx$$
 is convergent, iff $1-n < 1$ i.e. $n > 0$.

We deduce that the integral $\int_{1/2}^{1} x^{m-1} (1-x)^{n-1} dx$ converges iff n > 0.

Thus
$$\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx$$
 exists for positive values of m , n only.

It is a function which depends upon m & n and is defined for all positive values of m & n. It is called Beta function.

> Question

Show that the following improper integrals are convergent.

(i)
$$\int_{1}^{\infty} \sin^2 \frac{1}{x} dx$$
 (ii) $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$ (iii) $\int_{0}^{1} \frac{x \log x}{(1+x)^2} dx$ (iv) $\int_{0}^{1} \log x \cdot \log(1+x) dx$

Solution

(i) Let
$$f(x) = \sin^2 \frac{1}{x}$$
 and $g(x) = \frac{1}{x^2}$

then
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{\sin^2 \frac{1}{x}}{\frac{1}{x^2}} = \lim_{y \to 0} \left(\frac{\sin y}{y}\right)^2 = 1$$

$$\Rightarrow \int_{1}^{\infty} f(x) dx$$
 and $\int_{1}^{\infty} \frac{1}{x^2} dx$ behave alike.

$$\therefore \int_{1}^{\infty} \frac{1}{x^2} dx \text{ is convergent } \therefore \int_{1}^{\infty} \sin^2 \frac{1}{x} dx \text{ is also convergent.}$$

$$(ii) \quad \int_{1}^{\infty} \frac{\sin^2 x}{x^2} \, dx$$

Take
$$f(x) = \frac{\sin^2 x}{x^2}$$
 and $g(x) = \frac{1}{x^2}$

$$\sin^2 x \le 1 \quad \Rightarrow \quad \frac{\sin^2 x}{x^2} \le \frac{1}{x^2} \quad \forall \quad x \in (1, \infty)$$

and
$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 converges $\therefore \int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$ converges.

> Note

$$\int_{0}^{1} \frac{\sin^{2} x}{x^{2}} dx$$
 is a proper integral because $\lim_{x\to 0} \frac{\sin^{2} x}{x^{2}} = 1$ so that '0' is not a point

of infinite discontinuity. Therefore
$$\int_{0}^{\infty} \frac{\sin^2 x}{x^2} dx$$
 is convergent.

(iii)
$$\int_{0}^{1} \frac{x \log x}{(1+x)^{2}} dx$$

$$\therefore \log x < x , x \in (0,1)$$

$$\therefore x \log x < x^{2}$$

$$\Rightarrow \frac{x \log x}{(1+x)^{2}} < \frac{x^{2}}{(1+x)^{2}}$$
Now
$$\int_{0}^{1} \frac{x^{2}}{(1+x)^{2}} dx \text{ is a proper integral.}$$

$$\therefore \int_{0}^{1} \frac{x \log x}{(1+x)^{2}} dx \text{ is convergent.}$$

(iv)
$$\int_{0}^{1} \log x \cdot \log(1+x) \, dx$$

$$\therefore \log x < x \quad \therefore \log(x+1) < x+1$$

$$\Rightarrow \log x \cdot \log(1+x) < x(x+1)$$

$$\therefore \int_{0}^{1} x(x+1) \, dx \text{ is a proper integral } \therefore \int_{0}^{1} \log x \cdot \log(1+x) \, dx \text{ is convergent.}$$

> Note

- (i) $\int_{0}^{a} \frac{1}{x^{p}} dx$ diverges when $p \ge 1$ and converges when p < 1.
- (ii) $\int_{-\infty}^{\infty} \frac{1}{x^p} dx$ converges iff p > 1.

UNIFORM CONVERGENCE OF IMPROPER INTEGRALS

> Definition

Let f be a real valued function of two variables x & y, $x \in [a, +\infty)$, $y \in S$ where $S \subset \mathbb{R}$. Suppose further that, for each y in S, the integral $\int_a^\infty f(x,y) d\alpha(x)$ is convergent. If F denotes the function defined by the equation

$$F(y) = \int_{a}^{\infty} f(x, y) d\alpha(x) \quad \text{if} \quad y \in S$$

the integral is said to converge *pointwise* to F on S

> Definiton

Assume that the integral $\int_a^\infty f(x,y) d\alpha(x)$ converges pointwise to F on S. The integral is said to converge Uniformly on S if, for every $\varepsilon > 0$ there exists a B > 0 (depending only on ε) such that b > B implies

$$\left| F(y) - \int_{a}^{b} f(x, y) d\alpha(x) \right| < \varepsilon \quad \forall y \in S.$$

(Pointwise convergence means convergence when y is fixed but uniform convergence is for every $y \in S$).

> Theorem (Cauchy condition for uniform convergence.)

The integral $\int_a^\infty f(x,y) d\alpha(x)$ converges uniformly on S, iff, for every $\varepsilon > 0$ there exists a B > 0 (depending on ε) such that c > b > B implies

$$\left| \int_{b}^{c} f(x, y) d\alpha(x) \right| < \varepsilon \quad \forall \quad y \in S.$$

Proof

Proceed as in the proof for Cauchy condition for infinite integral $\int_a^{\infty} f \, d\alpha$.

> Theorem (Weierstrass M-test)

Assume that $\alpha \uparrow$ on $[a,+\infty)$ and suppose that the integral $\int_a^b f(x,y) d\alpha(x)$ exists for every $b \ge a$ and for every y in S. If there is a positive function M defined on $[a,+\infty)$ such that the integral $\int_a^\infty M(x) d\alpha(x)$ converges and $|f(x,y)| \le M(x)$ for each $x \ge a$ and every y in S, then the integral $\int_a^\infty f(x,y) d\alpha(x)$ converges uniformly on S.

Proof

- $\therefore |f(x,y)| \le M(x)$ for each $x \ge a$ and every y in S.
- \therefore For every $c \ge b$, we have

$$\left| \int_{b}^{c} f(x, y) d\alpha(x) \right| \leq \int_{b}^{c} \left| f(x, y) d\alpha(x) \right| \leq \int_{b}^{c} M d\alpha \dots (i)$$

$$\therefore I = \int_{a}^{\infty} M \, d\alpha \text{ is convergent}$$

 \therefore given $\varepsilon > 0$, $\exists B > 0$ such that b > B implies

$$\left| \int_{a}^{b} M \, d\alpha - I \right| < \varepsilon / 2 \quad \dots \quad (ii)$$

Also if c > b > B, then

$$\left| \int_{a}^{c} M \, d\alpha - I \right| < \frac{\varepsilon}{2} \quad \dots \quad (iii)$$

Then
$$\left| \int_{b}^{c} M \, d\alpha \right| = \left| \int_{a}^{c} M \, d\alpha - \int_{a}^{b} M \, d\alpha \right|$$

$$= \left| \int_{a}^{c} M \, d\alpha - I + I - \int_{a}^{b} M \, d\alpha \right|$$

$$\leq \left| \int_{a}^{c} M \, d\alpha - I \right| + \left| \int_{a}^{b} M \, d\alpha - I \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \text{(By } ii \& iii)}$$

$$\Rightarrow \left| \int_{b}^{c} f(x, y) \, d\alpha(x) \right| < \varepsilon , \quad c > b > B \& \text{ for each } y \in S$$

Cauchy condition for convergence (uniform) being satisfied.

Therefore the integral $\int_{a}^{\infty} f(x,y) d\alpha(x)$ converges uniformly on S.

> Example

Consider
$$\int_{0}^{\infty} e^{-xy} \sin x \, dx$$

$$\left| e^{-xy} \sin x \right| \le \left| e^{-xy} \right| = e^{-xy} \qquad (\because \left| \sin x \right| \le 1)$$
and
$$e^{-xy} \le e^{-xc} \qquad \text{if} \quad c \le y$$

Now take $M(x) = e^{-cx}$

The integral $\int_{0}^{\infty} M(x) dx = \int_{0}^{\infty} e^{-cx} dx$ is convergent & converging to $\frac{1}{c}$.

... The conditions of M-test are satisfied and $\int_{0}^{\infty} e^{-xy} \sin x \, dx$ converges uniformly on $[c, +\infty)$ for every c > 0.

> Theorem (Dirichlet's test for uniform convergence)

Assume that α is bounded on $[a,+\infty)$ and suppose the integral $\int_a^b f(x,y) d\alpha(x)$ exists for every $b \ge a$ and for every y in S. For each fixed y in S, assume that $f(x,y) \le f(x',y)$ if $a \le x' < x < +\infty$. Furthermore, suppose there exists a positive function g, defined on $[a,+\infty)$, such that $g(x) \to 0$ as $x \to +\infty$ and such that $x \ge a$ implies

$$|f(x,y)| \le g(x)$$
 for every y in S.

Then the integral $\int_{a}^{\infty} f(x, y) d\alpha(x)$ converges uniformly on S.

Proof

Let M > 0 be an upper bound for $|\alpha|$ on $[a, +\infty)$.

Given $\varepsilon > 0$, choose B > a such that $x \ge B$ implies

$$g(x) < \frac{\varepsilon}{4M}$$

$$(\because g(x) \text{ is +ive and } \to 0 \text{ as } x \to \infty \therefore |g(x) - 0| < \frac{\varepsilon}{4M} \text{ for } x \ge B)$$

If c > b, integration by parts yields

$$\int_{b}^{c} f d\alpha = \left| f(x, y) \cdot \alpha(x) \right|_{b}^{c} - \int_{b}^{c} \alpha df$$

$$= f(c, y)\alpha(c) - f(b, y)\alpha(b) + \int_{b}^{c} \alpha d(-f) \dots (i)$$

But, since -f is increasing (for each fixed y), we have

$$\left| \int_{b}^{c} \alpha d(-f) \right| \leq M \int_{b}^{c} d(-f) \qquad (\because \text{ upper bound of } |\alpha| \text{ is } M)$$
$$= M f(b, y) - M f(c, y) \dots (ii)$$

Now if c > b > B, we have from (i) and (ii)

$$\left| \int_{b}^{c} f \, d\alpha \right| \leq \left| f(c, y) \alpha(c) - f(b, y) \alpha(b) \right| + \left| \int_{b}^{c} \alpha \, d(-f) \right|$$

$$\leq \left| \alpha(c) \| f(c, y) \| + \left| f(b, y) \| \alpha(b) \| + M \right| \left| f(b, y) - f(c, y) \right|$$

$$\leq \left| \alpha(c) \| f(c, y) \| + \left| \alpha(b) \| f(b, y) \| + M \right| \left| f(b, y) \| + M \right| \left| f(c, y) \right|$$

$$\leq M g(c) + M g(b) + M g(b) + M g(c)$$

$$= 2M [g(b) + g(c)]$$

$$< 2M \left[\frac{\varepsilon}{4M} + \frac{\varepsilon}{4M} \right] = \varepsilon$$

$$\Rightarrow \left| \int_{b}^{c} f d\alpha \right| < \varepsilon \quad \text{for every } y \text{ in } S.$$

Therefore the Cauchy condition is satisfied and $\int_{a}^{\infty} f(x,y) d\alpha(x)$ converges uniformly on S.

> Example

Consider
$$\int_{0}^{\infty} \frac{e^{-xy}}{x} \sin x \, dx$$

Take
$$\alpha(x) = \cos x$$
 and $f(x, y) = \frac{e^{-xy}}{x}$ if $x > 0$, $y \ge 0$.

If
$$S = [0, +\infty)$$
 and $g(x) = \frac{1}{x}$ on $[\varepsilon, +\infty)$ for every $\varepsilon > 0$ then

- i) $f(x,y) \le f(x',y)$ if $x' \le x$ and $\alpha(x)$ is bounded on $[\varepsilon, +\infty)$.
- ii) $g(x) \rightarrow 0$ as $x \rightarrow +\infty$

iii)
$$|f(x,y)| = \left|\frac{e^{-xy}}{x}\right| \le \frac{1}{x} = g(x) \quad \forall y \in S.$$

So that the conditions of Dirichlet's theorem are satisfied.

Hence

$$\int_{\varepsilon}^{\infty} \frac{e^{-xy}}{x} \sin x \, dx = + \int_{\varepsilon}^{\infty} \frac{e^{-xy}}{x} \, d(-\cos x) \quad \text{converges uniformly on } \left[\varepsilon, +\infty\right) \text{ if } \varepsilon > 0.$$

$$\therefore \lim_{x \to 0} \frac{\sin x}{x} = 1 \qquad \therefore \int_{0}^{\varepsilon} e^{-xy} \frac{\sin x}{x} dx \text{ converges being a proper integral.}$$

$$\Rightarrow \int_{0}^{\infty} e^{-xy} \frac{\sin x}{x} dx \text{ also converges uniformly on } [0,+\infty).$$

> Remarks

Dirichlet's test can be applied to test the convergence of the integral of a product. For this purpose the test can be modified and restated as follows:

Let $\phi(x)$ be bounded and monotonic in $[a, +\infty)$ and let $\phi(x) \to 0$, when

$$x \to \infty$$
. Also let $\int_{a}^{X} f(x) dx$ be bounded when $X \ge a$.

Then
$$\int_{a}^{\infty} f(x)\phi(x)dx$$
 is convergent.

> Example

Consider
$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$

$$\therefore \frac{\sin x}{x} \to 1 \quad \text{as} \quad x \to 0.$$

:. 0 is not a point of infinite discontinuity.

Now consider the improper integral $\int_{1}^{\infty} \frac{\sin x}{x} dx$.

The factor $\frac{1}{x}$ of the integrand is monotonic and $\to 0$ as $x \to \infty$.

Also
$$\left| \int_{1}^{X} \sin x \, dx \right| = \left| -\cos X + \cos(1) \right| \le \left| \cos X \right| + \left| \cos(1) \right| < 2$$

So that $\int_{1}^{X} \sin x \, dx$ is bounded above for every $X \ge 1$.

$$\Rightarrow \int_{1}^{\infty} \frac{\sin x}{x} dx$$
 is convergent. Now since $\int_{0}^{1} \frac{\sin x}{x} dx$ is a proper integral, we see

that $\int_{0}^{\infty} \frac{\sin x}{x} dx$ is convergent.

> Example

Consider
$$\int_{0}^{\infty} \sin x^2 \ dx.$$

We write
$$\sin x^2 = \frac{1}{2x} \cdot 2x \cdot \sin x^2$$

Now
$$\int_{1}^{\infty} \sin x^{2} dx = \int_{1}^{\infty} \frac{1}{2x} \cdot 2x \cdot \sin x^{2} dx$$

$$\frac{1}{2x}$$
 is monotonic and $\to 0$ as $x \to \infty$.

Also
$$\left| \int_{1}^{X} 2x \sin x^{2} dx \right| = \left| -\cos X^{2} + \cos(1) \right| < 2$$

So that $\int_{1}^{X} 2x \sin x^{2} dx$ is bounded for $X \ge 1$.

Hence
$$\int_{1}^{\infty} \frac{1}{2x} \cdot 2x \cdot \sin x^2 dx$$
 i.e. $\int_{1}^{\infty} \sin x^2 dx$ is convergent.

Since $\int_{0}^{1} \sin x^{2} dx$ is only a proper integral, we see that the given integral is convergent.

> Example

Consider
$$\int_{0}^{\infty} e^{-ax} \frac{\sin x}{x} dx$$
, $a > 0$

Here e^{-ax} is monotonic and bounded and $\int_{0}^{\infty} \frac{\sin x}{x} dx$ is convergent.

Hence
$$\int_{0}^{\infty} e^{-ax} \frac{\sin x}{x} dx$$
 is convergent.

> Example

Show that $\int_{0}^{\infty} \frac{\sin x}{x} dx$ is not absolutely convergent.

Solution

Consider the proper integral $\int_{0}^{n\pi} \frac{|\sin x|}{x} dx$

We need not take |x| because $x \ge 0$.

where n is a positive integer. We have

$$\int_{0}^{n\pi} \frac{|\sin x|}{x} \, dx = \sum_{r=1}^{n} \int_{(r-1)\pi}^{r\pi} \frac{|\sin x|}{x} \, dx$$

Put $x = (r-1)\pi + y$ so that y varies in $[0,\pi]$.

We have $|\sin[(r-1)\pi + y]| = |(-1)^{r-1}\sin y| = \sin y$

$$\therefore \int_{(r-1)\pi}^{r\pi} \frac{\left|\sin x\right|}{x} dx = \int_{0}^{\pi} \frac{\sin y}{(r-1)\pi + y} dy$$

 \therefore $r\pi$ is the max. value of $[(r-1)\pi + y]$ in $[0,\pi]$

$$\therefore \int_{0}^{\pi} \frac{\sin y}{(r-1)\pi + y} dy \ge \frac{1}{r\pi} \int_{0}^{\pi} \sin y \, dy = \frac{2}{r\pi}$$

$$\Rightarrow \int_{0}^{n\pi} \frac{|\sin x|}{x} dx \ge \sum_{1}^{n} \frac{2}{r\pi} = \frac{2}{\pi} \sum_{1}^{n} \frac{1}{r}$$

$$\therefore \sum_{1}^{n} \frac{1}{r} \to \infty$$
 as $n \to \infty$, we see that

$$\int_{0}^{n\pi} \frac{|\sin x|}{x} dx \to \infty \quad \text{as} \quad n \to \infty.$$

Let, now, X be any real number.

There exists a +tive integer n such that $n\pi \le X < (n+1)\pi$.

We have
$$\int_{0}^{x} \frac{|\sin x|}{x} dx \ge \int_{0}^{n\pi} \frac{|\sin x|}{x} dx$$

Let $X \to \infty$ so that n also $\to \infty$. Then we see that $\int_0^X \frac{|\sin x|}{x} dx \to \infty$

So that $\int_{0}^{\infty} \frac{|\sin x|}{x} dx$ does not converge.

> Questions

Examine the convergence of

(i)
$$\int_{1}^{\infty} \frac{x}{(1+x)^3} dx$$
 (ii) $\int_{1}^{\infty} \frac{1}{(1+x)\sqrt{x}} dx$ (iii) $\int_{1}^{\infty} \frac{dx}{x^{\frac{1}{3}} (1+x)^{\frac{1}{2}}}$

Solution

(i) Let
$$f(x) = \frac{x}{(1+x)^3}$$
 and take $g(x) = \frac{x}{x^3} = \frac{1}{x^2}$

As
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^3}{(1+x)^3} = 1$$

Therefore the two integrals $\int_{1}^{\infty} \frac{x}{(1+x)^3} dx$ and $\int_{1}^{\infty} \frac{1}{x^2} dx$ have identical behaviour for convergence at ∞ .

$$\therefore \int_{1}^{\infty} \frac{1}{x^2} dx \text{ is convergent} \quad \therefore \int_{1}^{\infty} \frac{x}{(1+x)^3} dx \text{ is convergent.}$$

(ii) Let
$$f(x) = \frac{1}{(1+x)\sqrt{x}}$$
 and take $g(x) = \frac{1}{x\sqrt{x}} = \frac{1}{x^{\frac{3}{2}}}$

We have
$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x}{1+x} = 1$$

and $\int_{1}^{\infty} \frac{1}{x^{\frac{3}{2}}} dx$ is convergent. Thus $\int_{1}^{\infty} \frac{1}{(1+x)\sqrt{x}} dx$ is convergent.

(iii) Let
$$f(x) = \frac{1}{x^{1/3} (1+x)^{1/2}}$$

we take
$$g(x) = \frac{1}{x^{\frac{1}{3}} \cdot x^{\frac{1}{2}}} = \frac{1}{x^{\frac{5}{6}}}$$

We have $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$ and $\int_{1}^{\infty} \frac{1}{x^{\frac{5}{6}}} dx$ is convergent $\therefore \int_{1}^{\infty} f(x) dx$ is convergent.

> Question

Show that $\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$ is convergent.

Solution

We have

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \lim_{a \to \infty} \left[\int_{-a}^{0} \frac{1}{1+x^2} dx + \int_{0}^{a} \frac{1}{1+x^2} dx \right]$$

$$= \lim_{a \to \infty} \left[\int_{0}^{a} \frac{1}{1+x^2} dx + \int_{0}^{a} \frac{1}{1+x^2} dx \right] = 2 \lim_{a \to \infty} \left[\int_{0}^{a} \frac{1}{1+x^2} dx \right]$$

$$= 2 \lim_{a \to \infty} \left| \tan^{-1} x \right|_{0}^{a} = 2 \left(\frac{\pi}{2} \right) = \pi$$

therefore the integral is convergent.

> Question

Show that $\int_{0}^{\infty} \frac{\tan^{-1} x}{1 + x^2} dx$ is convergent.

Solution

$$\therefore (1+x^2) \cdot \frac{\tan^{-1} x}{(1+x^2)} = \tan^{-1} x \to \frac{\pi}{2} \quad \text{as} \quad x \to \infty$$
Here $f(x) = \frac{\tan^{-1} x}{1+x^2}$

$$\int_{0}^{\infty} \frac{\tan^{-1} x}{1+x^2} dx \quad \& \quad \int_{0}^{\infty} \frac{1}{1+x^2} dx \quad \text{behave alike.}$$

 $\therefore \int_{0}^{\infty} \frac{1}{1+x^2} dx$ is convergent \therefore A given integral is convergent.

> Question

Show that
$$\int_{0}^{\infty} \frac{\sin x}{(1+x)^{\alpha}} dx$$
 converges for $\alpha > 0$.

Solution

$$\int_{0}^{\infty} \sin x \, dx \quad \text{is bounded because} \quad \int_{0}^{X} \sin x \, dx \le 2 \quad \forall \quad x > 0.$$

Furthermore the function $\frac{1}{(1+x)^{\alpha}}$, $\alpha > 0$ is monotonic on $[0,+\infty)$.

 \Rightarrow the integral $\int_{0}^{\infty} \frac{\sin x}{(1+x)^{\alpha}} dx$ is convergent.

> Question

Show that $\int_{0}^{\infty} e^{-x} \cos x \, dx$ is absolutely convergent.

Solution

$$\therefore \left| e^{-x} \cos x \right| < e^{-x} \text{ and } \int_{0}^{\infty} e^{-x} dx = 1$$

: the given integral is absolutely convergent. (comparison test)

> Question

Show that $\int_{0}^{1} \frac{e^{-x}}{\sqrt{1-x^{4}}} dx$ is convergent.

Solution

$$e^{-x} < 1$$
 and $1 + x^2 > 1$

$$\therefore \frac{e^{-x}}{\sqrt{1-x^4}} < \frac{1}{\sqrt{(1-x^2)(1+x^2)}} < \frac{1}{\sqrt{1-x^2}}$$

Also
$$\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} dx = \lim_{\varepsilon \to 0} \int_{0}^{1-\varepsilon} \frac{1}{\sqrt{1-x^{2}}} dx$$
$$= \lim_{\varepsilon \to 0} \sin^{-1}(1-\varepsilon) = \frac{\pi}{2}$$

$$\Rightarrow \int_{0}^{1} \frac{e^{-x}}{\sqrt{1-x^{4}}} dx \text{ is convergent. (by comparison test)}$$

References:

(1) Lectures (Year 2003-04)

Prof. Syyed Gul Shah Chairman, Department of Mathematics. University of Sargodha, Sargodha.

(2) Book

Mathematical Analysis
Tom M. Apostol (John Wiley & Sons, Inc.)

Made by: Atiq ur Rehman (atiq@mathcity.org)

Available online at http://www.mathcity.org in PDF Format.

Page Setup: Legal $(8'' \frac{1}{2} \times 14'')$

Printed: 15 April 2004 (Revised: March 19, 2006.)

Submit error or mistake at http://www.mathcity.org/error