Measure of central tendency and its types

Measure of central tendency and its types:
好 Geometric and Harmonic mean for ungroup and group data. Its uses and applications
Measure of dispersion and its types
好 Range for absolute and relative measure (ungroup and group)

Geometric Mean

姆 The geometric mean is useful in finding the average change of percentages, ratios, indexes, or growth rates over time. It has a wide application in business and economics because we are often interested in finding the percentage changes in sales, salaries, or economic figures, such as the Gross Domestic Product, which compound or build on each other.

Defination

女 The geometric mean of a set of n positive numbers is defined as the nth root of the product of n values．The formula for the geometric mean is written：
女 For ungroup

$$
\begin{aligned}
G \cdot M & =\sqrt[n]{x_{1} \cdot x_{2} \cdot x_{3} \ldots x_{n}} \\
G \cdot M & =\text { anti } \log \left[\frac{1}{n}\left\{\sum \log x_{i}\right\}\right]
\end{aligned}
$$

好 Further study See book Chapter 3 page 77

好 For group

$$
G . M=\operatorname{anti} \log \left[\frac{1}{\sum f}\left\{\sum f \log x_{i}\right\}\right]
$$

For Ungroup data

For Group Data

Harmonic Mean

4 Harmonic mean is the reciprocal of arithmetic mean and reciprocal of its values．
姆 Formula
女 for ungroup $\boldsymbol{H} \cdot \boldsymbol{M}=\frac{n}{\sum \frac{1}{x}}$
女 for group

$$
H . M=\frac{\sum f}{\sum\left(\frac{f}{x}\right)}
$$

Example for Ungroup data

Truck Number	1	2	3	4
Km. driven	40	50	60	75

x	1/x	
40	0.02500	$H . M=\frac{N}{\sum 1 / x}$
50	0.02000	4
60	0.01677	0.07
75	0.01333	$\mu . \mathrm{m}=53.33 \mathrm{Km}$.
	0.07500	

Example for Group data

Qind finemal	$11-15$	$16-20$	$21-3$	$26-30$	$31-25$
Frogumbles	15	20	0	150	15

Class interval	x	f	$/ / \pi$	$\begin{aligned} & x=\text { Midpwit } \\ & x=\frac{L E L+W C L}{2} \\ & 4, g=\frac{11+15}{2}=13 \end{aligned}$
11-15	13	15	11593+615	
16-50	18	30	111111111	
$21-8$	23	0	20049562	
36-7	4	150	575714357	
$31-35$	33	15	04548485	3
		360	106858	

女

Measures of Dispersion

Definition

女 Measures of dispersion are descriptive statistics that describe how similar a set of scores are to each other

好 The more similar the scores are to each other， the lower the measure of dispersion will be
${ }^{\text {女 }}$ The less similar the scores are to each other，the higher the measure of dispersion will be
好 In general，the more spread out a distribution is， the larger the measure of dispersion will be

Measures of Dispersion

女 Which of the distributions of scores has the larger dispersion？
女 The upper distribution
 has more dispersion because the scores are more spread out
女 That is，they are less similar to each other

Types of dispersion

姆 Absloute Measure of dispersion
姆 Relative measure of dispersion

Absloute Measure of dispersion

女 Range
姆 The semi－interquartile range（SIR）or Quartile Deviation（Q．D）
女 Mean Deviation（M．D）
女 Standard deviation

Relative measure of dispersion

${ }^{4}$ Co－efficient of Range
${ }^{4}$ Co－efficient of Quartile Deviation（Q．D）
姆Co－efficient of Mean Deviation（M．D）
女 Co－efficient of Standard deviation
姆 Variance

The Range

女 The range is defined as the difference between the largest score in the set of data and the smallest score in the set of data，X_{L}
－ X_{S}
好 What is the range of the following data： $\begin{array}{llllllllll}4 & 8 & 1 & 6 & 6 & 2 & 9 & 3 & 6 & 9\end{array}$

女 The largest score $\left(X_{L}\right)$ is 9 ；the smallest score $\left(X_{S}\right)$ is 1 ；the range is $X_{L}-X_{S}=9-1$ $=8$

The Range

- Measure of Variation
- Difference Between Largest \& Smallest Observations:

Range =

- Ignores How Data Are Distributed:

Range $=12-7=5$					
7	8	9			

Data Range

Estimate Range from Grouped Data

Employee \$ contributed to profit sharing plan			Frequency f
$\$ 50$	Up To	$\$ 55$	4
55	Up To	$\$ 60$	7
60	Up To	65	9
65	Up To	70	22
70	Up To	75	40
75	Up To	80	24
80	Up To	85	15
85	Up To	90	9
Total			

| Estimated
 Range | $=$Upper Limit of
 the Highest
 Class | -Lower Limit of
 the Lowest
 Class |
| :---: | :---: | :---: | :---: | :---: |

Estimated
Range

When To Use the Range

女 The range is used when
${ }^{+}$you have ordinal data or
m^{t} you are presenting your results to people with little or no knowledge of statistics
女 The range is rarely used in scientific work as it is fairly insensitive
${ }^{\text {m }}$ It depends on only two scores in the set of data， X_{L} and X_{S}
好 Two very different sets of data can have the same range：

$$
\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 9 & \text { vs } & 1 & 3 & 5 & 7
\end{array}
$$

The Semi-Interquartile Range

女 The semi-interquartile range (or SIR) is defined as the difference of the first and third quartiles divided by two
m^{m} The first quartile is the $25^{\text {th }}$ percentile
m^{t} The third quartile is the $75^{\text {th }}$ percentile
女 $\operatorname{SIR}=\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right) / 2$

SIR Example

姆 What is the SIR for the data to the right？
女 25% of the scores are below 5
${ }^{ \pm} 5$ is the first quartile
女 25% of the scores are above 25
女 25 is the third quartile
女 SIR $=\left(\mathrm{Q}_{3}-\mathrm{Q}_{1}\right) / 2=(25$
$-5) / 2=10$

2
4
6
8
$\leftarrow 5=25^{\text {th }} \%$ tile
12
14
20
30
60

When To Use the SIR

女 The SIR is often used with skewed data as it is insensitive to the extreme scores

