\pm Measures of Central Tendency

Measure of central tendency and its types

女 Arithmetic mean for ungroup and group data．Its uses and applications
m_{m} Median for ungroup and group data．Its uses and applications
${ }^{\text {女 }}$ Mode for ungroup and group data．Its uses and applications
好 Empirical relationship between mean， median and mode．

Measures of Central Tendency

女 A measure of central tendency is a descriptive statistic that describes the average, or typical value of a set of scores.

Types of Averages

女 There are five common measures of central tendency．
虫 Arithmetic Mean
姆 Median
姆 Mode
好 Geometric Mean
姆 Harmonic Mean
好 First three known as primary and last two known as secondary．

Measures of Central Tendency

Central Tendency

Harmonic Mean

The Mean

女 The mean is sum of all observations divide by no of observations．
女 The mean of a population is represented by the Greek letter μ ；the mean of a sample is represented by \bar{X}
好 the arithmetic average of all the scores （ $\Sigma \mathrm{X}) / \mathrm{N}$

The Mean (Arithmetic Mean)

-It is the Arithmetic Average of data values:

Sample Mean

-The Most Common Measure of Central Tendency

Calculating the Mean

女 Calculate the mean of the following data： $1 \begin{array}{llll}1 & 4 & 3\end{array}$

女 Sum the scores (ΣX) ：
$1+5+4+3+2=15$
女 Divide the sum $(\Sigma X=15)$ by the number of scores $(\mathrm{N}=5)$ ：
$15 / 5=3$
女 Mean $=X=3$

Mean for group data

Hourly wages	No of workers	xi	fx
50-54	4	52	208
55-59	8	57	456
60-64	12	62	744
65-69	20	67	1340
70-74	16	72	1152
75-79	10	77	770
.80-84	5	82	410
Total	75		5080

Where x is mid point and calculte by using formula

mid point is equal to Lower limit + upper limit

 and divide by 2 .

Properties of A.M

m^{m} the number, m , that makes $\Sigma(\mathrm{X}-\mathrm{m})$ equal to 0
姆 the number, m, that makes $\Sigma(\mathrm{X}-\mathrm{m})^{2}$ a minimum

Draw back
姆 Affected by Extreme Values (Outliers)

When To Use the Mean

女 You should use the mean when
${ }^{4}$ the data are interval or ratio scaled
${ }^{*}$ Many people will use the mean with ordinally scaled data too
${ }^{\mathrm{m}}$ and the data are not skewed
女 The mean is preferred because it is sensitive to every score
${ }^{4}$ If you change one score in the data set, the mean will change

The Median

好 The median is simply another name for the $50^{\text {th }}$ percentile
${ }^{\circ}$ It is the score in the middle; half of the scores are larger than the median and half of the scores are smaller than the median

How To Calculate the Median

＋Conceptually＂，it is easy to calculate the median
田 There are many minor problems that can occur； it is best to let a computer do it
${ }^{+}$Sort the data from highest to lowest or lowest to highest．
好 Find the score in the middle
好 middle $=(n+1) / 2$ th value

- If n is odd, the median is the middle number. - If n is even, the median is the average of the 2 middle numbers.

Median Example

女 What is the median of the following scores： $\begin{array}{lllllllllll}10 & 8 & 14 & 15 & 7 & 3 & 3 & 8 & 12 & 10 & 9\end{array}$
m^{m} Sort the scores：
$\begin{array}{lllllllllll}15 & 14 & 12 & 10 & 10 & 9 & 8 & 8 & 7 & 3 & 3\end{array}$
女 Determine the middle score： middle $=(\mathrm{n}+1) / 2=(11+1) / 2=6$
女 Middle score $=$ median $=9$

Median Example

女 What is the median of the following scores：
$\begin{array}{lllll}24 & 18 & 19 & 42 & 16\end{array} 12$
m^{+}Sort the scores：
$\begin{array}{llllll}42 & 24 & 19 & 18 & 16 & 12\end{array}$
奷 Determine the middle score： middle $=(\mathrm{N}+1) / 2=(6+1) / 2=3.5$
女 Median $=$ average of $3^{\text {rd }}$ and $4^{\text {th }}$ scores：
$(19+18) / 2=18.5$

Median for group data

$$
\text { Median }=l+\frac{h}{f}\left(\frac{n}{2}-c\right)
$$

姦 L lower class limit of selected class
女 h class interval
女 f frequency of selected class
女 n total frequency
好 \mathbf{C} preceding cummulative frequency

When To Use the Median

女 The median is often used when the distribution of scores is either positively or negatively skewed
女 The few really large scores（positively skewed） or really small scores（negatively skewed）will not overly influence the median．
好 Median is not Affected by Extreme Values

Quantiles

女 Quartiles
好Deciles
姆 Percentiles

Quartiles

Not a Measure of Central Tendency

Split Ordered Data into 4 Quarters

- Position of i-th Quartile: position of point $Q_{i}=\frac{i(n+1)}{4}$

Data in Ordered Array: $11 \quad 12 \uparrow \begin{array}{llllllll}13 & 16 & 16 & 17 & 18 & 21 & 22\end{array}$

$$
\text { Position of } Q_{1}=\underset{4}{1 \cdot(9+1)} \quad=2.50 \quad Q_{1}=12.5
$$

For Group data

$$
\begin{aligned}
& Q_{1}=L+\frac{h}{f}\left(\frac{N}{4}-C F\right) \\
& Q_{2}=L+\frac{h}{f}\left(\frac{2 N}{4}-C F\right) \\
& Q_{3}=L+\frac{h}{f}\left(\frac{3 N}{4}-C F\right)
\end{aligned}
$$

Decile

$$
\begin{array}{r}
D_{i}=l+\frac{h}{f}\left(\frac{i n}{10}-c\right) \\
D_{1}=l+\frac{h}{f}\left(\frac{n}{10}-c\right) \\
i=1,2, \ldots, 9
\end{array}
$$

Percentile

$$
P i=l+\frac{h}{f}\left(\frac{i N}{100}-c\right) ; i=1,2,3 \ldots .99
$$

Where:
$1=1$ ower boundary of Percentile group
$h=$ Width of Percentile group
$f=$ Frequency of Percentile group
$N=$ Total number of observations i.e. sum of the frequencies
$c=$ Cumulative frequency preceding Percentile group

Relationship between quantiles

First Quartile $Q_{1}=P_{25}$
First Decile $D_{1}=P_{10}$

Second Quartile $Q_{2}=P_{50}$
Second Decile $D_{2}=P_{20}$

Third Quartile $Q_{3}=P_{75}$
Fifth Decile $D_{5}=P_{50}$ and so on

Second Quartile $=$ Fifth Decile $=50$ th Percentile $=$ Median

$$
Q_{2}=D_{5}=P_{50}=\text { Median }
$$

The Mode

女 The mode is the score that occurs most frequently in a set of data

Bimodal Distributions

女 When a distribution has two "modes," it is called bimodal

Multimodal Distributions

m_{m} If a distribution has more than 2 "modes," it is called multimodal

Mode for group data

$$
\bmod e=l+\frac{f_{m}-f_{1}}{\left(f_{m}-f_{1}\right)+\left(f_{m}-f_{2}\right)} \times h
$$

女 L is lower class limit of modal class
女 fm maximum frequency
女 f 1 preceeding frequency of modal class
女 f2 preceeding frequency of modal class
女 h class interval

For group Data

Hourly wages	No of workers	
50-54	4	
55-59	8	
60-64	12	f1
65-69	20	fm
70-74	16	f2
75-79	10	
.80-84	5	

Calculte the mode by putting the value in formula
4 Mode $=65+\frac{120}{(20-12)+(20-16)} \times 5$

When To Use the Mode

好 The mode is not a very useful measure of central tendency
好 It is insensitive to large changes in the data set
${ }_{*}$ That is, two data sets that are very different from

When To Use the Mode

女 The mode is primarily used with nominally scaled data
${ }^{4}$ It is the only measure of central tendency that is appropriate for nominally scaled data

Relations Between the Measures

of Central Tendency

安 In
symmetrical distributions，the median and mean are equal

姆 For distributions，mean＝

 median $=$ mode
女 In positively skewed distributions，the mean is greater than the median
女 fnd modegatively skewed distributions，the mean is smaller than the median \＆

Shapes

女 Describes How Data Are Distributed

Measures of Shape:
女 Symmetric or skewed

Symmetric

Mean $=$ Median $=$ Mode \quad Mode Median Mean

Right-Skewed

