Introduction to Hydrology

Lecture content

- 1) *Definition* and *scope* of Hydrology
- 2) Examples of water resources and engineering problems to which Hydrology provides answers
- 3) Methodological approach to hydrological sciences
- 4) Water balance and the hydrological cycle
- 5) Hydrological processes overview
- 6) Hydrological data and space and time scales

Goal: to understand the philosophy of representing the functioning of hydrological/natural systems through an engineering (quantitative) description

Definition and scope

Hydrology - Definition

"Hydrology, which treats all phases of the earth's water, is a subject of great importance for people and their environment. Practical applications of hydrology are found in such tasks as the design and operation of hydraulic structures, water supply, wastewater treatment and disposal, irrigation, drainage, hydropower generation, flood control, navigation, erosion and sediment control, salinity control, pollution abatement, recreational use of water, and fish and wildlife protection. The role of applied hydrology is to help analyze the problems involved in these tasks and to provide guidance for the planning and management of water resources".

[Chow et al. 1998]

WATER USE vs WATER CONSERVATION

SUSTAINABLE WATER RESOURCES MANAGEMENT

Elements of Hydrology and other geosciences

Hydrology as science behind water resources problems

Examples of water engineering problems

Examples of water resources engineering problems to which Hydrology can provide answers

	Control of excess of water				Conservation (quantity)				Conser- vation (quality)
Studies and facilities required	Flood storm mitigation	Storm drainage	Bridges, culverts	Sewerage	Water supply	Irrigation	Hydropower	Navigation	Pollution control
How much water is needed?	-	-	-	-	x	x	x	x	x
How much water can be expected?									
Min. flow	-	-	-	х	х	х	х	х	х
Annual yield	-	-	-	x	x	x	х	x	х
Flood peaks	х	х	х	-	x	x	х	x	
Flood volume	х	Х	-	-	-	-	-	-	Х
Groundwater	-	х	-	х	х	х	-	-	х

Hydrology for Water Resources Management

How much water is needed? How much water can be expected?

ETH zürich

Hydrology – Introduction - Autumn Semester 2017

ETH zürich

Saltina, Brig – flood (1993)

ETH zürich

Hydrology – Introduction - Autumn Semester 2017

Hydrology – Introduction - Autumn Semester 2017

[http://water.usgs.gov/outreach/Posters/water_quality/images/WaterQuality_BW.jpg]

m³/s

ETH zürich

How much water is needed? How much water can be expected?

[http://oceanexplorer.noaa.gov/edu/learning/7_water_cycle/activities/groundwater.html#activity]

http://photogallery.nrcs.usda.gov/Index.asp

Wordpress.com

USDA Natural Resources Conservation Service

How much water is needed? How much water can be expected?

surface and groundwater availability to satisfy the demand

_how much rainwater should be drained from roads and the urban catchment

how much water should be released for navigation & environment conservation

sediment load from rivers to avoid coastal erosion

http://www.britannica.com/technology/water-supply-system/Water-treatment

Fischabstieg am WKW Elz; Quelle: Archiv Wasserkraft Volk AG

Auengebiet Gérine im Kanton Freiburg (Foto J.Cl. Bersier, Freiburg)

http://www.power-technology.com

How much water is needed? How much water can be expected?

water availability

Flood Wallis, 2000

Ufererosion in Wolfenschiessen, Kanton NW 27.08.2005

Methodological approach

The reference geographical unit: the river basin

terms used as synonymous of "river basin":

- watershed
- catchment

Methodological approach

The watershed as hydrologic system

Physical Hydrology / System

= Process understanding, Monitoring, Measuring ...

Engineering Hydrology / System

= Modelling, Conceptualisation, Reproducing processes...

ETH zürich

Water balance

How much water is available on our planet?

Item	Area (10 ⁶ km ²)	Volume (km³)	Percent of total water	Percent of fresh water
Oceans	361.3	1,338,000,000	96.5	
Groundwater				
Fresh	134.8	10,530,000	0.76	30.1
Saline	134.8	12,870,000	0.93	
Soil Moisture	82.0	16,500	0.0012	0.05
Polar ice	16.0	24,023,500	1.7	68.6
Other ice and snow	0.3	340,600	0.025	1.0
Lakes				
Fresh	1.2	91,000	0.007	0.26
Saline	0.8	85,400	0.006	
Marshes	2.7	11,470	0.0008	0.03
Rivers	148.8	2,120	0.0002	0.006
Biological water	510.0	1,120	0.0001	0.003
Atmospheric water	510.0	12,900	0.001	0.04
Total water	510.0	1,385,984,610	100	
Fresh water	148.8	35.029.210	2.5	100

TABLE 1.1.1Estimated world water quantities

Table from World Water Balance and Water Resources of the Earth, Copyright, UNESCO, 1978.

Water balance

- The water balance defines the *conservation of mass* across the different compartments of the *hydrological cycle* (atmosphere, water bodies, soil and ground, vegetation, snowpack and ice, ...)
 - it is computed with regard to a reference geographical unit / scale
 - Earth
 - continent
 - region
 - river basin
 - soil column
 - ...
- The concept of conservation of mass implies the identification of an *incoming* and an *outgoing* flux, and of a *storage variation* over a given unit of time.

The hydrological cycle

32 ETH zürich

Hydrologic cycle with global annual average water balance given in units relative to a value of 100 for the rate of precipitation on land. [Chow et al. 1998]

32

Global annual water balance

		Ocean	Land	
Area (km ²)	1	361,300,000	148,800,000	
Precipitation	(km³/yr) (mm/yr) (in/yr)	458,000 1270 50	119,000 800 31	
Evaporation	(km³/yr) (mm/yr) (in/yr)	505,000 1400 55	72,000 484 19	estimates and not measurements
Runoff to ocean Rivers Groundwater Total runoff	(km ³ /yr) (km ³ /yr) (km ³ /yr) (mm/yr) (in/yr)		44,700 2200 47,000 316 12	

Table from World Water Balance and Water Resources of the Earth, Copyright, UNESCO, 1978 [Chow et al. 1998]

Water balance – continental scale

	Oberfl. (10 ⁶ km ²)	Regen (10 ³ km ³)	Abfluss (10 ³ km ³)		Verdunstung (10 ³ km ³)
			Tot.	Oberfl.	
Europa	9.8	7.165	3.110	1.065	4.055
Asien	45.0	32.690	13.190	3.410	19.500
UDSSR	22.4	10.960	4.350	1.020	6.610
Afrika	30.3	20.780	4.225	1.465	16.555
N-, Mamerika	20.7	13.910	5.960	1.740	7.950
Südamerika	17.8	29.355	10.380	3.740	18.975
Australien	8.7	6.405	1.965	465	4.440
Global	132.3	110.305	38.830	11.885	71.468

Oberfl. Abfluss Verdunstung Regen (10^{6} km^{2}) (mm) (mm) (mm) Tot. Oberfl. Europa 9.8 734 319 109 415 45.0 726 Asien 293 76 433 UDSSR 22.4 500 198 46 300 Afrika 30.3 139 547 686 48 20.7 N-, M.-amerika 670 287 84 383 Südamerika 17.8 583 210 1'065 648 8.7 Australien 736 226 54 510 Global 132.3 834 294 90 540

average annual volumes

estimates and not measurements

average annual volumes per area

Hydrology - Introduction - Autumn Semester 2017

[L'vovich, 1973]

Water availability – continental scale

estimates and not measurements

	Bevölkerung (1969)	Gesamte	Gesamte Abflüsse		Nutzbare Abflüsse	
	[10 ⁶]	[km³] gesamt	[m ³] pro Kopf	[km ³] gesamt	[m ³] pro Kopf	
Europa	642	3 110	4 850	1 325	2 100	
Asien	2 040	13 190	6 465	4 005	1 960	
Afrika	342	4 225	12 250	1 905	5 500	
N- ,M-amerika	a 334	5 960	17 844	2 380	7 125	
Südamerika	188	10 380	55 213	3 900	20 745	
Australien	18	1 965	109 000	495	27 500	
Global	3 567	38 830	10 886	14 010	3 928	

Tab. 1.IV - Mittlere jährliche Abflüsse pro Kopf [aus L'vovich, 1973]

Water balance – river basin scale

 $\mathsf{P}=\mathsf{R}+\mathsf{E}+\Delta\mathsf{S}$

Nr.	Flussgebiet	Р	R	E	ΔS	
		[mm/a]	[mm/a]	[mm/a]	[mm/a]	
1	Rhein, Felsberg	1496	1118	371	7.0	
2	Thur, Andelfingen	1454	890	654	0	
3	Töss, Neftenbach	1370	751	620	0	
4	Ergolz, Liestal	1063	460	603	0	
5	Birs, Münchenstein	1175	534	642	0	
6	Aare, Brugg	1364	843	517	3.5	
7	Reuss, Mellingen	1765	1297	462	6.1	
8	Limmat, Zürich, U'hard	1935	1402	530	3.9	
9	Rhône, Porte du Scex	1600	1039	526	35.3	
10	Rhône zwischen Porte du Scex und Genève	1320	736	585	0	
11	Ticino, Bellinzona	1854	1357	492	5.0	
12	Tresa, Ponte Tresa	1843	1251	596	- 4.5	
13	Poschiavino, La Presa	1645	1134	496	14.6	
14	Inn, Martinsbruck	1226	920	293	12.8	
	Schweiz	1481	961	513	7.5	[Hydrologie

Water balance of the Nile river (process variability in space and time)

http://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4044

Water balance – urban scale

Hydrology - Introduction - Autumn Semester 2017

The hydrological cycle at the event scale

Flowchart representation of the hydrological cycle

ETH zürich

TO BASEFLOW,

ETH zürich

Hydrology - Introduction - Autumn Semester 2017

Characteristic temporal and spatial scales and hydrological data

Space and time scales of hydrological processes

Technical space and time scales of hydrological processes

[s]

≈3.2 10⁷

 $3.6 \ 10^3 \approx 8.6 \ 10^4 \approx 2.6 \ 10^6$

1

		instantaneous	hourly	daily	monthly / seasonal	annual	multi annual
1	point	•	•	•	•	•	•
	hillslope	•	•	(•)	(•)	(•)	
٦	watershed		•	•	•	•	•
	regional		•	•	•	•	•
>106	global		•	•	•	•	•

- used, consistent with typical process scales
- (•) generally not used, inconsistent with typical process scales

Temporal and spatial nature of hydrological data

continuous = sequence of instantaneous data

discrete =

- a) aggregated from continuous to larger temporal scales (e.g. from 1h to 1 day, from 1h to 1 month, etc.)
- b) measured at discrete times

hillslope

watershed

ETH zürich

Use of hydrological data in water engineering problems

- average values are used in planning problems and preliminary analyses
- extreme values are used to design water engineering infrastructures against extreme events (e.g. floods, low flows, droughts, ...)
- continuous data (time series) are used in management and and optimization of water resources infrastructures

Water engineering problems and hydrologic variables

Water engineering problem	Typical reference hydrologic variable
Design of flood protection measures	Peak flow discharge Flood volume and duration
Design of storm drainage	Extreme values of rainfall depth Peak flow discharge
Design of a reservoir	Annual water yield Seasonal/monthly water yield
Design of an irrigation system	Evapotranspiration Soil water content
Landslide risk analysis	Extreme values of rainfall depth and intensity
River bed erosion	River discharge
Surface erosion	Overland flow
Water allocation to multiple users (hydropower, irrigation, water supply,)	Discharge time series
•••	

Uncertainties

HYDROLOGICAL MODEL CONCEPTUALIZATION

meteorological forcing (precipitation, temperature,

radiation, wind, etc.)

typical uncertainties

- due to lack of data
- due to climate variability
- uncertainties due to spatial variability of meteorological forcing
- uncertainties due to measurement errors

ETH zürich

- watershed representation (topography, land cover, soil, ...)
- mathematical model of basin hydrological processes (infiltration, runoff formation, evapotranspiration, etc.)

OUTPUT

simulated hydrological variables (streamflow, soil water content, evapotranspiration, ...)

typical uncertainties

- due to poor knowledge of the physical system
- due to spatial heterogeneities and anisotropies
- model approximations
- model parameters

From physical processes to hydrological models

Models can be

• *empirical*:

description of hydrological processes based on cause-effect relationships experimentally derived or inferred from data analysis

• physically based:

description of hydrological processes based on the conceptualisation of the physical mechanisms

description of hydrological processes based on

the representation of the physical mechanisms

by means of physics laws

- CONTINUITY EQUATION (one-dimensional flow)
 - $\frac{\partial \Theta}{\partial t} + \frac{\partial Q}{\partial t}$
- MOMENTUM EQUATION

$$q = -\left(k + D \frac{\partial \theta}{\partial z}\right) = 58$$

Keywords

- water balance
- time scales
- spatial scales
- volumes
- fluxes
- storage
- hydrological cycle
- systems analysis
- hydrological data
- continuous
- discrete
- event
- hydrological process
- hydrological model

- precipitation
- interception
- evaporation
- evapotranspiration
- infiltration
- percolation
- unsaturated zone
- saturated zone
- water table
- groundwater
- runoff
- overland flow
- interflow
- baseflow

- river basin / watershed / catchment
- river network

ETH zürich