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Preface

Many remarkable advances have been made in the field of integral equa-
tions, but these remarkable developments have remained scattered in a vari-
ety of specialized journals. These new ideas and approaches have rarely been
brought together in textbook form. If these ideas merely remain in scholarly
journals and never get discussed in textbooks, then specialists and students
will not be able to benefit from the results of the valuable research achieve-
ments.

The explosive growth in industry and technology requires constructive ad-
justments in mathematics textbooks. The valuable achievements in research
work are not found in many of today’s textbooks, but they are worthy of ad-
dition and study. The technology is moving rapidly, which is pushing for valu-
able insights into some substantial applications and developed approaches.
The mathematics taught in the classroom should come to resemble the mathe-
matics used in varied applications of nonlinear science models and engineering
applications. This book was written with these thoughts in mind.

Linear and Nonlinear Integral Equations: Methods and Applications is de-
signed to serve as a text and a reference. The book is designed to be acces-
sible to advanced undergraduate and graduate students as well as a research
monograph to researchers in applied mathematics, physical sciences, and en-
gineering. This text differs from other similar texts in a number of ways. First,
it explains the classical methods in a comprehensible, non-abstract approach.
Furthermore, it introduces and explains the modern developed mathematical
methods in such a fashion that shows how the new methods can complement
the traditional methods. These approaches further improve the understand-
ing of the material.

The book avoids approaching the subject through the compact and clas-
sical methods that make the material difficult to be grasped, especially by
students who do not have the background in these abstract concepts. The
aim of this book is to offer practical treatment of linear and nonlinear inte-
gral equations emphasizing the need to problem solving rather than theorem
proving.

The book was developed as a result of many years of experiences in teach-
ing integral equations and conducting research work in this field. The author
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has taken account of his teaching experience, research work as well as valu-
able suggestions received from students and scholars from a wide variety of
audience. Numerous examples and exercises, ranging in level from easy to dif-
ficult, but consistent with the material, are given in each section to give the
reader the knowledge, practice and skill in linear and nonlinear integral equa-
tions. There is plenty of material in this text to be covered in two semesters
for senior undergraduates and beginning graduates of mathematics, physical
science, and engineering.

The content of the book is divided into two distinct parts, and each part
is self-contained and practical. Part I contains twelve chapters that handle
the linear integral and nonlinear integro-differential equations by using the
modern mathematical methods, and some of the powerful traditional meth-
ods. Since the book’s readership is a diverse and interdisciplinary audience of
applied mathematics, physical science, and engineering, attempts are made
so that part I presents both analytical and numerical approaches in a clear
and systematic fashion to make this book accessible to those who work in
these fields.

Part II contains the remaining six chapters devoted to thoroughly ex-
amining the nonlinear integral equations and its applications. The potential
theory contributed more than any field to give rise to nonlinear integral equa-
tions. Mathematical physics models, such as diffraction problems, scattering
in quantum mechanics, conformal mapping, and water waves also contributed
to the creation of nonlinear integral equations. Because it is not always pos-
sible to find exact solutions to problems of physical science that are posed,
much work is devoted to obtaining qualitative approximations that highlight
the structure of the solution.

Chapter 1 provides the basic definitions and introductory concepts. The
Taylor series, Leibnitz rule, and Laplace transform method are presented
and reviewed. This discussion will provide the reader with a strong basis
to understand the thoroughly-examined material in the following chapters.
In Chapter 2, the classifications of integral and integro-differential equations
are presented and illustrated. In addition, the linearity and the homogene-
ity concepts of integral equations are clearly addressed. The conversion pro-
cess of IVP and BVP to Volterra integral equation and Fredholm integral
equation respectively are described. Chapters 3 and 5 deal with the linear
Volterra integral equations and the linear Volterra integro-differential equa-
tions, of the first and the second kind, respectively. Each kind is approached
by a variety of methods that are described in details. Chapters 3 and 5
provide the reader with a comprehensive discussion of both types of equa-
tions. The two chapters emphasize the power of the proposed methods in
handling these equations. Chapters 4 and 6 are entirely devoted to Fred-
holm integral equations and Fredholm integro-differential equations, of the
first and the second kind, respectively. The ill-posed Fredholm integral equa-
tion of the first kind is handled by the powerful method of regularization
combined with other methods. The two kinds of equations are approached
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by many appropriate algorithms that are illustrated in details. A compre-
hensive study is introduced where a variety of reliable methods is applied
independently and supported by many illustrative examples. Chapter 7 is
devoted to studying the Abel’s integral equations, generalized Abel’s inte-
gral equations, and the weakly singular integral equations. The chapter also
stresses the significant features of these types of singular equations with full
explanations and many illustrative examples and exercises. Chapters 8 and
9 introduce a valuable study on Volterra-Fredholm integral equations and
Volterra-Fredholm integro-differential equations respectively in one and two
variables. The mixed Volterra-Fredholm integral and the mixed Volterra-
Fredholm integro-differential equations in two variables are also examined
with illustrative examples. The proposed methods introduce a powerful tool
for handling these two types of equations. Examples are provided with a sub-
stantial amount of explanation. The reader will find a wealth of well-known
models with one and two variables. A detailed and clear explanation of ev-
ery application is introduced and supported by fully explained examples and
exercises of every type.

Chapters 10, 11, and 12 are concerned with the systems of Volterra in-
tegral and integro-differential equations, systems of Fredholm integral and
integro-differential equations, and systems of singular integral equations and
systems of weakly singular integral equations respectively. Systems of inte-
gral equations that are important, are handled by using very constructive
methods. A discussion of the basic theory and illustrations of the solutions
to the systems are presented to introduce the material in a clear and useful
fashion. Singular systems in one, two, and three variables are thoroughly in-
vestigated. The systems are supported by a variety of useful methods that
are well explained and illustrated.

Part IT is titled “Nonlinear Integral Equations”. Part II of this book gives
a self-contained, practical and realistic approach to nonlinear integral equa-
tions, where scientists and engineers are paying great attention to the effects
caused by the nonlinearity of dynamical equations in nonlinear science. The
potential theory contributed more than any field to give rise to nonlinear in-
tegral equations. Mathematical physics models, such as diffraction problems,
scattering in quantum mechanics, conformal mapping, and water waves also
contributed to the creation of nonlinear integral equations. The nonlinearity
of these models may give more than one solution and this is the nature of
nonlinear problems. Moreover, ill-posed Fredholm integral equations of the
first kind may also give more than one solution even if it is linear.

Chapter 13 presents discussions about nonlinear Volterra integral equa-
tions and systems of Volterra integral equations, of the first and the second
kind. More emphasis on the existence of solutions is proved and empha-
sized. A variety of methods are employed, introduced and explained in a
clear and useful manner. Chapter 14 is devoted to giving a comprehensive
study on nonlinear Volterra integro-differential equations and systems of non-
linear Volterra integro-differential equations, of the first and the second kind.
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A variety of methods are introduced, and numerous practical examples are
explained in a practical way. Chapter 15 investigates thoroughly the existence
theorem, bifurcation points and singular points that may arise from nonlin-
ear Fredholm integral equations. The study presents a variety of powerful
methods to handle nonlinear Fredholm integral equations of the first and
the second kind. Systems of these equations are examined with illustrated
examples. Chapter 16 is entirely devoted to studying a family of nonlinear
Fredholm integro-differential equations of the second kind and the systems
of these equations. The approach we followed is identical to our approach in
the previous chapters to make the discussion accessible for interdisciplinary
audience. Chapter 17 provides the reader with a comprehensive discussion
of the nonlinear singular integral equations, nonlinear weakly singular inte-
gral equations, and systems of these equations. Most of these equations are
characterized by the singularity behavior where the proposed methods should
overcome the difficulty of this singular behavior. The power of the employed
methods is confirmed here by determining solutions that may not be unique.
Chapter 18 presents a comprehensive study on five scientific applications that
we selected because of its wide applicability for several other models. Because
it is not always possible to find exact solutions to models of physical sciences,
much work is devoted to obtaining qualitative approximations that highlight
the structure of the solution. The powerful Padé approximants are used to
give insight into the structure of the solution. This chapter closes Part I of
this text.

The book concludes with seven useful appendices. Moreover, the book
introduces the traditional methods in the same amount of concern to provide
the reader with the knowledge needed to make a comparison.

I deeply acknowledge Professor Albert Luo for many helpful discussions,
encouragement, and useful remarks. I am also indebted to Ms. Liping Wang,
the Publishing Editor of the Higher Education Press for her effective coop-
eration and important suggestions. The staff of HEP deserve my thanks for
their support to this project. I owe them all my deepest thanks.

I also deeply acknowledge Professor Louis Pennisi who made very valuable
suggestions that helped a great deal in directing this book towards its main
goal.

I am deeply indebted to my wife, my son and my daughters who provided
me with their continued encouragement, patience and support during the
long days of preparing this book.

The author would highly appreciate any notes concerning any constructive
suggestions.

Abdul-Majid Wazwaz
Saint Xavier University
Chicago, IL 60655
April 20, 2011
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Chapter 1
Preliminaries

An integral equation is an equation in which the unknown function wu(x)
appears under an integral sign [1-7]. A standard integral equation in u(z) is

of the form:
h(z)

u(z) = f(x) + A K(z,t)u(t)dt, (1.1)
g(x)

where ¢g(z) and h(x) are the limits of integration, A is a constant parameter,
and K(z,t) is a function of two variables x and ¢ called the kernel or the
nucleus of the integral equation. The function u(z) that will be determined
appears under the integral sign, and it appears inside the integral sign and
outside the integral sign as well. The functions f(x) and K (x,t) are given in
advance. It is to be noted that the limits of integration g(x) and h(z) may
be both variables, constants, or mixed.

An integro-differential equation is an equation in which the unknown func-
tion u(x) appears under an integral sign and contains an ordinary derivative
u(™ (x) as well. A standard integro-differential equation is of the form:

h(x)
u™ (z) = f(z) + X . K (z, t)u(t)dt, (1.2)
glxr
where g(z), h(z), f(x), A and the kernel K (x,t) are as prescribed before.

Integral equations and integro-differential equations will be classified into
distinct types according to the limits of integration and the kernel K (z,t). All
types of integral equations and integro-differential equations will be classified
and investigated in the forthcoming chapters.

In this chapter, we will review the most important concepts needed to
study integral equations. The traditional methods, such as Taylor series
method and the Laplace transform method, will be used in this text. More-
over, the recently developed methods, that will be used thoroughly in this
text, will determine the solution in a power series that will converge to an
exact solution if such a solution exists. However, if exact solution does not
exist, we use as many terms of the obtained series for numerical purposes to
approximate the solution. The more terms we determine the higher numerical
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4 1 Preliminaries

accuracy we can achieve. Furthermore, we will review the basic concepts for
solving ordinary differential equations. Other mathematical concepts, such as
Leibnitz rule will be presented.

1.1 Taylor Series

Let f(z) be a function with derivatives of all orders in an interval [z, z1] that
contains an interior point a. The Taylor series of f(x) generated at = a is

® 4(n)(q
fe) =" @ g, (1.3)

owar n!
or equivalently
s@) =@+ w0+ e @
‘ ‘ ‘ (1.4)
(n)
-|-f '(a)(x—a)"+~~~
n

The Taylor series generated by f(z) at a = 0 is called the Maclaurin series
and given by

0 £(n)
fl@)=>" ! (O)x", (1.5)

|
—~ nl
that is equivalent to

! 0 1" 0 " 0
In what follows, we will discuss a few examples for the determination of

the Taylor series at x = 0.

(n)
+ f n'(O)x” 4 (16)

Example 1.1

Find the Taylor series generated by f(x) = e® at x = 0.
We list the exponential function and its derivatives as follows:

fM(@)  fl@)=e" flz)=e" ['(x)=e" ["(z)=¢"
f'(n)(o) f(()) =1, f/(()) =1, f//(O) =1, f///(O) =1,

and so on. This gives the Taylor series for e* by
N 2?2 23 2t
e =l4at, + oy (1.7)

and in a compact form by
n

x - x
e:§:m‘ (1.8)
n=0

Similarly, we can easily show that
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2?2 23 2t

ol Ty Tyt (1.9)
(ax)? | (ax)® | (ax)*
o Ty Ty

ef=1—z+
and

e =1+ax+

Example 1.2

Find the Taylor series generated by f(z) = cosz at x = 0.
Following the discussions presented before we find

) (x) f(z) = cosx,f'(x) = —sinz, f"(x) = —cosx, " () = sinx, f(¥) (x) = cosz

F) f(0)=1,  f(0)=0, froy=-1,  f70)=0, fOV0)=1,

and so on. This gives the Taylor series for cosz by

2 at
cosx:1—2!—|—4!—|—-~- (1.11)
and in a compact form by
> ( 1)n
_ - 27
cosx = Z (2n)! ", (1.12)
n=0
In a similar way we can derive the following
_ ., (a2)* | (ax)! DT
cos(ax) =1 — o1 + Al += ;::0 (2n)! (az)™. (1.13)
For f(z) =sinz and f(x) = sin(ax), we can show that
: .’133 x5 - (_1)n 2n+1
Slnx:x—3!+5!—|—-~-:n2::0(2n+1)!1‘ )

o (1.14)

(ax)3 + (ax)5 o= Z (_1)n (ax)2n+1

3! 5! 4~ (2n+1)! '

n=0

In Appendix C, the Taylor series for many well known functions generated
at = 0 are given.

As stated before, the newly developed methods for solving integral equa-
tions determine the solution in a series form. Unlike calculus where we deter-
mine the Taylor series for functions and the radius of convergence for each
series, it is required here that we determine the exact solution of the integral
equation if we determine its series solution. In what follows, we will discuss
some examples that will show how exact solution is obtained if the series
solution is given. Recall that the Taylor series exists for analytic functions
only.

sin(ax) = (ax) —

Example 1.3

Find the closed form function for the following series:
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4 4 2
f(x) =142z + 227 + 3x3+ 3:c4+~-~ (1.15)

It is obvious that this series can be rewritten in the form:
22)* | (22)®  (2x)*

Flay=1+20+ 70 + 00+ 0+ (1.16)
that will converge to the exact form:
f(z) = e*. (1.17)

Example 1.4

Find the closed form function for the following series:

9 27 81
f(x):1+2w2+ 8x4—|—80$6+~-~ (1.18)
Notice that the second term can be written as (33”)2, therefore the series can

2!
be rewritten as

(o), (o) (32)°

fla) =1+, o o (1.19)
that will converge to
f(x) = cosh(3z). (1.20)
Example 1.5
Find the closed form function for the following series:
L, 25
= e 1.21
f@) =+ @+ Lot (1.21)
This series will converge to
f(z) = tanz. (1.22)
Example 1.6
Find the closed form function for the following series:
1 1 1 1
f(x):lerf2!x2—3!x3+4!x4+5!x5+~~ (1.23)

The signs of the terms are positive for the first two terms then negative
for the next two terms and so on. The series should be grouped as

1 1 1 . 1
flx)=(01- 2!x2 + 4!x4 +- )+ (z— 3!x‘3 + 5!:85 +--0), (1.24)
that will converge to
f(x) =cosz +sinx. (1.25)

Exercises 1.1

Find the closed form function for the following Taylor series:

7

4 2 9 9 2
1. f(x):2x+2x2+3x3+3x4+--~ 2. f(l‘)=1731‘+21‘272$3+ 8x4+---
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1 1 1
_ 2 3 4. .
3. f(r)—l‘+2!x +3!x +4!w +

4. f(x)zl—w+21!:v2+;m3+41!m4— 51!3:5—61!3:6+~--
9 81 243
5. f(z) =3z — 21‘3+ 40x57 560x7
6. f(x):2x+;lx3+ 145x5+3?5x7+...
7. f(z) = 1+ 222 + §x4+445x6+--- 8. f(z) = zx2+ 287x4+ :éx6+---
2 4
9. f(l‘)=272$2+31‘4745g;6+...
1 1 1
10. f(z) =1+ — 6x3+ 120335_ 50405374_...
1 2 17
e f(m):g;+3x3+15x5+3175”“’7+'”
1 2 1
12. f(z) =z — 3x3+ 15535_ 315;374_...
13. f(z) =2+ 2z + la_ bt boa bis
a3t Tt Ty
14.2+J:—21!332+41!334—61!g;6+...

1.2 Ordinary Differential Equations

In this section we will review some of the linear ordinary differential equa-
tions that we will use for solving integral equations. For proofs, existence
and uniqueness of solutions, and other details, the reader is advised to use
ordinary differential equations texts.

1.2.1 First Order Linear Differential Equations

The standard form of first order linear ordinary differential equation is

v + p(z)u = q(z), (1.26)
where p(z) and ¢(x) are given continuous functions on zg < z < x1. We first
determine an integrating factor p(z) by using the formula:

p(z) = el PM, (1.27)

Recall that an integrating factor p(x) is a function of x that is used to facil-
itate the solving of a differential equation. The solution of (1.26) is obtained
by using the formula:

u(z) = u(lm) {/x w(t)g(t)dt + C] , (1.28)
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where ¢ is an arbitrary constant that can be determined by using a given
initial condition.

Example 1.7
Solve the following first order ODE:

u' —3u = 3223, u(0) = 1. (1.29)

Notice that p(x) = —3 and ¢(x) = 322e3%. The integrating factor u(x) is
obtained by

p(z) = elo =34 = ¢=3%, (1.30)

Consequently, u(z) is obtained by using

u(z) = N(lx) Um u(t)g(t)dt +C} = e (/1’ 3t2dt+c> (1.31)

= e (2% 4 ¢) = e37(23 + 1),
obtained upon using the given initial condition.
Example 1.8
Solve the following first order ODE:
zu’ + 3u = co;x7 u(m) = 0,2 > 0. (1.32)

We first divide the equation by = to convert it to the standard form (1.26).
As aresult, p(z) = 2 and g(z) = “3”. The integrating factor u(z) is

M(ﬂf) — ej‘ Sdt _ eSlnz _ JIS. (133)
Consequently, u(x) is
u(x) = ! {/ wu(t)q(t)dt +c] = 13 (/" tcostdt + c)
#la) ! (1.34)

1 :
= ,(cosz+zxsinz+c)=
x

3 (cosz + xsinz + 1),

3
x
obtained upon using the given initial condition.

Exercises 1.2.1

Find the general solution for each of the following first order ODEs:

lL.v+u=e"% x>0 2. zu’ —4u = x5,z > 0
3. (22 + 9’ + 2zu = 0,2 > 0 4. zu’ —4u=22%+252>0
5 zu +u =2z, >0 6. zu’ —u=x’sinz,x >0

Find the particular solution for each of the following initial value problems:
7.0 —u=2ze®, u(0) =0 8. zu' +u=2z, u(l)=1

s

9. (tanz)u’ + (sec? z)u = 237 u (4

) =e> 10. u —3u = 42337, u(0) =1
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11. (1 + 23)u’ + 322u =1, u(0) =0 12. v/ + (tanx)u = cosz, u(0) =1

1.2.2 Second Order Linear D:ifferential Equations

As stated before, we will review some second order linear ordinary differential
equations. The focus will be on second order equations, homogeneous and
inhomogeneous as well.

Homogeneous Equations with Constant Coefficients

The standard form of the second order homogeneous ordinary differential
equations with constant coefficients is

au” +bu' +cu=0,a#0, (1.35)

where a, b, and ¢ are constants. The solution of this equation is assumed to
be of the form:

u(z) =e"". (1.36)

Substituting this assumption into Eq. (1.35) gives the equation:
e"(ar? +br +c¢) = 0. (1.37)
Since e is not zero, then we have the characteristic or the auxiliary equation:
ar® +br+c¢=0. (1.38)

Solving this quadratic equation leads to one of the following three cases:
(i) If the roots r; and ro are real and r; # 7o, then the general solution of
the homogeneous equation is
u(x) = Ae™" + Be™", (1.39)
where A and B are constants.

(ii) If the roots 1 and ry are real and r;1 = 79 = r, then the general
solution of the homogeneous equation is

u(z) = Ae™ + Bze'™, (1.40)

where A and B are constants.
(iii) If the roots r1 and 7o are complex and 1 = A+ ip, 72 = A — ip, then
the general solution of the homogeneous equation is given by

u(z) = e (Acos(px) + Bsin(ux)) , (1.41)

where A and B are constants.

Inhomogeneous Equations with Constant Coefficients

The standard form of the second order inhomogeneous ordinary differential
equations with constant coefficients is
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au’” +bu' + cu = g(x),a # 0, (1.42)
where a,b, and ¢ are constants. The general solution consists of two parts,

namely, complementary solution u., and a particular solution u, where the
general solution is of the form:

u(z) = ue(x) + up(x), (1.43)
where u, is the solution of the related homogeneous equation:
au” +bu' +cu=0,a#0, (1.44)

and this is obtained as presented before. A particular solution u, arises from
the inhomogeneous part g(z). It is called a particular solution because it
justifies the inhomogeneous equation (1.42), but it is not the particular solu-
tion of the equation that is obtained from (1.43) upon using the given initial
equations as will be discussed later. To obtain u,(x), we use the method of
undetermined coefficients. To apply this method, we consider the following
three types of g(z):

(i) If g(z) is a polynomial given by

9(x) = apr™ + a1x" " + -+ ay, (1.45)
then u, should be assumed as
up = 2" (box™ + byz" 4+ +b,), T=0,1,2,... (1.46)
(ii) If g(z) is an exponential function of the form:
g(z) = ape™”, (1.47)
then u, should be assumed as
up = boz"e*, r=0,1,2,... (1.48)
(iii) If g(x) is a trigonometric function of the form:
g(x) = ag sin(ax) + by cos(fx), (1.49)
then u, should be assumed as
up = x" (Ag sin(ax) + By cos(fz)), r=0,1,2,... (1.50)

For other forms of g(z) such as tanz and sec , we usually use the variation
of parameters method that will not be reviewed in this text. Notice that r
is the smallest nonnegative integer that will guarantee no term in wu,(z) is a
solution of the corresponding homogeneous equation. The values of r are 0, 1
and 2.

Example 1.9
Solve the following second order ODE:

' —u=0. (1.51)
The auxiliary equation is given by
r?—1=0, (1.52)

and this gives
r==+l. (1.53)
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Accordingly, the general solution is given by

u(x) = Ae” + Be™”. (1.54)
It is interesting to point out that the normal form ODE:
v +u=0, (1.55)
leads to the auxiliary equation:
r?+1=0, (1.56)
and this gives
r = *+i. (1.57)

The general solution is given by
u(xz) = Acosx + Bsinx. (1.58)

Example 1.10
Solve the following second order ODE:

v —Tu +6u=0. (1.59)
The auxiliary equation is given by
2 —Tr+6=0, (1.60)
with roots given by
r=1,6. (1.61)

The general solution is given by
u(z) = Ae® + Beb?. (1.62)

Example 1.11

Solve the following second order ODE:
u’ —b5u' 4+ 6u=6x+17. (1.63)
We first find u.. The auxiliary equation for the related homogeneous equation
is given by
r? —5r 46 =0, (1.64)
with roots given by
r=2,3. (1.65)
The general solution is given by
u(z) = ae®® + Be3*. (1.66)
Noting that g(z) = 6x + 7, then a particular solution is assumed to be of the

form

up, = Az + B. (1.67)

Since this is a particular solution, then substituting u, into the inhomoge-
neous equation leads to

6Ax + (6B —5A) =6z + 7. (1.68)
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Equating the coefficients of like terms from both sides gives
A=1, B=2. (1.69)
This in turn gives
u(z) = ue + up = ae®® + B+ + 2, (1.70)
where v and (3 are arbitrary constants.

Example 1.12

Solve the following initial value problem
u’ +9u=20e", wu(0)=3, y'(0)=5. (1.71)

We first find u.. The auxiliary equation for the related homogeneous equation
is given by
r? +9=0, (1.72)

where we find
r=+3i, i?=-1. (1.73)
The general solution is given by
u(z) = acos(3z) + [sin(3z). (1.74)
Noting that g(x) = 20e?, then a particular solution is assumed to be of the

form:

u, = Ae”. (1.75)

Since this is a particular solution, then substituting u, into the inhomoge-
neous equation leads to
10Ae” = 20e”, (1.76)

so that
A=2. (1.77)
This in turn gives the general solution
u(z) = ue + up = acos(3x) + Bsin(3x) + 2e”. (1.78)

Since the initial conditions are given, the numerical values for a and g should
be determined. Substituting the initial values into the general solution we find

a+2=3, 33+2=5, (1.79)

where we find
a=1, B=1. (1.80)

Accordingly, the particular solution is given by
u(x) = cos(3x) + sin(3z) + 2€”. (1.81)

Exercises 1.2.2

Find the general solution for the following second order ODEs:
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1w —4u +4u=0 2.u"” —2u —3u=0 v —uw —2u=0

4. v —2u' =0 5. u"” —6u +9u =0 6. u’ +4u=0

Find the general solution for the following initial value problems:

7T.u" —2u 4+2u=0,u0)=1,4(0)=1 8 v —6u +9u=0,u0)=1u4(0)=4
9. v —3u’ —10u = 0,u(0) = 2,4/(0) =3 10. v’ +9u = 0,u(0) = 1,u'(0) =0

11. v/ —9u’ = 0,u(0) =3,/ (0) =9 12. v = 9u = 0,u(0) = 1,u/(0) =0

Use the method of undetermined coefficients to find the general solution for the
following second order ODEs:

13 v —u =1 14. v +u=3 15. v/ —u =3z 16. v/ —u =2cosx
Use the method of undetermined coefficients to find the particular solution for the
following initial value problems:

17w — v =6,u(0) =3,u'(0) =2 18. w'’ +u = 6e”,u(0) = 3,4/ (0) =2
19. v/ —u = —2sinz,u(0) = 1,4/ (0) = 2

20. v —5u +4u = —1+4z,u(0) = 3,u/(0) =9

1.2.3 The Series Solution Method

For differential equations of any order, with constant coefficients or with
variable coefficients, with x = 0 is an ordinary point, we can use the series
solution method to determine the series solution of the differential equation.
The obtained series solution may converge the exact solution if such a closed
form solution exists. If an exact solution is not obtainable, we may use a
truncated number of terms of the obtained series for numerical purposes.

Although the series solution can be used for equations with constant coeffi-
cients or with variable coefficients, where = = 0 is an ordinary point, but this
method is commonly used for ordinary differential equations with variable
coefficients where z = 0 is an ordinary point.

The series solution method assumes that the solution near an ordinary
point z = 0 is given by

00
U(J?) = Z apx", (1.82)
n=0

or by using few terms of the series
u(z) =ap+ a1z + asx® + asx® + agxt + agz® + aga® + - (1.83)
Differentiating term by term gives
v (z) = a1 + 2as2 + 3azr® + dayx® + Sasx + 6agrd + - - -
u(x) = 2as + 6azz + 12a422 + 20as2® + 30agz? + - - (1.84)
u"(x) = 6az + 24a4x + 60asz® + 120a62> + - - -
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and so on. Substituting u(x) and its derivatives in the given differential equa-
tion, and equating coefficients of like powers of = gives a recurrence relation
that can be solved to determine the coefficients a,,n > 0. Substituting the
obtained values of a,,n > 0 in the series assumption (1.82) gives the series
solution. As stated before, the series may converge to the exact solution. Oth-
erwise, the obtained series can be truncated to any finite number of terms to
be used for numerical calculations. The more terms we use will enhance the
level of accuracy of the numerical approximation.

It is interesting to point out that the series solution method can be used
for homogeneous and inhomogeneous equations as well when z = 0 is an
ordinary point. However, if x = 0 is a regular singular point of an ODE, then
solution can be obtained by Frobenius method that will not be reviewed in
this text. Moreover, the Taylor series of any elementary function involved in
the differential equation should be used for equating the coeflicients.

The series solution method will be illustrated by examining the following
ordinary differential equations where = 0 is an ordinary point. Some ex-
amples will give exact solutions, whereas others will provide series solutions
that can be used for numerical purposes.

Example 1.13

Find a series solution for the following second order ODE:
u +u=0. (1.85)
Substituting the series assumption for u(z) and u”(z) gives
2a9 + 6agx + 12a4x2 + 20a5x3 + 30a6x4 + -
+ag + a1z + asx® + asx® + asxt + asz® + - =0, (1.86)
that can be rewritten by
(ap + 2as) + (a1 + 6a3)x + (ag + 12a4)2” + (az + 20as)2>
+(ay + 30ag)z* + - - = 0. (1.87)

This equation is satisfied only if the coefficient of each power of x vanishes.
This in turn gives the recurrence relation

ap + 2as =0, a1 + 6as =0,
as +12a4 =0, az+ 20a5 =0, (188)

By solving this recurrence relation, we obtain

1 1
a2 = — _,00,a3 = — _ 41,
2! 3!
B 1 B 1 B 1 1 (1.89)
ay = —1202 = 4!610, as —20613 = 5!01,

The solution in a series form is given by

1 1 1
u(z) = ag (1—2!x2+4!x4+~->+a1 <$—3!$3+5!$5+"'>a (1.90)
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and in closed form by

u(z) = apcosx + ay sinx, (1.91)
where a¢g and a; are constants that will be determined for particular solution
if initial conditions are given.

Example 1.14

Find a series solution for the following second order ODE:
u —au —u=0. (1.92)
Substituting the series assumption for u(x),v’(z) and u”’(z) gives
2a5 + 6asz + 12a42° + 20a52> + 30agz® + 42a72° + - - -
—a1x — 2a2x2 — 3a3x3 — 4a4x4 — Sagz® — - -
—ap — a1 — asx?® — azz® — agxt —asz® — - =0, (1.93)
that can be rewritten by
(—ap + 2a2) + (—2a; + 6a3)z + (—3az + 12a4)2? + (—4az + 20as) x>
+(30a — 5as)x* + (42a7 — 6as)z® + --- = 0. (1.94)
This equation is satisfied only if the coefficient of each power of x is zero.
This gives the recurrence relation

—ap + 2a2 =0, —2a1 + 6a3 =0, —3as+12a4 =0,

(