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"COMPLEX VARIABLES AND APPLICATIONS" (7/e) by Brown and Churchill
Chapter 1
SECTION 2
1. (@ (W2-D)-il=-V2i)=v2—i-i-2==2i;

B 2,-3)(-2,1)=(-4+3,6+2)=(-18);

1 1)_ 11y,
(0) (3,1>(3,—1>(3,5]—(10,0)( L 10) @D,
2. (a) Re(iz)=Refi(x+iy)]=Re(-y+ix)=-y=-Imz;

(b) Im(iz) = Im{i(x +iy)] = Im(-y+ix)=x =Rez.

3. (+2)=(0+2)(l+2)=(1+2) 1+(A+z)z=1-(1+2)+z(1+2)

=14+z+z+2> =142z+7%

i

4, If z=M+i then 22 —2z+2=(1%i)> ~2(1+)+2=%2i~-2F2i+2=0.

5. To prove that multiplication is commutative, write

5z, = (0 1)(%p,¥,) = (%%, = Y135 Y%, +X,Y;)
= (XX = Yo Yo Xi + X 01) = (X, 1) (X, 1) = 254,

6. (a) To verify the associative law for addition, write

(7, +2,) + 23 =[(x, y,) + (x5, )1+ (x5, y3) = (%, + x5, y, + y,) + (X35 73)
=((x +x,)+ x5 (0 + y,) +y3) = 0 + (x5 + x50, 3 (0, +55))
= () + (% + X3, 3 +3) = (3, 3,) + (%5, 9,) + (3, 93)]
=z +(z, +2).

|/



(b) To verify the distributive law, write

2(z, +25) = (x, Y (x, 3,) + (x3, )] = (5, 9)(x + x5, 5, +y,)
= (000 + X0, =YY, = Yy YXy + X, + Xy + x,)
= (00, = yy; + X%, = yy,, yx, + Xy, + %, +Xy,)
= (xx; = yy;, yx + xy) + (xx, = yy,, yx, + xy,)
= (6 7))+ (%, 9)(%, 3,) = 22 + 22,

10. The problem here is to solve the equation z”> +z+1=0 for z = (x,y) by writing

(x,9)(x,y) + (x,y) +(1,0) = (0,0).

Since
=y +x+1,2xy+y)=(0,0),

it follows that
x*~y*+x+1=0 and 2xy+y=0.

By writing the second of these equations as (2x+1)y =0, we see that either 2x+1=0 or
y=0. If y=0, the first equation becomes x>+ x+1=0, which has no real roots
(according to the quadratic formula). Hence 2x+1=0, or x=-1/2. In that case, the first
equation reveals that y* =3/4, or y=++/3/2. Thus
1.3
z=(xy)=|-——,—|.
(x,y) ( 717 )

SECTION 3

1+2i + 2-i - (1+2i)(3 + 4i) + (2-i)(-5i) _-5+10i + -5-10i ___ 2.
3-4i 5i (@B-4)3+40) (5i)(=51) 25 25 5

1. (a)

S5i S5i Si 1

A-D2-DG-1) A-30G-1) -10i 2’

(b)
(¢) (=i =[A-DA-D) =(-2i)’ =-4.

2. (a) (-Dz=-zsince z+(-Dz=z[1+(-1)]=2z-0=0;

(b) —=—=2=z (z20).



3. (@2, )z32,) = 7l2,(2:20)] = 1)[(2,23)2,] = 2 [(232,)2,)] = 2[25(2,2,)] = (2,2, )(2,2,)-
¢ el e
232, 2324 z3; N\ z, Zs Z4 Z3 )\ 2,
OGN e
2z \ \z ) \z) \g Z zZ

SECTION 4

2 .
1. (@) z =2 z2=§-—1

21_22

4+,

2y

(b) 4= (—'\/5’1)7 zz = ('\/5,0)

Z Z+z,

Z;




(C) 4= (—33 l)a L= (1’4)

+z 7
%
4
0 x
4L-7
(@) z =x+iy, 2, =X —iy,
y
4-5
%
0 .z,:+zl x

2
2. Inequalities (3), Sec. 4, are

Rez<IRez<lzl and Imz<I|Imzl<lZ.

These are obvious if we write them as

xSId<qx*+y* and y<Ilyl<+/x® +y2.

3. Inorder to verify the inequality V212l >IRezl+IImzl, we rewrite it in the following ways:

V24 2 2 Ixd+1yl,
20+ y2) 2 Ixl? + 2xliyl + 1y,
Ixl? = 2l xliyl + [y 2 0,

(xd =1y)? 2 0.

This last form of the inequality to be verified is obviously true since the left-hand side is a
perfect square.



4. (a) Rewrite Iz—1+il=1as [z—(1-i)|=1 This is the circle centered at 1—i with radius 1.
It is shown below.

5. (a) Write |z—4il+lz+4il=10 as |z~ 4il+|z —(—4i)l=10 to see that this is the locus of all
points z such that the sum of the distances from z to 4i and —4i is a constant. Such a
curve is an ellipse with foci t+4i.

(b) Write |z —1l=lz+il as |z ~1l=lz - (=)l to see that this is the locus of all points z such
that the distance from z to 1 is always the same as the distance to —i. The curve is,
then, the perpendicular bisector of the line segment from 1 to —i.

SECTION 5
1. (@) Z+3i=z+3i=z-3i;

(b) iz=iz=-iz;

() Q+if=(2+i) =Q-if=4-4i+i"=4-4i-1=3-4i;

(d) 1QZ+5)2 —i)=12Z+ 5132 —il=12z +5IW2+1 =~/3 12z +5I.

2. (a) Rewrite Re(Z—i)=2 as Re[x+i(-y—1)]=2, or x=2. This is the vertical line
through the point z =2, shown below.




(b) Rewrite 12z —il=4 as 2|z—-l2—|=4, or

<

3. Write z, = x, +iy, and z, = x, +iy,. Then

z— % , =2. This is the circle centered at % with

radius 2, shown below.

2 =2, =(x, +iy) = (x, +iy,) = (x, —X,)+i(y, —y,)

= (X —x,)—i(y, - y,) = (x, -y -, -iy,)=7 -7,
and

5z, =(x + (X, +iy,) = (x,x, — y,y,) +i(yx, + x,y,)
= (X%, = y1y,) =iy x, + x,y,) = (x, — iy )(x, —iy,) =73,.

4 (a) z222,=(22,)2;,=732,2, = (2122)23 =222

b 7= 2z2=z_2?=zzzz=(z_2)(zz)=zzzz=2".

6. (a) (zl )=_z__1_=_f‘l_;

2% ) 375 2%
Z Iz, Iz,
(b) = = .
22| gzl z,lizl

8. In this problem, we shall use the inequalities (see Sec. 4)
IRezl<lzl and |z, +2z, + 7| <|g|+z,| +]zs|-
Specifically, when IzI< 1,

[Re(2 +Z+2")| <12+ 2+ 22 S 2+171 +12°) = 2+Id+lZP < 2+ 1+ 1= 4.




10. First write z* —4z” +3 =(z*> —1)(z> —3). Then observe that when |zl=2,

and

122 = 12| 12°1-11l| = |1z* -1 =14 - 1I=3

12* = 312|122 13| = |1z -3| =14 -3I=1.

Thus, when Izl=2,

Iz =4z +31=122 =11z -3123-1=3.

Consequently, when z lies on the circle lzl=2,

11. (a)

(b)

12. (a)

=7 2 <
1z -4z°+3l

1 I 1 1
7t —47* +3 3
Prove that z isreal & Z =z

(<) Suppose that 7=z, so that x —iy =x+iy. This means that i2y=0, or y=0.
Thus z=x+i0=x, or z isreal.

(=) Suppose that z is real, so that z=x+i0. Then Z=x—-i0=x+i0=z.
Prove that z is either real or pure imaginary ¢ z° =72
(<) Suppose that z*> =z°. Then (x—iy)* =(x+iy)’, or i4xy=0. But this can be
only if either x =0 or y=0, or possibly x=y=0. Thus z is either real or pure
imaginary.
(=) Suppose that z is either real or pure imaginary. If z is real, so that z=x, then
72 = x* =z%. If z is pure imaginary, so that z =iy, then z* = (=iy)’ = (iy)’ = 2°.
We shall use mathematical induction to show that

g+ + 4z, =5+ + 47, (n=2,3,..).

This is known when n =2 (Sec. 5). Assuming now that it is true when n = m, we may
write

g+ttt 2y = (@t ) 2y,
=(g+y++2z,)+7,,
=4+t g, )+ 2,

= Zl +z2+“'+zm + Zm+l'



(b) In the same way, we can show that

22,2, =2122-..Z" (n=2,3,...)-

This is true when n =2 (Sec. 5). Aésuming that it is true when n = m, we write

2125 ZZmat = (823 2 VZmer = (21227 2,) Z,
=(22 2 )Te1 8T ZnZmer

z+Z

14. The identities (Sec. 5) zZ =Iz/” and Rez = enable us to write 1z —z,l=R as

(z-2)z-2)=FR,
Z~(2+ %)+ a5 =R,

1z — 2Re(2Z,) +12,* = R”.

15. Since x=%+% and y= z_2—Tz_, the hyperbola x*> —y* =1 can be written in the following
i

ways:

SECTION 7
1. (a) Since

arg(_2 f_ 2i) = argi —arg(-2 - 2i),

) is Z— (—-3-7—:—) or %’ Consequently, the principal value is

one value of arg( 5 2

l
-2-2i

5n 3n
—-2m, or ——.
4 4




(b) Since
arg(\3 —i)® = 6arg(+/3 - i),

one value of arg(v/3 —i)° is 6(—%), or —x. So the principal value is -7 + 27, or 7.

The solution 8 = 7 of the equation le” —11=2 in the interval 0< 6 <27 is geometrically
evident if we recall that e” lies on the circle Izl=1 and that |e®® —1I is the distance between
the points ¢ and 1. See the figure below.

VAR
/

(4]

We know from de Moivre's formula that
(cos B +isin 8)° = cos30 +isin30,
cos® 0 + 3cos® B(isin 8) + 3cos O(isin 8) + (isin B)° = cos 36 +isin 36.
That is,
(cos® 8 —3cos Bsin® 8) +i(3cos” Bsin O —sin’® 8) = cos 30 + isin36.

By equating real parts and then imaginary parts here, we arrive at the desired trigonometric
identities:

(a) cos30 =cos® @ —3cosBsin® B; (b) sin36 =3cos® Osin 6 —sin’ 6.

Here z=re” is any nonzero complex number and n a negative integer (n=-1,-2,...).
Also, m=-n=12,.... By writing ‘

- i@\ 1 ;.
(ZM) l=(rme|m9) l____;;el( mé)

("= [-1- e"(‘o)]m = (-l-)m e'cme) = —l;ei('"'o).
r

r r

and

we see that (z")" =(z")". Thus the definition z" =(z™)" can also be written as
zn - (zm )—l.
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9. First of all, given two nonzero complex numbers z and z,, suppose that there are complex
numbers c, and ¢, such that z, = c,c, and z, = ¢,Z,. Since

lzl=lcllc,] and lz,l=l¢lic,l=l¢)lic,l,

it follows that 1z,1=lz,!.
Suppose, on the other hand, that we know only that Iz]=|z,l. We may write

z =r;exp(if) and z, =r exp(i6,).

If we introduce the numbers

q=r exp(z‘ % ; 92) and ¢, = exp(i 6, -9, ),

2
we find that
cc,=n exp(i 5 ; 6, )exp(i d ; %, ) =rexp(if) =z
and
a6 =r exp(i 6 ; 9, )exp(—i ! ; 9, ) =r,exph, =z,.
That is,

zy=¢c, and gz, =c7,.

10. If S=1+z+z*+--+z", then

S—z8=(l+z+ 22+ +2") =2+ 22 + 22+ +z"™) =1~ 7™,

n+l

Hence S = 1- , provided z#1 Thatis,

=Z

1 - Zn+1

I+z+2%4 47" = (z#1).

1-z
Putting z = ¢ (0 < 8 <27) in this identity, we have

0 i _ ] = in+1)e
1+e” +e%%+. - 4e™ = ‘
1-¢*
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Now the real part of the left-hand side here is evidently

14+ cos@+cos26+ --+cosnb;

and, to find the real part of the right-hand side, we write that side in the form

ex (—ig) ex (—ig)—ex l'l._____(2n+1)9'|
1-explicn+ 8] P\ ') P T) TR T

1—exp(i6) (_._61): (_.g)_ (.g) ’
exp| i exp| i |—exp| i3

which becomes

os (2n+1)0 _isin (2n ;— 1o ,‘

.?

0 .. 86
cos——isin—-c
2 2

-2i sin—e—- !
2

sing + sin———(zn + 1)9] + i[cosg - cos—————(zn + 1)9]
| 2 2 , 2 2 |

25in—6—
2

The real part of this is clearly

. (2n+1)0
| sin——
2

2sin—
2

1

and we arrive at Lagrange's trigonometric identity:

sin (2n+1)6

1+cos6+cos29+---+cosn0=-1-+ 2 (0<6<2m).

2sin—
2
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SECTION 9

1. (a) Since 2i= 26xp[i(§ + an')] (k=0,£1,£2,...), the desired roots are

Qi) =3 exp[i(% + kn‘)}
That is,

c0=\/5ei”/4=\/—(cosz+ts1nﬂ) w/—(\/- \/_) 1+i

and
¢, = (V2e™*)e™ = —¢, = ~(1+i),

¢, being the principal root. These are sketched below.

(b) Observe that 1~+/3i = Zexp[ (—g—+2k7r):, (k=0,%1,+2,...). Hence

— 32 — {_T
(1-+/3) \2 cxp[l( y +k7t):]

The principal root is

c =~/§-e"""5=w/_(cos—7£— )= 2 ﬁ-—i =—L
0 y zsm6 V2| > 7
and the other root is
¢, = (VZe™6)ei® = _ V3-i

Co = ——F—.

2

These roots are shown below.

(k=0,1).

(k=0,1).




2.

13

(a) Since —16 =16expli(x +2kn)] (k =0,%1,£2,...), the needed roots are

a4 _ m krm _
(-16) ZCXp[ (4 > )] (k=0,1,2,3).

The principal root is

=2¢"4 = 2(cos-— +isin ﬂ) (—1— + L)
2 5 5 V21 +i0).

The other three roots are
6 = (26")e™? = i =2 (1+i)i = =v2(1-i),
¢ = (2e™)e™ = —c, ==V2(1+i),

and
¢y = (26™)e™? = ¢y (~i) = V2(1+i)(~i) = V2 (1~ i),

The four roots are shown below.

(b) First write —8 — 83i = 16exp[i(—z3£ + 2k7t)] (k=0,%1,12,...). Then

(883 = 2cxp|:i(-%+!fz£)] (k=0,1,2,3)

The principal root is

€y = 2675 = 2(cos-76£—isin§) = 2(3?-— -;-) =+3-i.
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The others are
Cl = (2e-lﬂ/6)eln12 = Coi - 1 + _\/'3—1-’

c,= (2e-izl6)ein: =—c, = _(ﬁ_i),
¢; = (2" ™)e™? = ¢ (=i) = —(1 +/30).

These roots are all shown below.

y

G

3. (a) Bywrting —1=1expli(n+2kn)] (k=0,£1,£2,...), we see that

-3 = exp[i(f- + -2"—”) (k=0,1,2).
3 3
The principal root is
Co = €™ = cos = +isin 2~ = ———1+‘/§i.
3 3 2

The other two roots are

¢ =e"=~1
and

¢, = 513 = gigint3 _ cosz—isinﬁ - 1"‘\/51'.
3 3 2

All three roots are shown below.

y
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(b) Since 8 =8exp[i(0+2k7)] (k=0,%1,12,...), the desired roots of 8 are
k7
8“6 = ﬁcxp(l ?) (k = 011, 2)37 47 5)’
the principal one being

¢ =2.

The others are

q =2 =ﬁ(cos—g-+isin§)=ﬁ(l+ﬁi)= 1++/3i

¢, = (ﬁe-izIB)ei” =ﬁ(cos§—i8in§)(_1) = _ﬁ(_;__ﬁi)= _1—\/§i

c3 = ﬁeiﬂ = —ﬁ,

¢ = (V2e™)e" =—c, ____1-:/'_2\{51',

and

¢ = (V2 ™)eim = —c, =1—w/§i.

V2

All six roots are shown below.

The three cube roots of the number z, = —4+/2 + 4+/2i = 8exp(i 1475) are evidently

(o) = 2exp[i(§+ ZL;’)] (k=0,1,2).

In particular,

¢ = 2exp(i§-) =2(1+i).



16
~1+4/3;

, we obtain the other two roots:

With the aid of the number @, =

\2

¢, = c,0F = (Co;) 0, = ["(\/3 + 13/; (3~ 1)i](-1+2 «/@') _(3-1 177(«/5 +i

- ey, =E(+i )( 1+«/‘:) ~(B+D+(3-Di

5. (a) Let a denote any fixed real number. In order to find the two square roots of a+i in
exponential form, we write

A=la+il=Va’+1 and a=Arg(a+i).

Since
a+i=Aexpli(a+2kn)] (k=0,%£1,%£2,...),

we see that

(a+i)? =vAexp [i(% * kn)] (k=0,1).
That is, the desired square roots are

ﬂeia/2 and ﬁeiaIZeik = ___\/ZeiaIZ‘

(b) Since a+i lies above the real axis, we know that 0 < @ < 7. Thus 0< -g—_< —725, and this

tells us that cos(-g—)> 0 and sin(‘;)> 0. Since cosa-;, it follows that
cos% = l+cosa_L\/l+£_\/A+a
2 \J 2 V2V AT 244
sing= .ﬂ?ﬁ:L\ll_i—\M_-ﬁ
2"V 2 V2V AT A24A°

iw/zeim:i\/x(cosgﬂsma) \/Z(://éj/-ﬁ 44:;/'_)

and

Consequently,

T(\/A+a +ivA-a).
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6. The four roots of the equation z*+4 =0 are the four fourth roots of the number —4. To
find those roots, we write —4 = 4exp[i(7 + 2kn)] (k=0,%£1,%2,...). Then

(-4 = «liexp[ (Z kz”)] \2¢™ 42 (k=0,1,2,3).

To be specific,

co=w/§ei"’4=w/§(cosz+zsm”) V—(J— \/_) 1+i,

c = coe"’”2 =(1+di=-1+i,

c, =C,e T =(+i)(~)=-1-i,

c; =cpe™? =(1+i)(~i)=1-i.
This enables us to write

H+4=(2-c)z - )z, z2-cy)
=[(z=e )z -yl [(z = ¢y )z~ ¢;)]
=[(z+ ) -il(z+ D +i)-[(z-1) - ill(z—1) +i]
=[+1) +1][(z-1)* +1]
= (z2 +2z +2)(z2 -2z +2).

7. Let c be any nth root of unity other than unity itself. With the aid of the identity (see
Exercise 10, Sec. 7),

l+z+ 7%+ 4 = — 2 (z#1),
1-z
we find that
l+cttotert=i=C 171 4
l1-¢ 1-c¢

9, Observe first that

(z”"')'l=|:'§‘/;expi(e+m2kﬂ) ex i(-60-2km) 1 exp i(— 9) 1(—2k7t)

]_lwpm Ty m
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and :
- 1 i(—0+2kn) 1
1\1/m = m—ex -
@) 4: P m ®r
where k=0,1,2,...,m—1. Since the set
exp i(—2km)
m
is the same as the set
exp i(2km)
m

but in reverse order, we find that (z'/")™ = (z™)"".

SECTION 10

1.

exp z(:ne) exp z(2nlz7t) ’

(k=0,1,2,....m-1)

(k=0,1,2,...,m-1),

(a) Write Iz—2+il1<1 as Iz—(2—-i)I<1 to see that this is the set of points inside and on the

circle centered at the point 2 —i with radius 1.

It is not a domain.

(b) Write 12z+31>4 as

2

> 2 to see that the set in question consists of all points

exterior to the circle with center at —3/2 and radius 2. Itis a domain.
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(c) Write Imz>1 as y>1 to see that this is the half plane consisting of all points lying
above the horizontal line y =1. Itis a domain.

(d) Theset Imz =1 is simply the horizontal line y=1. Itis not a domain.

y

() The set |Iz—4I2Izl can be written in the form (x—4) +y* 2 x* +y*, which reduces to

x<2. This set, which is indicated below, is not a domain. The set is also
geometrically evident since it consists of all points z such that the distance between z
and 4 is greater than or equal to the distance between z and the origin.
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4. (a) The closure of the set —x <argz< & (z #0) is the entire plane.

(b) We first write the set IRezl<lzl as Ix<+/x*+y?, or x*<x’+)’. But this last
inequality is the same as y* >0, or yI> 0. Hence the closure of the set |Re zl<lzl is the

entire plane.
(c) Since l=—Z:=L2=—’;lyz, the set Re(l)s-l— can be written as z—x-z—sl, or
z @ " x*+y z) 2 x+y" 2

(x* =2x)+y*20. Finally, by completing the square, we arrive at the inequality

(x—1)> + y* = 1%, which describes the circle, together with its exterior, that is centered
at z =1 with radius 1. The closure of this set is itself.
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(d) Since z* = (x+iy)’ =x* -y +i2xy, the set Re(z’)> 0 can be written as y* <x?, or
Iyl<ixl. The closure of this set consists of the lines y =*x together with the shaded
region shown below.

5. The set S consists of all points z such that Izi<1 or |z~ 2l< 1, as shown below.

Since every pglygonal line joining z; and z, must contain at least one point that is not in S, it
is clear that § is not connected.

8. We are given that a set S contains each of its accumulation points. The problem here is to
show that S must be closed. We do this by contradiction. We let z, be a boundary point of

S and suppose that it is not a point in §. The fact that z, is a boundary point means that
every neighborhood of z, contains at least one point in S; and, since z, is notin §, we see
that every deleted neighborhood of S must contain at least one point in S. Thus z, is an
accumulation point of S, and it follows that z, is a point in S. But this contradicts the fact
that z, is notin S. We may conclude, then, that each boundary point z, must be in S. That
is, § is closed.
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Chapter 2

SECTION 11

| .
N is defined everywhere in the finite plane except at the

1. (a) The function f(z)=—
"+

points z =i, where 22 +1=0.

1). . . .
(b) The function f(z)= Arg(—) is defined throughout the entire finite plane except for the
b4
point z=0.
(c) The function f(z) =——f_—: is defined everywhere in the finite plane except for the
Z+Z

imaginary axis. This is because the equation z +Z =0 is the same as x =0.

(d) The function f(z)=

| . . -
TTIoT is defined everywhere in the finite plane except on the
—lz

circle 1z1=1, where 1-1z*=0.

. zZ2+Z z2-Z .
. ==—— and y=——, write
3. Using x 3 y %

f@)=x*-y*=2y+i2x -2xy)

(z+2)?  @=2% ., _ .. - (z+D(z-2)
= + +i(z=2)+i(z+7)— =2
2 7 i(z—-2)+i(z+72) 5
2 2 2 =2
7 Z . ¢z )
= iy =7 .
D) 174 D) Z°+2iz
SECTION 17
5. Consider the function
2 . \2
f<z>=(§) =[“’.y ) (z#0),
z X —1y

where z = x +iy. Observe thatif z = (x,0), then

x+i0

R !

_[O+iy 2=
f(Z)—(-'—0 ) :

and if z=(0,y),




Butif z =(x,x),

10.
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C(x+ixY (140
f&)—(x—u) _(Ld) =1

This shows that f(z) has value 1 at all nonzero points on the real and imaginary axes but
value -1 at all nonzero points on the line y=x. Thus the limit of f(z) as z tends to 0

cannot exist.

2
at lim =4, we use statement (2), Sec. 16, and write

= (2= 1)?

(a) To show th

(b) To establish the limit linrxl _(__II)—" = oo, we refer to statement (1), Sec. 16, and write
=1 (z -

um——l———mn@-n’—o

1 1f(z=1) ot )

22 +1 ;
= oo, we apply statement (3), Sec. 16, and write

(c) To verify that lim
A |

1
i z-7

llﬂé -—lzz—— = ng 1 ) =(.

7~ =

DR
z
11. In this problem, we consider the function
az+b (ad —bc #0).

T(z) =
@ cz+d

(a) Suppose that ¢ =0. Statement (3), Sec. 16, tells us that lim T(z) = oo since
2900

c+dz

lim 1 __ li
z=0 T(l/z) -0 g+ bz

=£=o.
a
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(b) Suppose that ¢ # 0. Statement (2), Sec. 16, reveals that lim T(z) = 2 since
Z=pee c

lim T(l) = lim 3322

_a
=0 \z) =0 c+dz ¢

Also, we know from statement (1), Sec. 16, that lirg‘l, T(z) = o since
z-~dfc

lim —— = cz+d =0
e-dfe T(z) >-dlc qz+b

SECTION 19
1. (a) ¥ f(z)=3z>—2z+4,then

—d—z+i4=3(2z)—2(1)+0=6z—2.
2 ,

d 2 2 d 2
f(Z) l(z Z ) lz 2

(b) I f(z)=(1-4z>) then

f'@)=3(1-4z*) %(1 —4z%) =3(1-47*)*(~8z) = —24z(1 — 47%)*.

_ z—-1 _l
© ¥ f@=2 (z¢ 2),then

d d
@etD @ D@02 4D rrpm-@-n2__ 3

f@)= 22t 1) Qz+DF  Qz+D*

2.4
@ I f(x)= 9—*'25—’ (z#0), then

Zz‘i(l"‘ z2)4 _(1+z2)4

d
fz)=—%& Zzz _ 240+ (22)-(1+2")*22

(%) (z*)

_2z(1+2)’[42° ~(1+ 2] _ 2(1+2°)° (32 - 1)

4
z z
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3. If f(z)=Yz (z#0), then

1 1 —Az
Aw = - = -_
w = f(z+Az) - f(2) o~y P

Hence
Aw -1 1
2)=lim—=lim ————=—— |
f@=lim 7= fim =

4. We are given that f(z)=g(z,)=0 and that f’(z,) and g’(z,) exist, where g’(z,)#O0.
According to the definition of derivative,
()= lim f(z) f@) _ o f@
729 zo 29 7 — ZO
Similarly,
gl(zo) - lim g(Z)"g(ZO) = 1 im <=2l g(Z)
2% 2—% 292 7 - zo
Thus
i L@ _ i £ G=2) _ S T@@m2) o)
=0 8(2) o g2/ (z~z) lim g(z)/ (z-2)  8'(z)
SECTION 22
1. (@ f@)=zZ=x-iy. Sou=x,v=-y.

Inasmuch as u, =v, = 1=~1, the Cauchy-Riemann equations are not satisfied
anywhere.

(b) f@D=z-Z=(x+iy)—(x—iy)=0+i2y. So u=0, v=2y.
Since u, =v, = 0 =2, the Cauchy-Riemann equations are not satisfied anywhere.

(c) f(z)=2x+ixy’. Here u=2x, v=xy’.
u,=v,=>2=2xy=>xy=1
u=-v,=0=-y’=y=0.
Substituting y =0 into xy =1, we have 0=1. Thus the Cauchy-Riemann equations do
not hold anywhere.

(d f(z)=e"e™” =e*(cosy—isiny)=e*cosy—ie*siny. So u=e*cosy, v=—e"siny.
u, =v,=>e"cosy=-—e*cosy=>2e"cosy=0=> cosy=0. Thus

y:-g--f-n;z (n=0,£1%2,...).

u,=-v, =>—e¢"siny=e*siny = 2e*siny = 0= siny = 0. Hence
y=nrw (n=0,£1%2,...).

Since these are two different sets of values of y, the Cauchy-Riemann equations cannot
be satisfied anywhere.
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1 1z Z X . =y
3 (a =—=——=—"= +i . So
(a) f(@) z z Z Iz12 x2+y2 x2+y2
X -y
u= and v= .
S- x2+y2 x2+y2
ince
u —_:_.._yz__x_2__=v and u =_—2_xy__=_v (x2+y2;l_-0)
oy Y TPy T ’
f’(z) exists when z # 0. Moreover, when z #0,
2 2 2 . 2
, . y —x" . 2xy x“—i2xy—y
ff@=u,+iv, = +i =-
(x2 +y2)2 (xZ +y2)2 (x2+y2)2
__ G-y @ @ 1
=—=.

@YY @ @@z

(b) f(z)=x"+iy’. Hence u=x" and v=y>. Now

u,=v,=>2x=2y=y=x and u,=-v,=0=0.

So f’(z) exists only when y = x, and we find that

f(x+ix)=u (x,x)+iv (x,x)=2x+i0 = 2x.

(c) f(z)=zImz=(x+iy)y=xy+iy’. Here u=xyandv=y>. We observe that

u,=v,=y=2y=y=0 and u,=-v,=x=0.

Hence f’(z) exists only when z=0. In fact,

£/ (0)=u,0,0)+iv,(0,0)=0+i0=0.

4. (@ f(2)= L4 = (L“cos 40) + i(—%sin49) (z#0). Since
z r r

[N s

v* v
u v

4 4 .
ru, =——cos40=v, and u,=-—sin46=-rv,
r r




S.

fis analytic in its domain of definition. Furthermore,
’ —-i@ . —-i8 4 . 4 .
f(2)=e"(u, +iv)=e"| ——cos40 +i—sin40
r r

= —-4—se-i9 (cos40—isin40) = -—45—e"""e"'49
r T

-4 4 4

rSeiSO (reiG)S ZS ‘

®) f(z)=re? =«/700s-g—+i\/7sing (r>0,6<0<a+2x). Since
ﬁ_J \‘-Wv——l
ru —£c052=v and u ————tsing——rv
T2 T2 f o 272 r

fis analytic in its domain of definition. Moreover,

ff@=e*@ +iv)= e'“’(z—% cosg +i —i%sin g)

0 9 1 -if i6/2
—T (COS—+lSID )—-me e
_ 1 _ 1
- Zﬁeielz - zf(z)'

(c) f(@)=e"cos(Inr)+ ie”® sin(In r) (r>0,0<8<2m). Since

"
u 14

ru, =—e’sin(Inr)=v, and u,=-e°cos(Inr)=-rv,,

fis analytic in its domain of definition. Also,

Fl=e@, +iv,)=e"o[ e sm(lnr) v cos(lnr):l

r r

= %[e_o cos(Inr) +ie~? sin(Inr)| = picIy
re z

When f(z)=x’+i(1-y)’, we have u=x*and v=(1-y)®. Observe that

u,=v,=3x" =-3(1-y’ = x> +(1-y)’=0 and u,=-v, =0=0.

27
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7.

Evidently, then, the Cauchy-Riemann equations are satisfied only when x=0 and y=1
That is, they hold only when z = i. Hence the expression

(@ =u,+iv, =3x* +i0 =3x*

is valid only when z = i, in which case we see that f’(i) =0.

Here u and v denote the real and imaginary components of the function f defined by means
of the equations

=2

flo)= 2 when z#0,
=3z
0 when z=0.
Now
3 2 3 2
x =3xy" .y =3x°y
z)= +1
f() x2+y21 x2+y2

when z # 0, and the following calculations show that

1,(0,0)=v,(0,0) and u,(0,0)=—v,(0,0):

#,(0,0) = lim u@+ A"fz —u0.9) _ lim %"x— =1,
4,(0,0) = lim 400489 ~u0.0) _;,, 0 _,
4 Ay—0 Ay 450 Ay
o W0+A60)-v(0,0) . O _
v:(0,0)= lim Ax =m0
v (0,0) = lim X%+ -v0.0) . Ay _,
y Ay—0 Ay 40 Ay

Equations (2), Sec. 22, are

u,cos@+u,sinf=u,

—u,rsin@+urcos6 =u,.
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Solving these simultaneous linear equations for u, and u,, we find that

U, =u, cosG—ueiiErl—g and u, =u,sinf+u, co:@
Likewise,
v, =v,cos6—va¥ and v, =v,sinf+v, cors0
Assume now that the Cauchy-Riemann equations in polar form,
TU, =Vy, Uy =-TV,,
are satisfied at z,. It follows that
u, =u,cosd—u, Sil:e =V, corse +v,s8in@ =v,sinf +v, 00:6 =v,,

. cos@ sin 8 sin @
u,=u,sinf+u, =V, -v,cos80=—|v,cos0-v, =-v,.
r r r

(a) Write f(z)=u(r,0)+iv(r,0). Then recall the polar form
TU, =V, Uy =—TV,

r

of the Cauchy-Riemann equations, which enables us to rewrite the expression (Sec. 22)
f(z) =€, +iv,)

for the derivative of fata point z, = (r,, 6,) in the following way:

, —i 1 i —i 3 i )
fz)=e 9(;\79 ";uo) =re7(ue +ivy) = 'z';'(ua +iv,).
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(b) Consider now the function

11 1 4 1 .
f@=—=—ps==¢ 9=_(0039_lsme)=cose_lsm9
With
cos 6 sin @

u(r,0)=

and v(r,0)=~———,
r

the final expression for f’(z,) in part (a) tells us that

poy =[-8 u0). _L(eond=isng)
Zz r r z r

when z#0.

10. (a) We consider a function F(x,y), where

s _
s ORI ek

2 2i

Formal application of the chain rule for multivariable functions yields

dF 3F8x+8F8y QF( )_}_QF( 1) 3F+ oF
7z XK dy d7 ox ay\ 2i ox 3y

(b) Now define the operator

i = l ..a_ +i _é_
iz 2\ox o)
suggested by part (a), and formally apply it to a function f(z) = u(x,y)+iv(x,y):
F_L HN L1 i
% 2 ax 3y "2 ax 2 8y

=2+ 2+, ) 2~ )i, 1))

If the Cauchy-Riemann equations u, =v,, u, =—v, are satisfied, this tells us that

df/dz =0.
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SECTION 24

1. (a)

()

(c)

(d)

2. (a)

(c)

7. (a)

f(z)=3x+y+i(3y—x) is entire since
v

u =3=v

X

, and u, =l=-v,_,

f(z) =sinxcoshy+icosxsinhy is entire since
u v

ux=cosxcoshy=vy and u, =sinxsinhy =-v,.

oy g ey .y . .
— — — n P
f(z)=esinx—ie” cosx =¢’sinx+i(—e ” cosx) is entire since

u v

— oY - — Yo} __
u,=e’cosx=v, and u,=-e’sinx=-v,_.

f@)=(z>-2)e™*¢™” is entire since it is the product of the entire functions

g(z)=2z-2 and h(z)=e*e™” =e*(cosy—isiny)=e * cosy+i(—e " siny).
| S — ;_1_._../

u
The function g is entire since it is a polynomial, and £ is entire since
—-_—— —X — -_———p % o1 —_——
u,=—e-cosy=v, and u =-e*siny=-v,.

f(z) = xy +iy is nowhere analytic since
-

u,=v,=y=1 and u,=-v,=x=0,

which means that the Cauchy-Riemann equations hold only at the point z = (0,1) =i.

f(z)=e’¢” =¢e’(cosx +isinx) = ¢’ cosx + ie” sinx is nowhere analytic since
u v
u, =v, = —e’sinx=¢’sinx = 2¢’sinx=0= sinx =0
and
u,=-v, => e’ cosx =—e’cosx => 2¢’ cosx =0 = cosx =0.

More precisely, the roots of the equation sinx=0 are nzx (n=0,x1,£2,...), and
cosnm =(-1)" #0. Consequently, the Cauchy-Riemann equations are not satisfied
anywhere.

Suppose that a function f(z) = u(x,y)+iv(x,y) is analytic and real-valued in a domain
D. Since f(z) is real-valued, it has the form f(z) =u(x,y)+i0. The Cauchy-Riemann
equations u, =Vv,,u, =—v, thus become u, =0,u, =0; and this means that u(x,y) =a,
where a is a (real) constant. (See the proof of the theorem in Sec. 23.) Evidently, then,
f(z)=a. Thatis, f is constantin D,
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(b)

Suppose that a function f is analytic in a domain D and that its modulus |f(z)] is
constant there. Write |f(z)|=c, where ¢ is a (real) constant. If ¢ =0, we see that
f(z) =0 throughout D. If, on the other hand, ¢ # 0, write f(z)f(z) =c’, or

f@=

c
f@)

Since f(z) is analytic and never zero in D, the conjugate f(z) must be analytic in D.

Example 3 in Sec. 24 then tells us that f(z) must be constant in D.

S AY

SECTION?25 . Y |

1. (a)

(®)

(c)

It is straightforward to show that u, +u,, =0 when u(x,y)=2x(1-y). To find a
harmonic conjugate v(x,y), we start with u, (x,y)=2~2y. Now

u, =v,=v, =2-2y=>v(x,y) =2y -y’ + ¢(x).

Then

u,=-v, = -2x==¢(x) = ¢'(x) =2x = ¢(x) = 2 +c.

Consequently,
v(x,y)=2y-y* +(x* +c)=x* -y’ +2y+c.

It is straightforward to show that u,, +u,, =0 when u(x,y) =2x - x’ +3xy’. Tofinda
harmonic conjugate v(x,y), we start with u_(x,y) =2 - 3x? +3y>. Now

u, =V, DV, =2-3x? -*-3y2 = v(x,y)=2y—3x2y+y3+¢(x).

Then
u,=-v, = 6xy=6xy—¢'(x) = ¢’(x) =0=> ¢(x) =c.

Consequently,

v(x,y)=2y-3x*y+y* +c.

It is straightforward to show that u, +u, =0 when u(x,y)=sinhxsiny. To find a
harmonic conjugate v(x,y), we start with u (x,y) =coshxsiny. Now )

u, =v, = v, = coshxsiny = v(x,y) = —coshxcosy + ¢(x).

Then
u, =-v, = sinhxcosy =sinhxcosy - ¢’(x) = ¢’(x) =0 = ¢(x) =c.

Consequently,
v(x,y) =—coshxcosy+c.
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(d) 1t is straightforward to show that u_ +u, =0 when u(x,y)= 2_{ . To find a
X Ty

harmonic conjugate v(x,y), we start with «, (x,y) = —-(-—22:)’—2)2. Now
x“+y
u,=v,=>v ——ﬁy—ﬁv(x y)———x—+¢(x)
x y y (x2 + y2 )2 4 x2 +y2 .
Then
x =y X% -y
u,=-v, = = -9’ (x)= ¢’'(x)=0= ¢(x)=c.
y (x2+y2)2 (x2+y2)2
Consequently,
v(x,y) = X _+c
'y 2y

Suppose that v and V are harmonic conjugates of u in a domain D. This means that
u,=v,, u,=-v, and u, =V, u =-V,.
-V,=-u,+u,=0 and w,=v -V =u —u =0.
Hence w(x,y)=c, where c is a (real) constant (compare the proof of the theorem in Sec.
23). Thatis, v(x,y)—-V(x,y)=c.
Suppose that # and v are harmonic conjugates of each other in a domain D. Then
u,=v,, u,=-v, and v,=u, v, =-u,.
It follows readily from these equations that

u,=0, u,=0 and v,=0, v, =0.

Consequently, u(x,y) and v(x,y) must be constant throughout D (compare the proof of the
theorem in Sec. 23).

The Cauchy-Riemann equations in polar coordinates are
ru,=v, and u,=-rv,.
Now

U, =vy=>ru,+u =v,
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and
Uy = =TV, =D Uyy =—TV,,.
Thus
rU U gy =TV —TV,;

and, since v,, =v,,, we have

r’u, +ru, +ug =0,

which is the polar form of Laplace's equation. To show that v satisfies the same equation,
we observe that '

1 1 1
Ug =—T1V, =V, =—-;u9 =V, =72-u,, —7u9,

and
TU, =Vy = Vgg =Tlh,g.
Since u,, = u,,, then,

2
IV 41V, + Vg = Uy —TUg —Ug +TU, =0.

If u(r,8) =Inr, then

rPu, +ru, +ug = r2(—-17)+r(l)+0 =0.

r r

This tells us that the function u = Inr is harmonic in the domain r>0,0<6<27. Now it
follows from the Cauchy-Riemann equation ru, =v, and the derivative u, = H that v, =1;
r

thus v(r,0) = 8+ ¢(r), where ¢(r) is at present an arbitrary differentiable function of r.
The other Cauchy-Riemann equation u, =—rv, then becomes 0=-r¢’(r). That is,
¢’(r)=0; and we see that @(r)=c, where c is an arbitrary (real) constant. Hence
v(r,0) = 0 + ¢ is a harmonic conjugate of u(r,6) =Inr.
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Chapter 3
SECTION 28

1. (a) exp(2+3mi)=e’exp(x3mi)=—e’, since exp(+3mi)=-1.

(b) exp 2 -;m = (exp l-)(expln—) =+e (cos-;i +isin g—)

2\
=%(71§.-+i—%)=\/§(1+i)-

(c) exp(z+ mi)=(expz)(expmi)=—expz, since expmi=-1.
3. First write
exp(Z) =exp(x —iy) =e’¢™ =¢*cosy —ie*siny,
where z = x+iy. This tells us that exp(Z) = u(x,y)+iv(x,y), where
u(x,y)=e*cosy and v(x,y)=-—e"siny.

Suppose that the Cauchy-Riemann equations u, =v, and u, =—v, are satisfied at some

point z=x+iy. It is easy to see that, for the functions u and v here, these equations become

cos y =0 and sin y = 0. But there is no value of y satisfying this pair of equations. We may
conclude that, since the Cauchy-Riemann equations fail to be satisfied anywhere, the

function exp(Z) is not analytic anywhere.

4. The function exp(z®) is entire since it is a composition of the entire functions z* and expz;
and the chain rule for derivatives tells us that

d
d—zexp(zz) =exp(zz)7j;z2 =2zexp(<*).

Alternatively, one can show that exp(zz) is entire by writing

exp(zz) = exp[(x + iy)Z] = c::xp(x2 - yz)exp(iny)
= exp(x” — y*)cos(2xy) +iexp(x* — y*)sin(2xy)

u v

and using the Cauchy-Riemann equations. To be specific,

u, =2xexp(x’ - yz)cos(2xy) ~2yexp(x® - yz)sin(ny) =v,
and
u,==2y exp(x2 - yz)cos(2xy) -2x exp(x2 - yz)sin(ny) =-v,.
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Furthermore,

iexp(zz) =u +iv,=2(x+ iy)[exp(x2 - yz)cos(2xy) +i e:xp(x2 - yz)sin(ny)]

dz
=2z exp(z2 )
We first write
lexp(2z +i)| = |exp[2x +i(2y + 1)]| = **
and
Iexp(iz2 )l = |exp[—-2xy +i(x? -y )]I =27,
Then, since
Iexp(2z +i) +exp(iz® )I <lexp(2z+i)|+ Iexp(iz2 )l ,
it follows that
lexp(2z + i) + exp(iz®)| < € + ¢,
First write
lexp(z*)| = |expl(x + iy)*]| =|exp(x* — y*) +i2xy| = exp(x* - y*)
and

exp(lzI*) = exp(x? + y*).

Since x* —y* <x*+y?, it is clear that exp(x* — y*) < exp(x* + y*). Hence it follows from
the above that

lexp(z*)] < exp(1zi®).

To prove that Iexp(—22)| <1 Rez>0, write
lexp(—22)| = [exp(~2.x —i2y)| = exp(~2x).

It is then clear that the statement to be proved is the same as exp(—2x) <1<¢> x >0, which is
obvious from the graph of the exponential function in calculus.




(a)

)

(c)

Write e* =—2 as e*e” =2¢”. This tells us that
=2 and y=m+2nm
That s,
x=In2 and y=Qn+D~x
Hence
z=In2+Q2n+Drmi ‘
Write e* =1++/3i as e*¢” =2¢"™?, from which we see that

e =2 and y=-;£+2nn'
That is,
1
x=In2 and y=(2n+§)ﬂ'

Consequently,

z=ln2+(2n+%)m'

Write exp(2z—1)=1 as e**'¢"” =1¢" and note how it follows that

e =1 and 2y=0+2nn

Evidently, then,

x=-;- and y=nnxn

and this means that

1 :
Z=—+nm
2 n

9. This problem is actually to find all roots of the equation

exp(iz) = exp(iZ).

(n=0,£1,£2,...

(n=0,x1,%2,...

(n=0,£1,%2,...

(n=0,£L,%2,...

(n=0,£1,%2,...

(n=0,£1,%2,...

(n=0,£1,%2,...

(n=0,£1,%2,...

(n=0,£1,%2,...

37

);
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10.

12.

13.

To do this, set z =x + iy and rewrite the equation as

=y ,-ix __ y ix

e’e™™ =ee”.
Now, according to the statement in italics at the beginning of Sec.8 in the text,
e?’=¢ and -—-x=x+2nn,
where n may have any one of the values n=0,+1,+2,.... Thus
y=0 and x=nmw (n=0,%£1,£2,...).
The roots of the original equation are, therefore,

Z=nw (n=0,%£1,%£2,..).

(a) Suppose that e* is real. Since e =e"cosy+ie*siny, this means that e*siny=0.
Moreover, since e* is never zero, siny =0. Consequently, y=nnx (n=0,£1,%+2,...);
thatis, Imz=nzw (n=0,21,£2,...).

(b) On the other hand, suppose that e* is pure imaginary. It follows that cosy =0, or that
y =§+mz (n=0,%1,+2,...). Thatis, Imz= §+mz (n=0,+L%2,..).

We start by writing

Because Re(e®) =e*cosy, it follows that

Re(e'?) =ex L lcos| =2 |=ex X leos| =—2—|.
( ) p(x2+y2 x2+y2 p x2+y2 x2+y2

Since e'* is analytic in every domain that does not contain the origin, Theorem 1 in Sec. 25
ensures that Re(e'’*) is harmonic in such a domain.

If f(z)=u(x,y)+iv(x,y) is analytic in some domain D, then
e’® =" cosv(x,y) +ie" ™ sinv(x, y).

Since e’/ is a composition of functions that are analytic in D, it follows from Theorem 1 in
Sec. 25 that its component functions

U(x,y) = €““ cosv(x,y), V(x,y)=e"""sinv(x,y)
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are harmonic in D. Moreover, by Theorem 2 in Sec. 25, V(x,y) is a harmonic conjugate of
U(x,y).
14. The problem here is to establish the identity
(expz)” = exp(nz) (n=0,2L%2,...).
(a) To show that it is true when n=0,1,2,..., we use mathematical induction. It is
obviously true when n=0. Suppose that it is true when n=m, where m is any
nonnegative integer. Then

(expz)™"' = (expz)™(expz) = exp(mz)expz = exp(mz + z) = exp[(m + 1)z].

(b) Suppose now that n is a negative integer (n=-1,~2,...), and write m=-n= L2,.... In
view of part (a),

(exp2)” =( 1 )"’ -t !t __1 = exp(nz).
expz (expz)™ exp(mz) exp(-nz)

SECTION 30
. —_— . . T,
1. (a) Log(—ei)=Inl—eil+iArg(-ei)=Ine— El =1- —2-1.

.
—l.

) Log(l—D =1nilil+iArg(l—i)=InvZ - Zi =-;—1n2 -

2. (a) loge=lne+i(0+2nm)=1+2nnm (n=0,1£1,£2,...).

(b) logi=lnl+i(-§-+2nn)=(2n+%)m’ (n=0,£1%2,..).

(c) log(—1+w/§i)=ln2+i(2—;-+2n7t)=ln2+2(n+%)m’ (n=0,£1%2,...).

3. (a) Observe that
Log(1+i)® =Log(2i)=In2+ -’Zfi
and

2Log(1+i) =2(1n«/5 +i§-)=ln2+%i.

Log(1+i)* = 2Log(1 +i).
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)

(a)

(b)

(a)

On the other hand,
2 . .
Log(~1+i)" =Log(-2i)=1n2 —El

and

2Log(-1+i) = 2(1m/5 +i%”) = ln2+37ﬂi.

Hence

Log(-1+i)* # 2Log(-1+1i).

Consider the branch
logz=Inr+i6 (r>0,%<9<%7£).

Since
log(i®)=log(-1)=Inl+ir=m and 2logi= 2(1n1+i—;’-)= i,
we find that log(i®) = 2logi when this branch of logz is taken.

Now consider the branch
logz=Inr+i@ (r>0,§4£<9<l{Tﬂ).

Here

log(i*)=log(-1) =Inl+ix=m and 2logi = 2(ln1+i52—ﬂ)= Smi.

Hence, for this particular branch, log(i®) # 2logi.

The two values of i/? are ¢™* and e"*™*. Observe that

log(e™*) = 1n1+i(%+ 2nn’)= (2n+i-)m' (n=0,11+2,...)

and
isx/a (5m 11 .
log(e )=1n1+t(T+2mr)=[(2n+1)+z]m (n=0,£1,%+2,...).

Combining these two sets of values, we find that

log(i"?) = (n +%)m’ (n=0,£1,%£2,...).
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On the other hand,

1. . 1 N 1
~logi=—|Inl+il —+2 = — |mi =0,+1,%
5 ogi z[n 1(2 nﬂ')] (n+4)m (n=0,x1,%£2,...).

Thus the set of values of log(i"?) is the same as the set of values of %logi, and we

may write
log(i"?) = %logi.
() Note that
log(i*) =log(~=1) = Inl+ (m + 2nx)i = 2n+ )7i (n=0,t1,%£2,...)
but that

2logi = 2[1nl+i(§-+2nn’)} = (4n+ )i (n=0,£1,%2,.). -

Evidently, then, the set of values of log(iz) is not the same as the set of values of
2logi. Thatis,

log(i®) # 2logi.

7. To solve the equation logz =in/2, write exp(logz) =exp(iw/2), or z=¢™? =i.

10. Since In(x* + y?) is the real component of any (analytic) branch of 2logz, it is harmonic in
every domain that does not contain the origin. This can be verified directly by writing
u(x,y)=In(x* + y*) and showing that u,,(x,y)+u,,(x,y) =0.

) iﬁSECTION 31
1. Suppose that Rez, >0and Rez, >0. Then

z,=rexpi®, and z,=r,expi0,,
where

/4 T T n
-——<0,<— and -—<0O,<—,
) 2 72
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The fact that -7 < ©, + 0, < & enables us to write
Log(zz,) = Log[(r;r,) exp i(©, +©,)] = In(r,r,) +i(0, + O©,)
=(Inr, +i0,) +(Inr, +i0,) = Log(r, exp i®,) + Log(r, exp i6,)

=Logz, +Logz,.

3. We are asked to show in two different ways that

log(j—‘) =logz, —logz, (z, #0,2, #0).
2

(a) One way is to refer to the relation arg(ﬁ) =argz, —argz, in Sec. 7 and write

Z

log(—él-) =In—=
Z z

2

+iarg(i) = (Inlz | +iargz) — (Inlz,l+iarg z,) = logz, — logz,.
2

(b) Another way is to first show that log(-l—-) =-logz (z#0). To do this, we write z= re®
b4

and then

log(l) = log(-i—e'“’) = ln(l) +i(—-0+2nm)=~[Inr +i(6 - 2nm)] = -logz,
z r

where n=0,%1,%2,.... This enables us to use the relation

log(zz,) = logz, +1ogz,

and write

1
10g(_z.1_) = 108(21 —) =logz + log(——l-) =logz, —logz,.
ZZ zz ZZ
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5. The problem here is to verify that
n __ 1
" =exp ;logz (n=-1,-2,...),
given that it is valid when n=1,2,.... To do this, we put m=—n, where n is a negative

integer. Then, since m is a positive integer, we may use the relations z' =1/z and
1/ e* =e* to write

-1
zl/n = (zl/m )-1 - [e)(p(l_logz)]
m

- [ 102)] -~ L1ge) s i)

I~

SECTION 32

1. Ineachpartbelow, n=0,£1,%2,....

(@) (+i) =explilog(l+i)]= exp{i [lm/f + i(§+ Znn)]}

= exp[%ln 2- (% + 2n7t)] = exp(—% - 2nn)exp(%ln2).

%nce n takes on all integral values, the term —2nx here can be replaced by +2n.
us

5 moxef Z i
(1+i)' = exp( n + 2nn’)exp(2 ln2).
B ()" = exp[‘;l; log(—l)] = exp{%[ln 1+i(z+ 2n7r]} =exp[(2n+1)i].

2. (a) P.V.i =exp(iLogi)= cxp[i (lnl +i g)] = exp(—- -;—’-)

(b) PV. [g(—l - ﬁi)]m = CXp{3mLog[§(_1 - @)]} =,exp[ M(me _; %,5)]

= exp(2n*)exp(i3m) = —exp(27?).




(c) P.V.(1-i)* =exp[d4iLog(1-i)]= exp{4i(ln«f§ -i %)] = %'t V?
= e"[cos(41nv/2) +isin(41n+2)] = e”[cos(21n2) + isin(2In2)].

Since —1++/3i =2¢>™*, we may write
-\3/2 3 . 3 {2r
(~1++3)"" =exp| log(~1+V3i) | = exp{ = In2-+i Lt onn

= exp[In(2**) + (3n + 1) 7i] = 2+/2 exp[(3n + D) 7],

where n=0,%t1,12,.... Observe that if n is even, then 3n+1 is odd; and so
exp[(3n+1)7mi]=-1. On the other hand, if n is odd, 3n+1 is even; and this means that

expl(3n+1)mil=1. So only two distinct values of (=1++/3i)*? arise. Specifically,

(143D =+242.

We consider here any nonzero complex number z, in the exponential form z, = r,exp i©®,,
. I . .0

where - < ©, < 7. According to Sec. 8, the principal value of z'" is g/r, cxp(t——i ; and,
n

according to Sec. 32, that value is
1 1 . © ©
exp| —Logz |=exp| —(Inr, +i0,) | = exp(In —2 | = — |.
xp(n gz) P[n( o +i 0)] exp(Ing/7, )exp(z - ) 2 exp(z - )
These two expressions are evidently the same.

Observe that when ¢ =a+bi is any fixed complex number, where c¢# 0,£1,%2,..., the
power i° can be written as

i =exp(clogi) = exp{(a + bi)[lnl + z(-g + 2nn'):|}

= exp[—b(% + Znﬂ') + ia(-;E + 2n7t)] | (n=0,x1,12,...).

lil= exp[—b(% + 2n71:)] (n=0,+142,..),

and it is clear that [l is multiple-valued unless b = 0, or c is real. Note that the restriction
c¢#0,£1,£2,... ensures that i° is multiple-valued even when b = 0.




SECTION 33

1. The desired derivatives can be found by writing

4 g (£ L e d
dz dz 2i 2i\dz dz

iz —iz
s, .-y € +e
=—-_(te’z+ze “)= =C08Zz
i
and
d de®+e™) 1(d ., d _,
—C0s$Z = — =—| Z ot 3+ L,
dz dz 2 2\dz dz
1,. i s =i i eiz—e-iz
=—{je% —je™" "_-=———-_—=—sinz_
2( ) i 2i
2. From the expressions
. elz_ iz eiz e-rz
sinz = - and cosz= ,
i
we see that
iz —-iz iz —-iz
.. et +e et —e ;
cosz+isinz= 5 + 5 =e".

3. Equation (4), Sec. 33 is
2sinz, cosz, =sin(z, +z,)+sin(z, ~ z,).
Interchanging z; and z, here and using the fact that sin z is an odd function, we have
2c¢o0sz, sinz, =sin(z, + z,) —sin(z, — z,).

Addition of corresponding sides of these two equations now yields

2(sinz cosz, +cosz; sinz,) = 2sin(z; +z,),

sin(z, +2z,) =sinz, cosz, +cosz sinz,.

4. Differentiating each side of equation (5), Sec. 33, with respect to z,, we have

cos(z, +2z,) =c0sz c0sz, —sinz sinz,.

45
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7. (a) From the identity sin?z+cos’z = 1, we have

sin’ z N cos’z 1
cos’z cos’z cos’z

, or l+tan’z=sec’z.

(b) Also,

2 2
sSIN“z  Ccos“z 1
+ =

— — ——, or l+cot’z=csc’z
sinz  sin’z  sin’z

9. From the expression

sinz =sinxcoshy+icosxsinhy,

we find that
Isinz* = sin® xcosh® y + cos® xsinh® y
= sin’ x(1+sinh® y) + (1 — sin” x)sinh® y
=sin’ x +sinh? y.
The expression

cosz =cosxcoshy+isinxsinhy,

on the other hand, tells us that

Icoszl* = cos’ xcosh® y +sin” xsinh® y
= cos’ x(1+sinh® y) + (1 - cos” x)sinh” y

=cos’ x +sinh’ y.

10. Since sinh®y is never negative, it follows from Exercise 9 that

(a) Isinz® >sin*x, or Isinzl =lsinxl
and that
®) lcoszI*>cos’x, or lcoszl >lcosxl.

11. In this problem we shall use the identities

Isinzl* =sin’ x +sinh?y, lcoszl* = cos® x +sinh? y.
y y
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(a) Observe that
sinh® y =Isin zI” —sin® x < Isin zI*
and
Isinzl® = sin® x + (cosh® y — 1) = cosh? y — (1 —sin® x)

=cosh®y —cos? x < cosh’ y.
Thus
sinh? y <Isinzl?< cosh’y, or Isinhyi<IsinzI< coshy.

(b) On the other hand,

sinh? y =lcoszl* —cos® x <Icoszl
and
Icoszl* = cos? x + (cosh? y — 1) = cosh® y — (1 — cos’ x)

=cosh® y —sin® x < cosh? y.
Hence

sinh® y<Icosz*< cosh’y, or Isinhyl<lcoszl< coshy.

13. By writing f(z) =sinZ = sin(x —iy) =sinxcosh y —icos xsinh y, we have

f(@) =u(x,y)+iv(x,y),
where

u(x,y)=sinxcoshy and v(x,y)=-cosxsinhy.
If the Cauchy-Riemann equations u, = v,, u, = —v, are to hold, it is easy to see that
cosxcoshy=0 and sinxsinhy=0.

Since coshy is never zero, it follows from the first of these equations that cosx = 0; that is,
n . L

x= E-l—mt (n=0=%1,%£2,...). Furthermore, since sinx is nonzero for each of these values

of x, the second equation tells us that sinhy=0, or y=0. Thus the Cauchy-Riemann

equations hold only at the points

z=§+mr (n=0+1,%2,..).

Evidently, then, there is no neighborhood of any point throughout which f is analytic, and
we may conclude that sinZ is not analytic anywhere.
The function f(z) =cosZ = cos(x —iy) = cosxcoshy +isinxsinhy can be written as

f(2) =u(x,y) +iv(x,y),
where
u(x,y)=cosxcoshy and v(x,y)=sinxsinhy.




48

If the Cauchy-Riemann equations u, =v,, u, =-v, hold, then

sinxcoshy=0 and cosxsinhy=0.

The first of these equations tells us that sinx=0, or x=nz(n=0,£1,£2,..). Since
cosnm#0, it follows that sinhy=0, or y=0. Consequently, the Cauchy-Riemann
equations hold only when

z=nmw (n=0%1+2,.).

So there is no neighborhood throughout which f is analytic, and this means that cosZ is
nowhere analytic.

16. (a)

(b)

Use expression (12), Sec. 33, to write

cos(iz) = cos(—y +ix) = cos ycosh x —isin ysinh x
and

cos(iz) = cos(y +ix) = cos ycosh x —isin ysinh x.

This shows that cos(iz) = cos(iZ) for all z.

Use expression (11), Sec. 33, to write

sin(iz) = sin(—y + ix) = —sin ycosh x —icos ysinh x
and
sin(iZ) = sin(y + ix) = sin ycosh x + icos ysinh x.

Evidently, then, the equation sin(iz) = sin(iZ) is equivalent to the pair of equations

sinycoshx =0, cosysinhx=0.

Since coshx is never zero, the first of these equations tells us that siny=0.
Consequently, y=nn (n=0,£1,£2,...). Since cosnm=(-1)"#0, the second
equation tells us that sinhx=0, or that x=0. So we may conclude that
sin(iz) = sin(iZ) if and only if z=0+inzr=nxi (n=0,£1,%£2,...).

17. Rewriting the equation sinz =cosh4 as sinxcosh y+icosxsinhy = cosh4, we see that we

need to solve the pair of equations

sinxcoshy =cosh4, cosxsinhy=0
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forxand y. If y =0, the first equation becomes sinx = cosh 4, which cannot be satisfied by
any x since sinx<1 and cosh4>1. So y#0, and the second equation requires that
cosx =0. Thus

x=g+nn‘ (n=0%1+2,..).

Since

sin(g + nn’) =(-1)",

the first equation then becomes (—1)" coshy = cosh 4, which cannot hold when n is odd. If n
is even, it follows that y =+4. Finally, then, the roots of sinz =cosh4 are

z=(§+2m)ﬂ:4i (n=0+1%2,.).

The problem here is to find all roots of the equation cosz=2. We start by writing that
equation as cosxcoshy—isinxsinhy =2. Thus we need to solve the pair of equations

cosxcoshy=2, sinxsinhy=0

forx and y. We note that y#0 since cosx =2 if y=0, and that is impossible. So the
second in the pair of equations to be solved tells us that sinx=0, or that x=nnx
(n=0x£1,%2,...). The first equation then tells us that (~1)" coshy =2; and, since coshy is
always positive, n must be even. Thatis, x =2nm (n=0%1,%2,...). But this means that

coshy =2, or y=cosh™2. Consequently, the roots of the given equation are
z=2nmw+icosh™2 (n=0£1,%2,...).

To express cosh™2, which has two values, in a different way, we begin with
y=cosh™2,0r coshy =2. This tells us that e’ +¢™” = 4; and, rewriting this as

@)Y -4()+1=0,

we may apply the quadratic formula to obtain e’ =2++/3, or y =In(2++/3). Finally, with
the observation that

ln(Z—ﬁ)=ln[(2—1/§)(2+43)]=ln( 1 ):-m(2+J§),

2+43 2+43

we arrive at this alternative form of the roots:

z=2nw+iln2+3) (n=0+£1,42,..).
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SECTION 34

1. To find the derivatives of sinhz and coshz, we write

z_ -2
isinhz=i(e 2e )=

z -2
é+e
=coshz

1d, , . _
2dz(e e )=

and

dfet+e 1d _ et —e?
—cosh = — T e — Z + z - -— 1
z 7 ( > ) > & (e*+e7%) 2 sinhz.

3. Identity (7), Sec. 33, is sin’ z+cos’z=1. Replacing z by iz here and using the identities
sin(iz) =isinhz and cos(iz) = coshz,
we find that i*sinh’ z +cosh®z=1, or
cosh’z—sinh’z =1.

Identity (6), Sec. 33, is cos(z, +z,) = cosz, cosz, —sinz, sinz,. Replacing z, by iz, and
z, by iz, here, we have cosli(z +z,)] = cos(iz,)cos(iz,) - sin(iz,)sin(iz,). The same
identities that were used just above then lead to

cosh(z, +z,) = coshz, coshz, +sinhz sinhz,.

6. We wish to show that

Isinh xI<lcosh zZI< cosh x

in two different ways.

(a) Identity (12), Sec. 34, is Icoshzl>=sinh® x + cos’ y. Thus Icoshzl®—sinh®x > 0; and
this tells us that sinh®x <Icoshzl’, orlsinhxi<Icoshzl. On the other hand, since
Icoshzl® = (cosh® x — 1) + cos® y = cosh? x — (1 — cos y) = cosh® x —sin® y, we know that
IcoshzI> —cosh® x < 0. Consequently, Icoshzl® < cosh?® x, or IcoshzI< coshx.

(b) Exercise 11(b), Sec. 33, tells us that Isinh yl<IcoszI< cosh y. Replacing z by iz here and
recalling that cosiz = coshz and iz =~y +ix, we obtain the desired inequalities.

7. (a) Observe that

e —e %™ —et4et et —et )
= = = = —sinhz.

2 2 2 2

z+m - e-(z+m')

sinh(z+ mi) =
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(b) Also,
2+ =(z+m) z,m -z ,-m 7 -2 z -2z
cosh(z+m')=e +2e =ee +2e e - e 2e =_e -;e =—coshz.
(c) From parts (a) and (b), we find that

sinh(z+ i) _ —sinhz _ sinhz _

tanh(z + i) = —= =
cosh(z+ mi) —coshz coshz

The zeros of the hyperbolic tangent function

sinh
tanhz = z
coshz

are the same as the zeros of sinhz, which are z=nni (n=0,£1,£2,...). The singularities of

tanhz are the zeros of coshz, or z=(—§-+nﬂ)i (n=0,£1,%2,...).

15. (a)

(b)

Observe that, since sinhz =i can be written as sinhxcosy+icoshxsiny =i, we need
to solve the pair of equations

sinhxcosy=0, coshxsiny=1

If x=0, the second of these equations becomes siny=1; and so y= §+ 2nw

(n=0,%£1,%2,...). Hence
1) .
z=(2n+-2-)m (n=0,£1,%£2,...).

. . . 3
If x#0, the first equation requires that cosy=0, or y=;+n7r

(n=0,t1,%2,...). The second then becomes (—1)" coshx =1. But there is no nonzero
value of x satisfying this equation, and we have no additional roots of sinhz =1i.

Rewriting coshz = % as coshxcosy+isinhxsiny = -;—, we see that x and y must satisfy

the pair of equations

coshxcosy = % , sinhxsiny=0.
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If x=0, the second equation is satisfied and the first equation becomes

cosy = % Thus y =cos™ —;— = i§+ 2nw (n=0,%1,%2,...), and this means that

Z=(2n:t-:1;)m' (n=0,£1,£2,...).

If x # 0, the second equation tells us that y = nz (n=0,x1,%2,...). The first then

becomes (—1)" coshx = % But this equation in x has no solution since coshx =1 for

all x. Thus no additional roots of coshz = % are obtained.

16. Let us rewrite coshz =-2 as coshxcosy+isinhxsiny =-2. The problem is evidently to
solve the pair of equations :

coshxcosy=-2, sinhxsiny=0.

If x =0, the second equation is satisfied and the first reduces to cosy = —2. Since there
is no y satisfying this equation, no roots of coshz =-2 arise.
If x#0, we find from the second equation that siny=0, or y=nm (n=0,£1,£2,...).

Since cosnm = (-1)", it follows from the first equation that (~1)"coshx =-2. But this
equation can hold only when n is odd, in which case x = cosh™ 2. Consequently,

z=cosh™ 2+ Q2n+1)7i (n=0,£1,%2,...).

Recalling from the solution of Exercise 18, Sec 33, that cosh™2 =+In(2 +4/3 ), we note that
these roots can also be written as

z=tInQ2+3)+(2n+D7i (n=0,%£1,+2,...).
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Chapter 4

SECTION 37

2 2 2 2
1 N, i1 gat 1 1
2. (a) !(;—t)dt—_!(;;—1)&—21!—;—-—5-2zln2——5-zln4,

n/6 i2¢ 16 .

: 1 n, .. 7 3.

gy = £ =—[cos—+tsm—-—l]=—+—;

) !" [ 2i |, 2l 3 03 43

(c) Since le**1=e**, we find that

oo b —zp )=b
Je""dt =lim | e ¥dt = lim [e } = l lim(l - e"") =— whenRez >0.
0 b—yoo b—yoe -z V4 bedeo

N | -

=0

3. The problem here is to verify that

I 0 when m#n,
je“oe'"ede ={ mEn
0 2n when m=n.
To do this, we write
2” . . 2” .
I = J‘emae—made - Jez(m-n)edo
0 1]

and observe that when m # n,

i(m-~n 2z
I=[.e( )} ] - 1 - 1 =O.
i(m-n)}, i(m-n) i(m-n)

When m =n, I becomes

2z
I=[do=2m;
0
and the verification is complete.
4. First of all,
je‘“""dx=Ie"cosxdx+ije‘sinxdx.
0 0 0
But also,
r U+ 7* x it _ T _ p .
J‘e(u.)xdx:[e ] _ee -1= e '1_1 t.=__1+e +il+e ‘
0 1+i |, I+i I+i 1-i 2 2
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Equating the real parts and then the imaginary parts of these two expressions, we find that

T n
and je" sinx dx =

0

1+e 1+¢"

T
Je‘ cosx dx =—
0

Consider the function w(t)=¢" and observe that

2n 2r it 2T 1 1
Iw(t)dt = J e'dt = {e—:l =-—==0,
0 i

0 0

Since |w(c)(2m - 0)| =Iei‘|27t =27 for every real number c, it is clear that there is no number
c in the interval 0 <t < 27 such that

27
j w(t)dt =w(c)(27 - 0).
0

(a) %llppose that w() is even. It is straightforward to show that () and v(#) must be even.
us

a

fw(t)d: = j u(t)dt +ij.v(t)dt =2Iu(t)dt + 2i} v(t)dt
-a a 0

0

= 2[} u(t)de + i} v(t)dt} = 2} w(t)dt.
0 0 0

(b) Suppose, on the other hand, that w(#) is odd. It follows that u(¢) and W(¢) are odd, and so

J"w(t)dt =ju(t)dt +i }v(t)dt =0+i0=0.

-a

Consider the functions

v 4 n

P,,(x)=—7l-r-‘f(x+i\/. 1-x2 cose) dé (n=0,12,.)),

0

where —1< x <1. Since

Ix+i\/1—x2 cos6I=\/x2 +(1-x*)cos’ 0 < \/x2 +(1-x¥)=1,

it follows that
[P, 0] s =[x+ V1= cos o ap < 1 [dp =1
T 0 r 0
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SECTION 38

1. (a) Start by writing

I= Tw(—t)dt =Tu(—t)dt + i—fv(-—t)dt.

-b

The substitution 7 =-¢ in each of these two integrals on the right then yields

I= —} u(t)dr - if v(1)dt = ju('t)d’t + ij' v(7)dt = Jb'w(r)dr.
b b a a a

That is,
-a b
j w(—t)dt = j w(1)dT.
-b a .

(b) Start with

I= }w(t)dt = }u(t)dt-# i} v(t)dt

a

and then make the substitution ¢ = ¢(7) in each of the integrals on the right. The result
is

B B 8
I= [ul ()¢ (D)dr+i[Wp(DI' (Ddz = [wig(D9'(D)dr.

That is,

b B
[wdt=[wip(2)¢(2)de.

3. The slope of the line through the points (¢,a) and (B,b) in the ¢ plane is

b-a
B-

ms=

R

So the equation of that line is
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Solving this equation for ¢, one can rewrite it as

t_b—aﬂ_aﬁ-ba
-a -
Since t = ¢(7), then,
b-a _ af-bax
T)= T+
o= g+ L

If Z(t) = z[¢(7)], where z(t) = x(¢) +iy(t) and ¢ = ¢(7), then

Z(7) = x[o(D)+ iy o(D)].

Hence

Z(1)= c—;’;xw(r)] + i%yw(m = X[P(D)]¢"(2) + iy [6(D¢(7)

={xTo(D]+iy[o(DN¢’(7) = '[¢(D))¢' (7).

If w(t) = flz(¢)] and f(2) =u(x,y)+iv(x,y), z(t) = x(t) +iy(t), we have
w(t) = u[x(2), ()] + iv[x(2), y(2)].

The chain rule tells us that

w_ o, , v _ ,
=ux’+uy and E—v,x +v,y,

dr

and so
W) =ux +uy)+i(v,x" +v,y").

In view of the Cauchy-Riemann equations u, =v, and u, =-v,, then,
W)= (X" =9, ) +Hi(vx + 1Y) = (u, +iv, )& +iy').
That is,
w(t) = {u, [x(8), y(O)1 + v, [x(e), y(OR[x () + iy" (1)) = f '[Z(tjlz'(t)

when t=¢,.




SECTION 40

1. (a) Let C be the semicircle z =2¢" (0< 8 < 7), shown below.

y

1N

> Al

2 0 2 x

Then
z+2
¢ z

= j(1+ )dz j(1+2—35)2ie‘“d9=2ij(e‘9+1)d9
0
i0
=2i[f;-+e] =2i(i + w+i) = -4+ 27i.
0

(b) Now let C be the semicircle z =2¢" (7 < 0 <27x) just below.

Y
-2 . 2

NP

This is the same as part (a), except for the limits of integration. Thus

i9 =
J‘CZ+2dz 21[ +0:] =2i(_i+2n_i—ﬂ)=4+2ﬂi-

T

(¢) Finally, let C denote the entire circle z=2¢ (0< 0<2x). In this case,

E.i.z.dz
¢ z

~ the value here being the sum of the values of the integrals in parts (a) and (b).

2. (a) Thearcis C:z=1+¢€® (#<0<2m). Then

26 2%
[ (z=Ddz= j(1+e" 1)ze'9de—zj ”"de—;[ u}

2i

n r

=%(€“” xlz) (1 1) 0.

57
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(b) Here C:z=x(0<x<2). Then

2

2 x2
_[C(z—l)dz =£(x—1)dx =[?—x:, =0,

0

3. In this problem, the path Cis the sum of the paths C,, C,, C;, and C, that are shown below.

The function to be integrated around the closed path C is f(z) = me™. We observe that
C=C +C,+C,+C, and find the values of the integrals along the individual legs of the
square C.

(i) Since C,is z=x(0<x<1),

1
nZ — wx — o _
., me dz—n{e dx=e" -1
(i) Since C,is z=1+iy(0<y<1),
1 . ‘ .
jcz rne"dz=m f " Vidy = " i f e dy=2e".
0 0
(iii) Since Gy is z=(1-x)+i(0<x<1),
- 1 o l
jc ne™dz = 1[N~ 1)dx = 7e” fede=e-1.
3 A 0
(iv) Since Cyis z=i(1-y) (0< y<1),
1 . 1
.. n.em’.'dz = ”J.e-ﬂ(l-)')l (__i)dy = Jn-J'em'ydy =-2.
0 0

Finally, then, since
jc ne™dz = fq me™dz + jc, me™dz + J‘C’ ne™dz + J'C‘ me™dz,

we find that
jc e dz = 4(e” ~1).
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4. The path C is the sum of the paths

Ciz=x+ix’(-1<x<0) and C,:z=x+ix*(0<x<1).
Using
f@=1onC, and f(z)=4y=4x’onC,,

we have
0 1
[ f@dz=[_ f@)dz+] frdz= { 1(1+i3x)dx + ! 4x*(1+i3x%)dx
0 0 1 1
= jdx+3ijx2dx+4jx3dx+12ijx5dx
-1 -1 0 0

=[x, +i[]) +[x*] +20[x°], = 14i+142i= 2431

The contour C has some parametric representation z = z(t) (a <t < b), where z(a) =z, and
2(b)=2z,. Then

b
jcdz = jz’(t)dt =[2(8)], =2(b) - 2(a) =2, - 2.

To integrate the branch

771 = pl-1+Dlopz (z1>0,0<argz<27)

around the circle C:z=¢" (0< 0<2n), write

2r 2r 2n
J‘C Z M dz = J‘C g-l+Dlogz dz = J‘e(-1+i)(1n1+ia) ie®d0 = ije"ie_a e°d0 = ije_ade — i(l _ e’“),
0 0 [

Let C be the positively oriented circle lzZl=1, with parametric representation
z=¢” (0<0<2rx), and let m and n be integers. Then

2z

2r
J‘C "7"dz = J( eiB )m (e_ia ),, if_ig d0=i J‘ ei(m+l)0 e-x‘no d6.
0

0
But we know from Exercise 3, Sec. 37, that

e gg =

2x 0 when m#n,
27 when m=n.

0
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Consequently,

mn 0 when m+1#n,
_[ "7"dz = .
27i when m+1=n.

8. Note that C is the right-hand half of the circle x*+y*=4. So, on C, x =+/4—y*. This

suggests the parametric representation C:z= \/4 -y* +iy(-2<y<2), to be used here.
With that representation, we have

Iczdz=:|.2(\/4—y2 —iy)(ﬁ?ﬂ)dy
=_jz<—y+y>dy+ij2( f—-—jjyz +W]dy

—ij y2+4_y2

2 4 2
P eyt

—4z[sm ‘- Sm‘l(—l) 41[__( -;E)]

10. Let C, be the circle z=z,+ Re” (-x <0< 7).

(a) jco - _‘fzzo = ]i Ri“‘ Rie®do = ijide =27,

(b) When n=%1,%2,...,

j (z—2z,)" dz = I(Re'e) Rie®d0 = iR" je”'ade

-

R" inm -in _-2Rn
n(e -e ”)—t -

sinnw =0.

11. In this case, where a is any real number other than zero, the same steps as in Exercise 10(b),
with a instead of n, yield the result

[ (-2, dz =i 2 sin(am).
G a
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12. (a) The function f(z) is continuous on a smooth arc C, which has a parametric
representation z = z(t) (a <t <b). Exercise 1(b), Sec. 38, enables us to write

b B
[ flze 0de =[ flz(DI (D¢’ (2)dr,
where ’ ¢

Z(7)=z{¢(7)] | (st p).
But expression (14), Sec 38, tells us that

Z[p(D]¢’(7) =Z'(7);

and so

b B
[ Lzl @)ds =[ fiz(enz’(v)d.

(b) Suppose that C is any contour and that f(z) is piecewise continuous on C. Since C can
be broken up into a finite chain of smooth arcs on which f(z) is continuous, the
identity obtained in part (a) remains valid.

SECTION 41

1. Let C be the arc of the circle |zl=2 shown below.

[~ R

o| 2 x

Without evaluating the integral, let us find an upper bound for

| dz l To do this, we
Cz 1

note that if z is a point on C,
|2 -1)2)1221-1) =|iz -1| =14 - 11=3.

Thus

1
3

1 1
= <
zz—ll 1z2 -1l
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.1 .
Also, the length of C is 2(471:) = 7m. So, taking M =% and L= 7, we find that

.[c z2di 1 E

SML=
3

2. The path Cis as shown in the figure below. The midpoint of C is clearly the closest point on

C to the origin. The distance of that midpoint from the origin is clearly g, the length of C

being V2.

8|
(o]

. 2 . .
Hence if z is any point on C, lzI2 % This means that, for such a point

Consequently, by taking M =4 and L =+/2, we have

d
%

<ML =442,

3. The contour C'is the closed triangular path shown below.

3

-4 o] x

To find an upper bound for ”C(e‘ -z )dzl, we let z be a point on C and observe that

le* —ZISIe®l+1Z1=e" +4/x* + y°.
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But ¢* <1 since x <0, and the distance \/xz + y2 of the point z from the origin is always
less than or equal to 4. Thus le* —zI<5 when z is on C. The length of C is evidently 12.
Hence, by writing M =5 and L = 12, we have

l [ (e~ z)dzl < ML = 60.

Note that if 1zl= R (R> 2), then

1222 -1 <2122 +1=2R* +1

and
Iz* +52° + 41 =12° + 112" + 41 2 |12 -1 |I2* - 4| = (R* ~ 1)(R® - 4).

Thus

272 -1
24 +54+4

__ -1 2R +1
Iz* +52° +41 ~ (R* -1)(R* - 4)

when Izl=R (R>2). Since the length of C, is 7R, then,

£2+_1_
f 27% -1 < _TRQR+)  R\""R)
Gz +52+4 | (R-1(R -4) (1__1_)(1__‘_‘_)’
R? R?

and it is clear that the value of the integral tends to zero as R tends to infinity.

Here C, is the positively oriented circle lzl= R(R>1). If zis a point on Cp, then

Logz _llnR+i9l<lnR+I®I<7c+lnR
z2 RZ - RZ - RZ ’

since ~7# <O < 7. The length of C is, of course, 27R. Consequently, by taking

_n+InR
==

M

and L=27R,
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we see that
J- Lozgz dzlSML:Z (n+1nR)
Cx Z R
Since
lim x+inR = lim -“—R=O,
R—yoo R R—e ]
it follows that
. Logz
}Cl—l;relo J‘Ck Zz dz - O

Let C, be the positively oriented circle zl=p (0 < p <1), shown in the figure below, and
suppose that f(z) is analytic in the disk IzI< 1.

We let z™/? represent any particular branch
7= exp(——l-logz) = exp[—l(ln r+ ie)] = —chp(—i-e—) (r>0,x<0<0+2m
2 2 N 2

of the power function here; and we note that, since f(z) is continuous on the closed
bounded disk |zl <1, there is a nonnegative constant M such that | f(z)I< M for each point z

J 7" @

. To do this, we

in that disk. We are asked to find an upper bound for

observe that if zis a pointon C,,
M
z-l/2f(z) = z-l/2 f(Z) S—.
7 o=l A= I

Since the length of the path C, is 27p, we may conclude that

_ M
22 f(2)dz| < —=2mp = 27MA[p.
Jc, > 7] 1/p

Note that, inasmuch as M is independent of p, it follows that

lim [ 2" f(2)dz =0,
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SECTION 43

1.

The function z" (n = 0,1,2,...) has the antiderivative z"*' / (n+1) everywhere in the finite
plane. Consequently, for any contour C from a point z to a point z,,

2 n+l % n+l n+l
z b4 zZ 1
z"dz: z"dz: =22 __ X - n+l _ n+l ]
Je ! n+1L P iy i { G
in xz }i/2 in2 _ i ;
w g _ € _e —e =l+1_1+l
(a) J;e dz ”:I.- - =
n+2i w+2i '(-’2! 'H') -i (%'ﬂ')
z =2sinl £ =2qinl Fxil=9E —e — i pi®I2 -1 _ -ixl2
(b) {cos(z)dz—hm(z)]o 2sm(2+z)—2 T = z(e e —e e)
=—i(i+ie)=l+e=e+l.
e e e

3 473
(©) J(z—z>’dz=("’;f)-] -1l

Note the function (z—z,)""' (n =%1,%2,...) always has an antiderivative in any domain that
does not contain the point z=z,. So, by the theorem in Sec. 42,

Ico (z—2,)"'dz=0

for any closed contour C, that does not pass through z,.

Let C denote any contour from z=-1to z =1 that, except for its end points, lies above the
real axis. This exercise asks us to evaluate the integral

1
I= fzidz,
2
where z' denotes the principal branch

z' =exp(iLogz) (21>0,— 7w < Argz < 7).
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An antiderivative of this branch cannot be used since the branch is not even defined at
z=-1. But the integrand can be replaced by the branch

Z' =exp(ilogz) (lzl >0, - g— <argz< %75-)

since it agrees with the integrand along C. Using an antiderivative of this new branch, we

can now write

i+l 1 1 " i+ 1 (i+1ylog!

I= —— 1!+ —(—1 i+ _ = [,G+)logl _  (1+1}log(~1)
i-n-l]_l ) (Sl e ¢ ]
L [ Genta1+i0)  +1)(nlein) 1 wimy 1+ ™ 1—i

=—rle - =—(l- )= c—_—
Al [= (- =1

=1+2e 1-i.

SECTION 46

2. The contours C, and C, are as shown in the figure below.

In each of the cases below, the singularities of the integrand lie outside C, or inside C,; and
so the integrand is analytic on the contours and between them. Consequently,

[ f@dz=|_fD)dz.



(b) When f(z)=

67
1 . ..
(a) When f(z)= 3—22:-{, the singularities are the points z = i%i.

z+2

M' the singularities are at z =2n7 (n =0,£1,£2,...).

(c)When f(z)= l—f-e; the singularities are at z = 2nmi (n=0,£1,+2,...).

(a) In order to derive the integration formula in question, we integrate the function e

around the closed rectangular path shown below.

-a+bi a+bi

Since the lower horizontal leg is represented by z=x (—a< x<a), the integrél of
e along that leg is

otdma] e
-a 0

Since the opposite direction of the upper horizontal leg has parametric representation
z=x+bi (-a S x< a), the integral of ™ along the upper leg is

a a a a
- i)? 2 —x? - 2 gt . B2 —? .
—je (48 e = —gb Ie e % Iy = —g® Je * cos2bx dx +ie® Ie * sin 2bx dx,
-a -a -a -a

or simply

—2¢% j e cos2bx dx.
0
Since the right-hand vertical leg is represented by z =a+iy (0 <y < b), the integral of
¢~ along it is
b PRY 2 b 2
I e idy=je* J' e’ ey,
0 0
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Finally, since the opposite direction of the left-hand vertical leg has the representation
z=-a+iy (0<y<b), the integral of ™% along that vertical leg is

b b
~(=a+iy)? s . —a? 2 .
_Ie (~a+iy) ldy="le a J’ey elZGydy.
0 0

According to the Cauchy-Goursat theorem, then,

a a ’ o b b
ZIe"‘zdx —2¢% J‘e"‘2 cos2bxdx +ie™® Je’ze'iz”’dy —ie™ J'e’ "¢y =0;
o o e
and this reduces to ™. V- /
a a : b
Je"z cos2bxdx =e™* Ie"‘zdx + e'("z*"z’Je’ * sin2aydy.
0 0

0

(b) We now let a—> o in the final equation in part (a), keeping in mind the known
integration formula

Vr

!e”zdx = —2—

and the fact that
2 2 b 2 b
_ . (aap? 2
et )fe’ sin2aydy|<e ’fe’ dy—>0as a—> oo,
0 0
The result is

J'e""z cos2bxdx = l/;’ie"’z (b>0).

0

6. We let C denote the entire boundary of the semicircular region appearing below. It is made
up of the leg C; from the origin to the point z =1, the semicircular arc C, that is shown, and
the leg C, from z =-1to the origin. Thus C=C, +C, +C,.
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We also let f(z) be a continuous function that is defined on this closed semicircular region
by writing f(0) = 0 and using the branch

kY4

f(2) =re®? (r>0,—£< 6<—)
2 2

of the multiple-valued function z'*. The problem here is to evaluate the integral of f(@)
around C by evaluating the integrals along the individual paths C, C,,and C, and then

adding the results. In each case, we write a parametric representation for the path (or a
related one) and then use it to evaluate the integral along the particular path.

(i) C;:z=re® (0<r<1). Then
1 1
= _[2, 2
J‘c‘ f(Z)dz-!‘V;-ldr —[gr /2]0 =-5.
(ii) C,:z=1-€°(0<0<m). Then
dz = [ . ie® 46 = T 361230 [3 .'39/2]‘:2 —i-D=-2q N,
[.f@ ! z!e i|5¢°" | =3¢i-D=-30+D
(iii) —C,: z=re" (0<r<1). Then
[ ‘ I
3 3 0 5 0
The desired result is

ch(z)dz=fcl f(z)dz+jcz f(z)dz+jq f(z)dz=-§—%(l+i)+§i=0.

The Cauchy-Goursat theorem does not apply since f(z) is not analytic at the origin, or even

defined on the negative imaginary axis.

SECTION 48

1.

In this problem, we let C denote the square contour shown in the figure below.
y
2
| c
U

-2i

-2
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——_'Zdz [ -z ..
(@ jc b4 "e(ﬂ'i 12) =2m [e ]z=m'/z =2mi(—i)=2m.

cosz (cosz)/ (2 +8) [ cosz ] (1) 7
—————-—d — =2 — — =—.
®) JCz(z2+8) ¢ IC z—0 de =27 22 +8 2=0 27 8 4

e P I ) M
= dz=2mi| = =27 —— |=——,
IC22+1 fcz—(—I/Z) ¢ 242 4 2

. 3 7
jccoshzdz=j coshz dz= 27 [LCOShZ] =%(0)=0'
z=0

{c

N

d

N~

z* cz-0*'"" 31|47

(e

N

tan(z/2) , _r tan(z/2) , _2m;ifd (ﬁ)]
Jc (z=x,) dz C(z—x,)" d 1! [dztan 2/ s,

= 27&1’(lsc:c2 -x—°) = iﬂ:secz(&) when -2 <x, <2.
2 2 2

2. Let C denote the positively oriented circle 1z —il=2, shown below.

y

C
2i
Qi

NS

¥-2i

(a) The Cauchy integral formula enables us to write

dz dz 1/ (z+2i) ( 1 ) (1) .
= = = —— :2 —_—=—,
o742 cz=2i)z+20) e de=2m 2+2i) %) 2

(b) Applying the extended form of the Cauchy integral formula, we have

c(Z2+4y c(z-2i)(z+2i) e (z-2) I | dz (z+20) |

_, [ -2 ] _—Ami _ -4m =«
=il 3 = AN L=,
(z+2i)° ], @)’ -Q6)4i 16
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3. Let C be the positively oriented circle |zi=3, and consider the function

22°-z-2
Z-w

gw)=|_ dz (Iwi=3).

We wish to find g(w) when w =2 and when Iwl > 3 (see the figure below).

We observe that

272 —z-2
g)=[ F—=-=

R =27i[22* -z -2]_, =27i(4) = 8.

On the other hand, when 1wl > 3, the Cauchy-Goursat theorem tells us that g(w) = 0.
5. Suppose that a function f is analytic inside and on a simple closed contour C and that z, is
noton C. If z, is inside C, then

fcf’(Z)dz=2m'f’(z0) and | fR)dz _ ¢ f(2)dz -sz’(zo).

z-2 “(e-z) Jez-z)™ 1

| fR)dz _ 1 _f(2)dz
€ z-2 €(z—z)*

The Cauchy-Goursat theorem tells us that this last equation is also valid when z is exterior
to C, each side of the equation being 0.

7. Let C be the unit circle z=¢® (-1<6<7), and let a denote any real constant. The
Cauchy integral formula reveals that

az az
de= [ = Zm'[e"‘]zs‘o =27,
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On the other hand, the stated parametric representation for C gives us

I dz J' exp(ae ) ZXPAAC ) ie®de =i jexp[a(cos 6 +isin 6)]d6
cz

-

=i j g2 0giasind g — ; j ¢*“*°[cos(asin 8) + isin(asin 8)]d0

- -

= j e***? sin(asin 6)dO + i J' e**® cos(asin 8)d6.

- -
eaz
Equating these two different expressions for the integral Jc—dz, we have
z
T T
— [e*=*sin(asin 6)d0 +i [ **° cos(asin 6)d6 = 27i.
- -
Then, by equating the imaginary parts on each side of this last equation, we see that
T
je“‘”” cos(asin0)d0 =2x;
and, since the integrand here is even,

J acs8 cos(asin 0)d6 = .
0

8. (a) The binomial formula enables us to write

._.1 d" 2 _ n_l d" nz"‘z"—k
F@)=—m dz"(z 1) T n12” dz"z(k)z v

k=0

We note that the highest power of z appearing under the derivative is z*", and
differentiating it n times brings itdown to z". So P,(z) is a polynomial of degree n.

(b) We let C denote any positively oriented simple closed contour surrounding a fized point
z. The Cauchy integral formula for derivatives tells us that

d'l ,, _ (S _l)n =O 1 2
dz '[C(S z)"“ (n=0,12,...).

Hence the polynomials P,(z) in part (a) can be written

P, (z)= (n=0,12,...).

2n+l J.C (S z)n+l




(c) Note that

(it Vi
(S _ 1)n+l

_ (-1 (s+D)"
(S _ 1)n+l

_(s+D)”
s=1"

Referring to the final result in part (b), then, we have

s —1)

(s* (s+ 1)
Pn (1) 2n+l J )n+1 2n 2m JC - ds =1 (n =

Also, since

(-1 _(s=D"(s+D)" _(s-1)"

(s+D™  (s+D™ s+1°
we have

3 1 (s* =1 _ (s=-1 ., 1 " _ n
B D= ). (s+1)™ 2" 2mi Je 11 By EE) o
9. We are asked to show that
_ 1 [ fs)ds
@ i ! (s—z)°"

(a) In view of the expression for f'(z) in the lemma,

73

0,1,2,...).

=0,12,...).

fe+A2)-f'(2) _ lf[ 1 1 fds
Az il s-z-Az (s-2| Az
- Ziti;[(s 2z(s Azz))z(fz o] .
Then
B e A1 [ocsre mem e [T
gl el
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(b) We must show that

(3DIAZl +21Az )M
e Ty

I 3(s — 2)Az — 2(Az)?
c(s—z—Az)* (s - 2)°

Now D, d, M, and L are as in the statement of the exercise in the text. The triangle
inequality tells us that

13(s — 2)Az —2(Az)21< 3ls — zl 1Azl + 21Az1* < 3DIAZl + 21AZP.

Also, we know from the verification of the expression for f'(z) in the lemma that
|s —z— Azl 2 d —1Azl>0; and this means that

I(s =z = Az)*(s — 2)°| 2 (d -1 Azl)*d* > 0.
This gives the desired inequality.

(¢) Ifwelet Az tend to 0 in the inequality obtained in part (b) we find that

1 I 3(s — 2)Az - 2(Az)?

820 20i I (5 — 7 — AZ)* (s — 2)° f(s)ds =0.

This, together with the result in part (a), yields the desided expression for f"(z).
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Chapter 5

SECTION 52

1. 'We are asked to show in two ways that the sequence

(1)
z,,=-2+t(n2) (n=12,.)

converges to —2. One way is to note that the two sequences
- _ &= _
x,=—2 and Vp =— (n=12,.)
n

of real numbers converge to —2 and 0, respectively, and then to apply the theorem in Sec.

51. Another way is to observe that lz,, - (—2)[ = —17 Thus for each £> 0,
n
|z, — (- 2)<e whenever n> n,,

. e 1
where n, is any positive integer such that n, > T
£

2. Observe thatif z, =—2-+i (':,) (n=12,...), then

r, =lz,l= 4+-1—4 -2
n

But, since

©,, =Argz,, > 7 and O,,,=Argz, , > -=x (n=12,.),

the sequence ©, (n=1,2,...) does not converge.

3. Suppose that limz, =z. That is, for each £>0, there is a positive integer n, such that
R—poe

|z, —zl< € whenever n>n,. In view of the inequality (see Sec. 4)

Iz, —zl 2 liz, |-z,

it follows that liz,I-Izli< &€ whenever n>n,. Thatis, limlz |=lz2l.
n=poe



The summation formula found in the example in Sec. 52 can be written

Zz =—%— when lzl< 1.

n=1
If we put z = re”®, where 0 < r <1, the left-hand side becomes

Z(re‘a) —Zr" inf —ir"cosn9+iir"sinn9;

n=1 n=1

and the right-hand side takes the form

re® 1—re® re —r? _rcosf- r* +irsin@
1—7¢° 1-re® 1- re®+e®)+r* 1-2rcos@+r?
Thus
rcos@-r? ) rsin @

Er cosn6+12r sinnf =

n=1

i X
1-2rcos@+r> 1-2rcos@+r®

Equating the real parts on each side here and then the imaginary parts, we arrive at the
summation formulas

oo 2 o .
rcos@—r . rsin @

Zr" cosnf = > and Zr" sinn@ = 7

— 1-2rcos@+r e 1-2rcos@+r

where 0 < r <1. These formulas clearly hold when r =0 too.

Suppose that Y z,=S. To show that Y z, =5, we write z, =x, +iy,, S=X+iY and

n=1 n=1

appeal to the theorem in Sec. 52. First of all, we note that

Zx =X and Zy,,

n=

Then, since Y (—,) =-Y, it follows that

n=1

(x, —iy,) =i[x,, +i(-y,)]=X—-i¥Y =3.

n=1

Mx

5

3
1
—



8.
n=1 =1
z,=x,+iy,, S=X+i¥ and w,=u +iv, T=U+iV.
Now
2%=X, ¥y, =Y and Yu=U Y=V
n=1 n=1 n=1 n=1
Since
Y., +u)=X+U and Y (y,+v,)=Y+V,
n=1 n=1
it follows that
Y (x, +u,)+i(y, +v,)] = X+ U +i(Y + V).
n=1
That is,
N I(x, +iy,) + (u, +iv,)] = X +i¥ + (U +iV),
n=1
or
Y @, +w,)=S+T.
n=1
SECTION 54

1. Replace z by z* in the known series

oo 2n

z
coshz= 2 !

n-0

to get
) oo z4n
sh =
cosh(z®) % )

Then, multiplying through this last equation by z, we have the desired result:

oo _4n+l

zcosh(z*) =), (ZZn)i
n=0 .

77

Suppose that 22,, =S and ZW,, =T. In order to use the theorem in Sec. 52, we write

(Izl< o)

(Izl< 00).

(lzl< ).



78

2.

(b) Replacing z by z—1 in the known expansion

e'= io-zr;; (Izl< o),
we have "
¢ =io(z;'1)" (i< ).
So
ef=ele= ei (z ;'1) i (Izd< ).

z _z 1
249 9 1+(z*/9)°

To do this, we first replace z by —(z* /9) in the known expansion
L iz" (zl<1)
1 =2 n=0 ¢ ,
as well as its condition of validity, to get

(Izl < /3).

Mx

1+(z /9 =

Then, if we multiply through this last equation by g, we have the desired expansion:

f(Z) 2( 1) 4n+1 (IZI<‘\/§).

32n+2

Replacing z by z* in the representation

2n+l

sinz = "2_:;( )(2 ! (Izl< o0),
we have
4n+2
sin(z?) = 20( )m (Iz1< o).
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Since the coefficient of z” in the Maclaurin series for a function f(z) is f™(0)/ n!, this

shows that

f40)=0 and f*V0)=0 (n=0,12,...).

The function 1—12 has a singularity at z=1. So the Taylor series about z =i is valid when

Iz—il <42, as indicated in the figure below.

To find the series, we start by writing

1 _ 1 _1 1
-z " (A=-D—(z-i) 1-i 1-(z=-)/1-i)"

This suggests that we replace zby (z—1i)/ (1 -i)in the known expansion

SR S
T——z',gz (z<1)

. 1 . .. .
and then multiply through by 15 The desired Taylor series is then obtained:
~1i

1 - (z-i)
= lz—il<~2).
1-z %(1—:‘)"“ (z-1<v2)
The identity sinh(z + 7i) = —sinhz and the periodicity of sinh z, with period 27i, tell us that
sinhz = —sinh(z + i) = —sinh(z — 7i).

So, if we replace z by z — 7i in the known representation

o0 2n+1

o Cn+1)! (Izl< o)

sinhz =
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and then multiply through by —1, we find that

sinhz = —2 (e = 7)™
o (2n+1)!

(12— mil< o).

13. Suppose that 0 <Izl <4. Then 0<Iz/4l <1, and we can use the known expansion

SECTION 56

1.

We may use the expansion
2
snz= X'
to see that when 0< 1zl < oo,

e (1) D 1 & (1
zsm(zz) 2(2n+1)r ‘"'1+2(2n+1)v Ch

0 n=}

Suppose that 1<Izl< e and recall the Maclaurin series representation
1 ~ n
— =Yz
1-z z
This enables us to write

1 1.1 =1"(_1)"_i(—1)"
1+z z - n+l

1+1 23\ 2
Z

Replacing n by n—1 in this last series and then noting that

G VTGO VARG VEE T CO Vinet

(zl<1).
+Y
(Ilzl< =)
(z<1).
(1<izl< o0).



we arrive at the desired expansion:

4. The singularities of the function f(z)=

1
Z’(1-2)
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(I<lzi< o).

are at the points z=0 and z=1. Hence

there are Laurent series in powers of z for the domains 0<lzl<1 and 1<lzl<e (see the

figure below).

To find the series when 0 < lzi< 1, recall that 1 =
V4

1-

1 1 1 ¢ - 1

n n- 1
f(Z)=Z—2"1—__;=;-2-Zz =Yz 2=—2+;+

n=0 n= Z

n=2 n=0

iz" (Izl< 1) and write

2++——.

As for the domain 1< |zi< oo, note that 1/ zl <1 and write

=5 ==-%¥ (L]

22 1-(/2) Z?4\z

n=0 n=3

5. (a) The Maclaurin series for the function z_-l_-__ll_ is valid when Izl<1. To find it, we recall

the Maclaurin series representation

1 < _n
TR

for L and write
-z

z+1
——(z+1):= (-z- l)’g‘z

=—2z" =Y =1~ 22z

=1 n=0 n=1

(Iz<1)

S

n=0 n=0

(Izl<1).
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(b) To find the Laurent series for the same function when 1<lzl< e, we recall the

) . 1 . . .
Maclaurin series for 1> that was used in part (a). Since <1 here, we may write

-z b4
1+1
z+1 - ( 1) 1 ( 1)”(1)" -1 o1
=L =l =1+ Y[ = =Y =+
z-1 ;.1 z/i_1 z 20 z Xéz ZJZ"“
z z
-1l 1 - 1 .
rl=0Z n=1 n=lz
1 . . .. .
7. The function f(z)=(1—+zz—)- has isolated singularities at z=0 and z =i, as indicated in
z

the figure below. Hence there is a Laurent series representation for the domain 0 <lzi<1

and also one for the domain 1 <lzl< =, which is exterior to the circle |zl=1.

(d<1).

For the domain 0 <lzl< 1, we have

1 1 XN 2\" 5‘: n_2n-1 1 5': 2n-1 5‘: n+l _2n+l 1
T e—— —z - _.1 =_+ _1" n - ._.1 +_.

f(Z) Z 1 + Zz 4 Ilgo( ) Il=0( ) ‘ ¥4 n=1 ( ) ¢ n=0 ( ) ¢ 4
On the other hand, when 1<|zl< o,

1 1 1 oo 1 n o0 _ln o _1n+1
f(Z)=z_3"‘_1=z_' (_;{) =Z(2n33 =n2=14(223+1 .

1+ -5 n=0 n=0 <

In this second expansion, we have used the fact that (—=1)"" = (=1)""'(=1)* = (-)"*.




8. (a)

(b)

10. (a)
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Let a denote a real number, where —1<a <1. Recalling that

Loy (z<1)
I_Z n=0

enables us to write

a —
E n+l ?

z—a zl (a/Z) n=02

or
2_-yVZL (lal<lzl< oo).
Z—a ,52
Putting z=¢" on each side of the final result in part (a), we have
a o -ind
=Y a'
exa —-a ;
But
a a (cos8- a)—zsme acos@ - a® —iasin@
e —a (cos@—a)+isin@ (cos@—a)—isin@  1-2acosf+d
and
Za"e -Za cosnG—zZa sinné.
n=1 n=]
Consequently,
= acos—a* ~ asin @
a"cosnf = and "sinnf =
,,2,; 1-2acos6+a’ Ea Y = I 2aces0+ a2

when —-1<a<1.

Let z be any fixed complex number and C the unit circle w=e"” (-7 < ¢ < 7) in the w

plane. The function
fw)= exp[i(w - i)]
2 w

has the one smgulanty w =0 in the w plane. That singularity is, of course, interior to
C, as shown in the figure below.
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(DY
Q 1

w plane

Now the function f(w) has a Laurent series representation in the domain 0 <lwi< oo,
According to expression (5), Sec. 55, then,

exp{—z- (w - -1-)]= Y T (w" (0<Iwl< =),
2 W/l pee
where the coefficients J,(z) are
1 CXP[E(W - —-):I
~—— W —
L@ = [— — dw (n=0,%1,£2,..).

Using the parametric representation w = e (=7 < ¢ < 7) for C, let us rewrite
this expression for J (z) as follows:

: exp[%(e"’ - e"")] \ L * e
Jn (Z) = 2ﬂ'i I e,'(,,+l)¢ 14 d¢ = E‘;i':[rexp[lzsm ¢]e d¢ .

-

That is,
J.(2)= -Z-%Lexp[—i(ngb —zsin@)}d¢ (n=0,t1,12,...).

(b) The last expression for J,(z)in part (a) can be written as

J ()= -217; [(cos(ne — zsin ¢) — isin(ng — zsin ¢)1dg
= 2—1”- j,, cos(ng — zsin 9)d¢ —2—’;; _J;Sin(n(b —zsin 9)d¢

=51;2 ! cos(ng — zsin ¢)d¢-2‘—no (n=0,£1,%2,...).



85
That is,

J(2)= %fcos(mp — zsin ¢)d¢ (n=0,+1,32,...).
0

11. (a) The function f(z) is analytic in some annular domain centered at the origin; and the
unit circle C:z=¢" (- < ¢ < 7) is contained in that domain, as shown below.

y

For each point z in the annular domain, there is a Laurent series representation

f@= Zaz +2 -

n=0 =t £
where
t' 2 . -
Gn 2m J‘c f(i)*ldz 271 - I f;f(fr+lz wd‘ﬁ = jf(e")e"’"dq) n=0,12,..)
and

ig
" ijcf(Z)dZ f(e ) l¢d¢_ J'f(exp)em¢d¢ (n=1,2,...),

-n+l 2 m j :'(-M-l)

Substituting these values of a, and b, into the series, we then have

f@= E:%-Zl—f f(e")e™dg 2 + 2—21; j fe*)e™do -z-l;;

f@== j fe*p+ =3 | f(e")[( =]+ (fﬂ}dqb

Il l-ﬂ
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(b) Put z=¢" in the final result in part (a) to get

f(e"’)—— j f(e")d¢+—2 remfenoo 1 emo-n]ag,

Il=l -

oy _ 1 t if 1o 7 i
1€ =0 [ Fedg+2 3 | f(e*)cosln(o - g)lds.
If u(0)=Re f(e”), then, equating the real parts on each side of this last equation yields

u(6) =5~ j u(¢>d¢+—2 j u(g)cos(n(6 - $)1dp.

Il'l-g

SECTION 60

1. Differentiating each side of the representation

1_;' - iZ" (Izl<1),
we find that "

Another differentiation gives -

2 =dizi ﬁ+1)z —2(n+1)._z -Zn(,,ﬂ)zn-l 2(n+1)(n+2)z (d<D),
n=0

(1 - z)3 n=0 n=0

2. Replace z by 1/(1-z) on each side of the Maclaurin series representation (Exercise 1)

(1 -=Y (41" (z<1),
n=0

\]

as well as in its condition of validity. This yields the Laurent series representation

(=1 (n-1) ew
= 2‘5 -  (I<iz-1l< o).
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3. Since the function f(z)=1/z has a singular point at z = 0, its Taylor series about z, =2 is
valid in the open disk 1z —2I< 2, as indicated in the figure below.

To find that series, write

1 _1 1
2+(z-2) 2 14+(z-2)/2

1
z

to see that it can be obtained by replacing z by —(z—2)/2 in the known expansion

.1_1_ i (Izi<1).
Specifically, "
1 - I (z-2) N
- 22;[ ] (z-2<2),
or
ey, ., _
Z_go r(2=2) (Iz-2i<2).

Differentiating this series term by term, we have

had n+1
Z ,.ﬂ n(z 2yt = 2(232 (n+1)(z-2) (z=21<2).
n=l n=0
Thus
ziz=-2(—l)( +l)( ) (z-21<2).
n—O

4. Consider the function defined by the equations

et -1
f(@)=4 z

1 when z=0.

when z #0,
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When z #0, f(z) has the power series representation

1 2z, 2.2 .z.Z
f(z)—;[(l+l—!+-2—!+§!-+-»-)—1:|_1+—2—!+§+~-.

Since this representation clearly holds when z =0 too, it is actually valid for all z. Hence f
is entire.

Let C be a contour lying in the open disk Iw—1l<1 in the w plane that extends from the
point w=1 to a point w =z, as shown in the figure below.

o w=1

w plane

According to Theorem 1 in Sec. 59, we can integrate the Taylor series representation

= i(—l)" w-1y (Iw-1l<1)

1
w

term by term along the contour C. Thus

dW C n n _” n n
= LZ‘;(—D (w=1) dw—é(-—l) [[w=1ydw.
But
dw _ ﬂ:[Logw]f=Logz—Logl=Logz
Cw LW
and
Z _ 1y ]? _1yrHl
-t oo traw=[ 2] e
c 1 n+l | n+l
Hence
< (-1)" o _ o (D™ n
L =) ——(z-1)"=) ~——(z~1 1z-1i<1);
0gz ;nﬂ(z ) 2; - — (=D (z‘ )

and, since (—=1)"" = (=1)""'(~1)* = (=1)"*, this result becomes

oo n+l
Logz=2%(z—1)" (Iz-1<1).

n=1
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SECTION 61
4
1. The singularities of the function f(z)= ;(-f_-;-ﬁ are at z=0,%i The problem here is to
z

find the Laurent series for fthat is valid in the punctured disk 0 <lzl< 1, shown below.

i

E

a
g

We begin by recalling the Maclaurin series representations

L - i Z__ _Z._ vee oo
e —1_+1'+2!+3!+ (Izl< o0)
and
1
:=1+z+22+z3+--- (z1< D),
which enable us to write
1 5,1,
e =l+z+=7"+=7"+.. o0
b4 2z 6z (Izl< o)
and
1
=]1- 2+ 4 6+... .
211 "+ -z (zl<D)

Multiplying these last two series term by term, we have the Maclaurin series representation

Z

e 1 1
——=l+z4+= + =7 4.
Z+1 2° 76t

1 5
=l4+7—-=2_2 3+...
Z 22 6Z »

which is valid when Izl< 1. The desired Laurent series is then obtained by multiplying each

side of the above representation by l:

1oL, 5., 0 <lzl<1).
z 6



We know the Laurent series representation

1 1 11 7

———— —

T 0<iz<
Zsinhz 2 6 2z 360" (O <lzl<7)

from Example 2, Sec. 61. Expression (3), Sec. 55, for the coefficients b, in a Laurent series

. L, .. . .
tells us that the coefficient b, of — in this series can be written
z

- L&
' 2midcz?sinhz’

where C is the circle Izl= 1, taken counterclockwise. Since b, =— %, then,

The problem here is to use mathematical induction to verify the differentiation formula

2 (n
[f(2)g@]” = Z( k)f ®(2)8" P (2) n=12,..).
k=0
The formula is clearly true when » =1 since in that case it becomes

[f(2)8)] = f(2)8' (D) + f'(2)g(2)-

We now assume that the formula is true when n=m and show how, as a consequence, it is
true when n=m+1. We start by writing

[F(2g@]™ ={[f(2)g@)™ =[f(2)g @)+ f (2)g]I™

=[f(2)g' 1™ +1f (2)8(™

=2(km)f""(z)g‘"‘"‘”’(2)+ > (:l)f"‘“’(z)g""""(z)

m
k=0

— o (k) (m—k+1) & m (k) (m—k+1)
= Z(k )f (2)g™ () + 2( ke l)f (2)g™ " (2)
k= k=1

0

= f(2)g""(2) + i[(;n) * (: 1)} fP@g™ P @)+ 0 (2)8(2).
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But

(m)+(m)= m m! _ (m+1 (m+1)
k) k=1 km=k)! Gk-Dm—k+1! km+1-k)! | &k J

and so
1
[F(2)8@I™" = f()g™*(2) + Z(m ,: )f (g™ () + FV(2)g(2),

m
k=1

m+l 1
[f@e@I™ =, (m ’ )f D (2)g™"P (2).

k=0 k

The desired verification is now complete.

We are given that f(z) is an entire function represented by a series of the form
f@)=z+a2* +a, 2+ (Izl< o0).
(a) Write g(z) = f[f(z)] and observe that

i@ =g+ 4 £ 2

ThedR g 3('0) LI (Izl< ).

It is straightforward to show that
8@ =f1f@If (),

8" @) = I QU @F + FIf@1f"(2)

and

g"@) = If QL @F +2f' @ f @ FIf @1+ f I @I @ f (D) + FIf@If ().

Thus

g(0)=0, g'(0)=1, g”(0)=4a,, and g”(0)=12(a’ +a,),

and so
flIf@l=z+2a,2> +2(a2 + a,)2°+- (Izl< o).
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(b) Proceeding formally, we have

fLf@D]1= F@+a[f@TF +a[f(@T+-
=(z+a +a+ ) +a,(z+ et +al+ ) a2+ a2’ Fad )
=(z+ a7 +a’+ )+ (a2 + 2822+ ) + (a2 ++)
=z+2a,2" +2(a +a,)’+--.

(c) Since

3
1 —_ ...i ceesz 2 _.l 3 S, oo
sinz=z 3!+ =z+0z +( 6)2 + (Izl< o),

the result in part (a), with a, =0 and a, = —%, tells us that

sin(sinz) =z - %zs+- . (Izl< o0).

We need to find the first four nonzero coefficients in the Maclaurin series representation

1 -E ., n
=) fz lzl<— 1.
coshz ;5 n! 2

This representation is valid in the stated disk since the zeros of coshz are the numbers
n . NP T, .
z= (—2-+mr)t (n=0,%x1,12,...), the ones nearest to the origin being z = :t—z—z. The series

contains only even powers of z since coshz is an even function; that is, E, , =0
(n=0,1,2,...). To find the series, we divide the series

2 4 6

.2 2 1, 1 4, 1 &

coshz=l+—+"—-+"—4=1+=7"+—7" +—2"+-- lzl< o0
z 2! 4! 6! ZZ 242 720Z ( )

into 1. The result is

1 1 2 5 4 61 6 ( ﬂ)
=l-=2'+—=7 =z +- lZl< =},
coshz 27 T24° T720° 43

or
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1 122_

61
=]-= 4_2° 6., n
coshz 2!z +4!z 6!2 + (Iz|<5).
Since
1 E , E E
=E, +=27+—27 + 5+ T
coshz ° 2? +4!z +6!Z + (Izl<;),
this tells us that

E,=1, E,=-1, E,=5 and E,=-6L
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Chapter 6
SECTION 64
1. (a) Letus write
1 1 1 1 2 3 1 2
== ==(1-z+z2’ -2+ J===1+z-2*+--- 0<«lzi<1).
z+z2z1+zz(zzz )z e (O<ll<h

The residue at z =0, which is the coefficient of l, is clearly 1.
b4

(b) We may use the expansion

2 4 6
4 Z Z
COSZ—I—Z-FZ—E-F-” (Izl< o)

to write

_l_ = 1__1_.L+_1__1.__1__£.+ = _.}_. ..1..+_1. i_i._l_+
e V) Ik G TN T TR A BT 2 6l 7

b4
(0 <lzl< o0).
The residue at z =0, or coefficient of l is now seen to be ——21-.
z
(c) Observe that
z—-sinz 1 ) 1 2z 22zt
st =(z-sing)=—|z-|z——t—— || m—_—— ... 0 dzl< ).
b4 z( ) z[ ( 3t 5! 31 5! ( )
Since the coefficient of l in this Laurent series is 0, the residue at z=0 is 0.
Z
(d) Write
cotz _ 1 cosz
s 4 -
z Z' sinz
and recall that
2 4 2 4
z  z "z
osz=l-—+——=l-"t——-.. lzl< oo
R TR 2" 24 (zl<e)
and
3 5 3 5
Z z z
sing=zg—-"—4-"——..=mz-" g = __.. (Izl< ).
31 5! 6 120 )



(e)
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Dividing the series for sinz into the one for cosz, we find that

—_— e —— - 4
singz z 3 45 O<lzl< m).
Thus
cotz 11 z 2° 1 11 11
=] - ———— e S e e —— e +“' .
A (z 3 45 ) 2 37 45 ¢ (0dzd< m)

Note that the condition of validity for this series is due to the fact that sinz =0 when

coiz has residue — -—1— at z=0.
z 45

z=nn (n=0,21,%2,...). Itis now evident that

Recall that
3 S
; = 42 % L. 0o
smhz—z+3!+5!+ (Izl< o)
and
1 2
—=14+z+7"+-- (Izl< ).
1-z

There is a Laurent series for the function

sinhz 1 ,. 1
—7——v =—(sinh
24(1_2,2) z ( Z)(l—zz)

that is valid for 0<lzl<1. To find it, we first multiply the Maclaurin series for sinhz
1

1-2z

and

3.

. 1 1 1
h =lz+=2+—7 +... 2474 ...
(sin z)(l__zz) (z % ot )(1+z +z*+--)

1 1
=z+-2"+—7'

+.
6 120
3 L1
4z e
4 62
zs-l-...
7 3
=z+.6_z PR (O <lzli<1).
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We then see that
sinhz 1 71
T =St =+ 0<izl<).
2(1-2%) 22 6 z (O<ld<)
This shows that the residue of #nizz_ at z=0is Z
Z*(1-2%) 6

2. Ineach part, C denotes the positively oriented circle |zl=3.

exp(—z)
Z2

(a) To evaluate L dz, we need the residue of the integrand at z =0. From

the Laurent series

epo 12,7 2, Y L 11,1 :
22 —Zz(l 1'+2! 3'+ —22 1! z+21 3'+--. (0 <lzl< o0),

we see that the required residue is —1. Thus

jce"—pz(z‘i)dz = 271i(~1) = 27

(c) Likewise, to evaluate the integral JC z exp(l)dz, we must find the residue of the
b4
integrand at z =0. The Laurent series

zzexp(l)=zz(1+._1-..l+_1-.i2+i.._1_+_1._._!‘.‘.+...)

z 1! z 2122 312 41 ¢
, z 1 11 11
=Z"+—-+—+——4+—4--,
11 2! 31z 4 2

which is valid for 0 <lzl< o, tells us that the needed residue is —é— Hence

(1N, L (1)
J‘CZ exp(-z—)dz—2m(g)——3—.
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(d) As for the integral j zt dz we need the two residues of

z+1 _ z+1
=2z z(z-2)

one at z=0 and one at z=2. The residue at z =0 can be found by writing
z+1 _(z+1)( 1 )—(—1)(1+l) 1
2(z-2) z J\z-2 2 z) 1-(z/2)
1 11 z?
=fm———— 1+2+ %
( 2 2 z)( 27T )

which is valid when 0<lzi<2, and observing that the coefficient of 1 in this last
b4

.1 . . .
product is -3 To obtain the residue at z =2, we write

z+l _(z=2)+3 1 =1(1+ 3 ) 1
z(z— 2) z-2  2+(z-2) 2 z-2) 1+(z-2)/2

- - 2
SETONE N, PR = |
2 z-2 2 2?2

which is valid when 0 <z —2I< 2, and note that the coefficient of —1—2 in this product
z —

is % Finally, then, by the residue theorem,

z+1 1 3
=27 -—+= |=2mi.
sz—2zdz ( 2 2) m

In each part of this problem, C is the positively oriented circle |zl=

S

(@ I f(z)=£-27, then

1 1 1 1 1 1
= . —— 1+Z3+ 6+... = e — 22_...
Zf( ) 7 -zt 7 1-7° z“( ¢ ) oz

when 0 <izi< 1. This tells us that

Lf(Z)dz 2mRes——f() 2mi(-1) = -2 7.
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(b) When f(z)= l+lz2 , we have

1 (1) 1 1
?f(2)=1+z2 = R (0<a<D.

jcf(Z)dz 2mRes——f() 27i(0) = 0.

(c) X f(2)= —, it follows that —- f( )— l Evidently, then,
z

J'Cf(z)dz =27 l}fos le fG) =2mi(l) =27i.

Let C denote the circle lzl=1, taken counterclockwise.

n

(a) The Maclaurin series e* = E-Z—-' (Izl< =) enables us to write
n!

n=0
Jexp(z+ )dz Je‘e”‘dz I “‘% 7 = onlj z exp(ljd

(b) Referring to the Maclaurin series for e® once again, let us write

e (1 el oSl
Z"exp| — |= ——= E —z" =0,12,...).
p(z) ¢ =k &k (n )

Now the 1 in this series occurs when n—k=-1, or k=n+1. So, by the residue
z
theorem,

— 1 —
jz exp( )dz (n+1)! (n=0,1,2,...).

The final result in part (a) thus reduces to

fexp(z+ )dz ZmZ

,,_on'(n+l)‘ )



99
5. We are given two polynomials

P@)=a,+az+az*+ +az" (a, #0)
and
Q(Z)= b() +bIZ+b222 +'”+bmzm (bm ¢0)’

where m2n+2.
Itis straightforward to show that

_1_ ) P(l/ Z) - aozm—z + alZm—3 + azz"'—4 4ot a"zm—n—z ( ) O)
2 Q(1/z) byz" + bz + b,z 4+ b, z .

Observe that the numerator here is, in fact, a polynomial since m—n—-22>0. Also, since
b, #0, the quotient of these polynomials is represented by a series of the form

dy +dz+d,z* +---. Thatis,

1 PQ1/z) 2 .
Z 00/ =dy+dz+d,2* + (0<lzi< R);

1 Pi/z)
2 0/2)

Suppose now that all of the zeros of Q(z) lie inside a simple closed contour C, and
assume that C is positively oriented. Since P(z)/ Q(z) is analytic everywhere in the finite
plane except at the zeros of Q(z), it follows from the theorem in Sec. 64 and the residue just
obtained that

and we see that — has residue 0 z =0.

P(z) 1 P(l/2z) .
dz=2mi .0=0.
jCQ<z) = [z Q(I/z)] 2m-0=0

If C is negatively oriented, this result is still true since then

P(z) P(z)
——dz=-| —=dz=0.
IC 0(z) - Q(z)
SECTION 65
1. (a) From the expansion
: 1.2.2.7 »
e —1+H+2—!+§+'-- (Izl< o0),

we see that

Z :
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(b)

(c)

(d)

(e)

The principal part of zexp(—l-) at the isolated singular point z =0 is, then,
b4

and z =0 is an essential singular point of that function.

2
The isolated singular point of z
1+z

is at z=-1. Since the principal part at z=-1
involves powers of z+1, we begin by observing that

Z=(z+1)’ -2z-1=(z+1)’ -2(z+1)+1
This enables us to write

2 2

z (z+1)* =2(z+1D+1 1
= =(z+1)-2+——.

1+z z+1 e+ z+1

Since the principal part is -z_:l-? the point z =-1 is a (simple) pole.

. . . . . in .
The point z =0 is the isolated singular point of 222 and we can write
F4

sinz 1 2 7 z 7
sinz _1f z2 zZ _ \__Z % _.. 0 <lzl< o),
z z(z 31 5] ] 31 5] (O<lzl<e)

The principal part here is evidently 0, and so z =0 is a removable singular point of the
sinz

function ——.
b4

. . . COSZ . .
The isolated singular point of £%°2 is z=0. Since
b4

=___+__... (0<|Zl<°°)1

the principal part is l This means that z =0 is a (simple) pole of o8z
z b4

. -1 . _ .
Upon writing 7, we find that the principal part of Zz—l? at its

1
2-2 (z-2) -z
isolated singular point z =2 is simply the function itself. That point is evidently a pole
(of order 3).
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(a) The singular pointis z=0. Since

_ h 2 4 6 3
I_E_‘;E_Z=_1;[1_(1+£_+Z_+5_+...)]=_.1_.l_i._£__...
Z Z ! ! ! !

(b) Here the singular point is also z=0. Since

1—e11cp(22:)=__1__l 1+2z 22, 2+23z3+24z4+2525+m
z* 120 31 41 sy

N 202 31z 41 51°

3
when 0 <lzl< oo, we have m =3 and B——%:—%.

(c) The singular point of (zp_( z) s z=1. The Taylor series
_ 20, 12 A%, _1V3
oxp(22) = X 1)e2_e|:1+2(21' 1)+2(z2' 1) +2(z3' 1) +,,] (2l< o)

enables us to write the Laurent series

exp(2z) _ of 1 2 1 2 92
- AT AT TRAT - ll< o0),
(z-17 e[(z-l)l TP I R TRE TR A (0 <dz=lI< )

Thus m =2 and B=e2-1%'-=2e2.

Since fis analytic at z,, it has a Taylor series representation

f"(z)

1@=fe)+ LB gy L)y (z-2<Ry).
Let g be defined by means of the equation
JS@)

g(2) =
z-2
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(a) Suppose that f(z,) # 0. Then

g(z)=—[f( o)+f (ZO)( -2Z)+ f”(Zo)(z o)2+”':|
=Z‘iz;,{)J,f'ﬁo),,f"z(T,)(Z_ZO)J,... (0<lz—zyl<Ry).

This shows that g has a simple pole at z,, with residue f(z,).
(b) Suppose, on the other hand, that f(z,) =0. Then
1 7
g(z)" s [f (zo ( z0)+ f (ZO)(Z 20)2 :I

_f@), f"(zo)
1!

(2—2p)+-- (O <lz=z)l< Ry).

Since the principal part of g at z, is just 0, the point z=0 is a removable singular
point of g.

4. Write the function

3.2
f(z)=(—z§%—22? (a>0)
as
9(z) _ 8’7
TO= ey e POy

Since the only singularity of ¢(z) is at z=—ai, ¢(z) has a Taylor series representation
¢(Z)=¢(ai)+¢—ﬁl—l)(z—ai)+£%(z—ai)2+-~- (Iz—ail<2a)

about z=ai. Thus

f@)= [¢( z)+¢( D (2 —ai)+-?”2(Tai)(z—ai)2+---] (0<Iz—ail<2a).

(z—

Now straightforward differentiation reveals that

16a‘iz —8a’z* 16a%(z* - 4aiz — a*)
Q=—2ETE 9=
Y= ") (z+ai)
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Consequently,

o(ai) = —a%i, ¢’(ai)=-—%, and ¢”(ai) = —i.

This enables us to write

fl@)= [—azi—g(z—ai)—-;-(z—ai)z+---] (0<Iz~-ail<2a).

1
(z—ai)’
The principal part of fat the point z = ai is, then,

i/2 al2 4
z-ai (z-ai)' (z-ai)’-

SECTION 67

2
1. (a) The function f(z)= 9(z)

Z'+2 . . . iy

— has an isolated singular point at z = 1. Writing f(z) = 1
~—— z —

where ¢(z) =z% +2, and observing that ¢(z) is analytic and nonzero at z =1, we see

that z=1isa pole of order m =1 and that the residue there is B = ¢(1) =3.

(b) If we write

3

10=(557) "2, where 40=1,
-(3)

we see that z = ——;— is a singular point of f. Since ¢(z) is analytic and nonzero at that

point, fhas a pole of order m =3 there. The residue is

g dCUD 3
2! 16

(c) The function
€xpz _ expz

2+ (z-m)z+m)

has poles of order m =1 at the two points z =1mi. The residue at z = 7 is

andtheone at z=-7i is
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174

2. (a) Write the function f(z)= —Z—H (21>0,0 <argz < 27) as
Z

P(z)

z+1’

f@)=

1
- lof
where @(z)=z""=e* " (21>0,0<argz <27).

The function ¢(z) is analytic throughout its domain of definition, indicated in the

figure below.

/‘ Branch cut

-
)

Also,

Slog(-1) _

o(-D)=(-1)" =

%(ln 1+ir)

x

inld T .. & 1+i
= = — —_—=a—(.
=e COS~—+1s1n ‘\/—

This shows that the function fhas a pole of order m =1 at z =-1, the residue there

B=¢(-1)=

being
(b) Write the function f(z)= Logz
(2 +1)7

f@@)= ¢(z.)2 where ¢(z) =

(z—i

1+i

W.

Logz
(z+i)*

From this, it is clear that f(z) has a pole of order m=2 at z=i. Straightforward

differentiation then reveals that

es Logz
=i (72 +1)?

=¢'()=

T+2
T
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(c) Write the function
1/2

f@) =(7ZT)2 (121> 0,0 <argz <27)
as
__9() _
f(z) (Z _i)z Where ¢(Z) - (Z+ i)2 .
Since
, a (Z +i)z-l/2 _ 421/2
VA=
and
12 =imld _ _1_ - _l_ A2 _ inl4 L _l_
i e \/f \/f’ i e 1/5 + «/—2—’
R 172 e l—l
=@y 0%

(a) We wish to evaluate the integral

J‘ 32242 ,
c(z=-1)z2+9)

where C is the circle [z — 2| =2, taken in the counterclockwise direction. That circle and
the singularities z =1, £3i of the integrand are shown in the figure just below.

Observe that the point z =1, which is the only singularity inside C, is a simple pole of
the integrand and that

es 32 +2 _3z3+2 _ 1
= (z=-1)+9) Z2+9 ], 2

According to the residue theorem, then,

32°+2 a1 .
Ic<z—1><z’+9)“k""2”’('2')'’"'
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(b) Letus redo part (@)when C is changed to be the positively oriented circle |zl = 4, shown
in the figure below.

In this case, all three singularities z =1, 3i of the integrand are interior to C. We
already know from part (a) that

32’ +2 1
CS ==
z=1 (Z - 1)(2 + 9) 2
It is, moreover, straightforward to show that
e 3242 37+2 J _15+49i
z=3i (z —_— 1)(z2 + 9) (Z - 1)(Z + 31) z=3i 12
and
. 32 +2 32342 15-49i
es > - - = .
=3i(z—=1)(z"+9) (z-1(z-3i) 7=-3i 12

The residue theorem now tells us that

J'C 322 +2

1 15449 15-49\ _ .
G- +9) + =6m

dz = 2m'(—+
2 12 12

4. (a) Let C denote the positively oriented circle |zl =2, and note that the integrand of the

integral J‘C—s(%ﬁ:)— has singularities at z=0and z =—4. (See the figure below.)

_'4? QJZ x
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To find the residue of the integrand at z =0, we recall the expansion

l N n

l-z—,,g.’z (z<1)

and write
1 _ 1 (_1)n
2@z+4) 47 [1+(z/4):, 45%( ) 2 4 ¢ (0<lzl< 4).
Now the coefficient of 1 here occurs when n =2, and we see that
b4

Res —3-1—— = i.

=0 z°(z+4) 64
Consequently,

dz ( l) 7
J—3—_=2m —_—=
€z (z+4) 64) 32

(b) Letus replace the path C in part (a) by the positively oriented circle 1z + 2! =3, centered
at —2 and with radius 3. It is shown below.

We already know from part (a) that

1 1
Re§ ———=—.
=0 2(z+4) 64

To find the residue at —4, we write

1 42 _1
P oy M SO

This tells us that z =—4 is a simple pole of the integrand and that the residue there is
#(—~4)=-1/64. Consequently,

dz L1 1
=2 —— e | = (),
ch’(z+4) m(64 64) 0
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. coshzdz
. luate the integral | ————,
5. Letusevalua g IC 2@+
All three isolated singularities z=0,%i of the integrand are interior to C. The desired

residues are

where C is the positively oriented circle Izl=2.

cosh7z cosh nz]
Res—; =— =1,
=0 z(z°+1) z°+1 J,o

coshmz _coshme| _1
=g +1) zz+i) ., 2’

and

es coshmz _ coshmz _1
=i z(22 41 2z-i) [, 2

Consequently,

J- 0081'12772612 =2m-(1+_1_+-1-)=4m'.
c Z(Z +1) 2 2

6. Ineach part of this problem, C denotes the positively oriented circle lzl=3.

(a) Itis straightforward to show that

(3z+2) . then _%f(l)= (3+22)° _
z(z-1)(2z+5) 227\z) z(1-2)(2+52)

if f(z)=

This function —17 f(—l-) has a simple pole at z =0, and
"7 \z

G2 o omreg LA(L)]=2m(2) -om
J“72’.(2—1)(22+5)dz"zmlieos[zzf(z =2mi > =97i.

(b) Likewise,
) _ 22(1-32) 1 (_1_)= z-3
Ef@O=Tna2sy ™ 2N e+

The function iz f (l) has a simple pole at z =0, and we find here that
7 \z

J' 4t bl . (1—32)4 dz=27riRes[izf(-l-)]=2ni(—§)=—3ﬂ‘i-
c(1+z)(1+2z%) =0 Lz" \z 2
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(c) Finally,
3 1z
. Ze 1 (1 et
if f(z)=——, then — (-—) =—
7 1+7° zzf z) Z2(1+72%)

The point z =0 is a pole of order 2 of —1; f (1) The residue is ¢(0), where
" \z

ez
3.

1+2

o(z)=

Since
(1+2%)e® — e*37°
(1+2°)

' (2)=

?

the value of ¢’(0) is 1. So

3 1/z

Ze . 1 (1 ) .
I 5 de=2m 133:3[2_2 f(;)] =27i(1) = 27i.

SECTION 69
1. (a) Write
1 _ p(2) .
== h = = .
cscz Snz - @ where p(z)=1 and ¢g(z) =sinz
Since

p(0)=1%£0, ¢g(0)=sin0=0, and ¢’(0)=cos0=1=0,

z =0 must be a simple pole of cscz, with residue

20 _1_,
q'0) 1
(b) From Exercise 2, Sec. 61, we know that
1 1 1 | I
cscz=—+—z+ el FAG 2 0<lzl< 7).
z 31° [(31)2 5!]2 (O<dd<m)

Since the coefficient of 1 here is 1, it follows that z =0 is a simple pole of cscz, the
F4

residue being 1.
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2. (a) Write

z-sinhz - p(2)
Z’sinhz  ¢q(z)’

where p(z)=z-sinhz and ¢(z)=z’sinhz.

Since
p(mi)=mi#0, q(wxi)=0, and q'(mi)=n*=0,
it follows that
Resz—sinhz - p(mi) =Li__f_
=r z’sinhz q'(mi) = n
(b) Write

exp(zt) _ p(z)
sinhz  g(z)’

where p(z) =exp(zt) and ¢(z) =sinhz.

It is easy to see that

Res SR p'(m) =—exp(int) and Res XPEN _ PCT) —exp(~ixt).
z=xi  sinhgz q (m) e=-#i sinhz q’(—ﬂ'I)
Evidently, then,
Res TP | e EXPEN) _ _, explimt) +exp(oim) _ _,
=#i sinhz z=-#i ginhz 2
3. (a) Write
f) = p_(z_)’ where  p(z) =z and g(z) =cosz.
q(z)
Observe that
n

Also, for the stated values of n,

T /4 /4 /4
—+nwi=—+nn#0 i padt = —ginl — = (-] A
p(2 n ) 5 n and q(z +nﬂ:) s1n(2 +mr) D" =0
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So the function f(z) = —% has poles of order m =1 at each of the points
cosz

z, =§+nn’ (n=0,4£1,12, ).

(b) Write

tanhz = ﬁ(gz—;, where  p(z) =sinhz and ¢(z) = coshz.

q(z

Both p and q are entire, and the zeros of g are (Sec. 34)

z =(§+n7c)i (n=0,+1,12,..)

In addition to the fact that q((g + mr) i) =0, we see that

P((% + mt)i) = sinh(%i + nm’) =icosnw=i(-1)" #0

and
q’((-;i + nﬂ)i) = sinh(gi + nm) =i(-1)" #0.

So the points z = (—;£+mr)i (n=0,£L,%2,...) are poles of order m=1 of tanhz, the

residue in each case being
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4. Let C be the positively oriented circle [zl= 2, shown just below.

(a)

(b)

Cf,
Q 2 x

To evaluate the integral Jcmnz dz , we write the integrand as

tanz = _B_(_Q where p(z)=sinz and ¢(z) =cosz,
q(2)
and recall that the zeros of cosz are z= §+ nr (n=0,£1,12,...). Only two of those
zeros, namely z=17/2, are interior to C, and they are the isolated singularities of
tan z interior to C. Observe that

Res tanz=p—,(ﬂ2—)=—1 and Res tanz=M-)-=—l.
=2 q'(7/2) e=-1[2 q'(-7/2)

Hence
jctanzdz =27i(-1—1) = —4i.

dz
sinh2z

The problem here is to evaluate the integral IC To do this, we write the

integrand as

L _p@

’ h =1 - M .
snh2z  q@ ere p(z)=1 and g(z) =sinh2z

Now sinh2z =0 when 2z =n7mi (n=0,%1,12,...), or when

Z=—§— (n=0,£1,%2,...).

Three of these zeros of sinh2z, namely 0 and %, are inside C and are the isolated

singularities of the integrand that need to be considered here. It is straightforward to
show that

Ll PO _ 1 1
=0 sinh2z ¢’(0) 2cosh0 2’
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L _p@m2_ 1 1 1
=m2sinh2z q’(mif2) 2cosh(mi) 2cosm 2’
and
Res L PC=mi/2) _ 1 1 _1
=-m2sinh2z q'(~mif2) 2cosh(-m) 2cos(-x) 2’
Thus

Within C,,, the function — 1

Z sz

has isolated singularities at
z=0 and z=xnmw (n=12,...,N).

To find the residue at z =0, we recall the Laurent series for cscz that was found in Exercise
2, Sec. 61, and write

L ol eer=l l+—l—z+ L ——1—-z3+-
Z’sinz  z° 2z 317 (3 s

=_13.+%.l+[ 1 _l}z.;.... (0 <lzl< m).
Z !
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1
This tells us that — pr has a pole of order 3 at z=0 and that
z'sinz

1
Res ——
=0 z°sImnzg

=1
5

As for the points z=%tnn (n=12,...,N), write

L _p@

T , where p(z)=1and q(z) = z*sinz.
zZ°sinz  q(z

Since
pxnn)=1#0, g*nm)=0, and q'(xnzm)=n’n’cosnr=(-1)"n*z*#0,

it follows that

1 D" _ Ly
Res = . = .
=tnrx z2 sinz (_l)n n27r2 (_l)n n2n.2

So, by the residue theorem,

Rewriting this equation in the form

n? 12 4iJen Z%sing

i (_ 1)n+l ﬂ'2 E dZ

n=l

and recalling from Exercise 7, Sec. 41, that the value of the integral here tends to zero as N
tends to infinity, we arrive at the desired summation formula:

i(__l)n-ﬂ Zfi
~ p? 12°

The path C here is the positively oriented boundary of the rectangle with vertices at the
points +2 and +2 +i. The problem is to evaluate the integral

J‘ dz
(-1 +3
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The isolated singularities of the integrand are the zeros of the polynomial

9(z) = (2" = 1" +3.

Setting this polynomial equal to zero and solving for z, we find that any zero z of q(z) has
the property z> =1%+/3i. It is straightforward to find the two square roots of 1++/3i and

also the two square roots of 1—+/3i. These are the four zeros of g(z). Only two of those
Zeros,

: 3+i s _ V3 +i
=~2¢"™ = V3 +i and —Z,=-+2¢" = ,
2Zo =2 7 Zy =—2 7
lie inside C. They are shown in the figure below.
—2+i Y c 2+i
1,
X X
-Z %
——
-2 (0] 2 x

To find the residues at z, and —Z,, we write the integrand of the integral to be evaluated as

1 p(z)

—_ - 2_ 2
@-1+3 4@ where p(z)=1and q(z)=(z" -1)" +3.

This polynomial g(z) is, of course, the same ¢(z) as above; hence g(z,) =0. Note, too, that
p and q are analytic at z, and that p(z,) # 0. Finally, it is straightforward to show that

9= 4z(zz2 - 1) and hence that
q'(20) = 42, (22 =1) = ~2/6 +6+/2i # 0.
We may conclude, then, that z, is a simple pole of the integrand, with residue

P(zy) = 1
q'(z) -2V6+6+2i

Similar results are to be found at the singular point —z,. To be specific, it is easy to see that
4'(-2,) ==4'(%) =4 (z) = 2V6 +6v2i 2 0,
the residue of the integrand at —Zz, being

p(=%) - 1
q'(-z) 24V6+6+2i
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Finally, by the residue theorem,

J dz =2m.( 1 + 1 )____ /4
c(z* =1 +3 —2V6 +62i 246 +6+2i) 242

We are given that f(z)=1/[q(z)]*, where g is analytic at z,, g(z,)=0, and ¢’(z,) #0.
These conditions on g tell us that g has a zero of order m=1 at Z,. Hence
q(z) = (z - z,)g(z), where g is a function that is analytic and nonzero at Z,; and this enables
us to write

__9@) __1
TG M SO

So fhas a pole of order 2 at z,, and

= /(z) = - 28 &)
Res f@)= ¢'(a) == 2L 2

But, since g(z) = (z —z,)g(z), we know that

q'(2)=(z-2)8'(x)+g(z) and q"(2)=(z-2)g"(z)+25" ().

Then, by setting z = z, in these last two equations, we find that
q'(z)=8(z) and q"(z))=2g(z,).
Consequently, our expression for the residue of fat Z, can be put in the desired form:

O T

(a) To find the residue of the function csc®z at z =0, we write

csciz= where ¢(z) = sinz.

1
lg(2)1*’

Since g is entire, g(0) =0, and ¢’(0) =1+ 0, the result in Exercise 7 tells us that

” 0)
Rescsc’z=--2 O __,
2=0 [¢’(O)F
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(b) The residue of the function —12—)2 at z=0 can be obtained by writing
z+z

1 __ 1
(z+2?) [4@F

where q(z)=z+ 7%

Inasmuch asgq is entire, g(0)=0, and ¢’(0) =1 # 0, we know from Exercise 7 that

1 4°(0)
R =— =
= (z+2)  [gOF
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Chapter 7

SECTION 72

. T odx .
1. To evaluate the integral Im, we integrate the function f(z)= 211 around the simple
9 z

closed contour shown below, where R> 1.

Yy
CR
0 X
We see that
R
| &, % __ i,
e +1 Jaz®+1
where
B=Res 21 =Res _1 — = 1] =l.
=i z°+1 = (z—i)z+i) z+ile; 2i
Thus
jf dx - dz
_sz'f'l Gzt 41

Now if zis a pointon Cp,

IZ2+ U2z -11=R*~1;

and so

/4
dz 7R R

< = oo

'[anz+l -1 1—_1_—>0 as R—>oo,
R2

Finally, then
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. T dx : 1
2. The integral | ——— can be evaluated using the function = ———— and the sam

simple closed contour as in Exercise 1. Here

R
dz . .
-L(x IO PRy =2mB,
here B= Res———-l—-— Since
where ot (z +1)2.
1 9(z) 1
- ’ h = ,
T P CL #(2) (z+i)

we readily find that B = ¢’(i) =—, and so
4i

f B . 2 !
LG&E+D 2 Ja@?+1)F

If z is a point on Cg, we know from Exercise 1 that

Iz2+112 R* -1;
thus
/1
R R

=0 as R—oo.

Ic, 2dz 2

-12 1
! (1"75)

The desired result is, then,

I+ 2

T dx T T dx T
j or '!(T_-l-_l;——4

We begin the evaluation of j . fli ] by finding the zeros of the polynomial z* +1, which are
0

the fourth roots of —1, and noting that two of them are below the real axis. In fact, if we

consider the simple closed contour shown below, where R > 1, that contour encloses only

the two roots

inl4 = +

-
-

7z =e

and
B4 _ _ixl4_inl2 1 i 1

=€ =e" e =(—+T)i=—-7+j;5.

[\
[\
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y
CR
X X
A z
0 R x

Now
? dx dz
_j;x‘ +1 +Jc, e+l 2mi(B + B,),
where
_ _ 1
—lzz--ezlsz‘+1 and Bz_lz{:;zsz‘+l'

The method of Theorem 2 in Sec. 69 tells us that z, and z, are simple poles of 41+1 and
z
that

since z' =-1and z; =-1. Furthermore,

-1 S 0 S N U R S T |
B +B,= 4(zl+zz) 4[(«/-2_+w/§)+( 2+ 2)] 2\/’2_'

Hence
j! dx ="'7£'"I dz
Rxt+1l A2 a4+
Since
dz 7R
jc_——|24+lsR4_l—>0asR—>oo,
we have
dx
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2
x"dx
4. We wish to evaluate the integral W i
g j ( DI+ e use the simple closed contour
shown below, where R> 2.
y
Ca
X 2i
X i
> —- 3 <
2
We must find the residues of the function f(z)=————z-——— at its simple poles

(22 +1)(Z2+4)
z=i and z=2i. They are

B, = ReSf(z)—-;z—] =L

(z+i)Z*+4) 6i
and
2
B —z—_ =l
B =Res /()= 2“)(“21.)]2:” L
Thus
t x? dx 2dz ‘
ey S R
or

J‘E xdx _m_ f dz
L@+ +4) 3 Ja (P41 +4)
If z is a point on Cy, then

IZ2+12lz*°-11=R*-1 and |12 +4121l7* -4l =R*-4.

Consequently,
n
[ Zd | 2R R —> 0as R — oo;
« @+ +8)| R -DE-3) (L)) e
R R’

and we may conclude that

[t s o [ty s
LD 4 3 2 ( +1)(x +4) 6
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I xtdx
5. The integral can be evaluated with the aid of the function
-o[ (x* +9)(x* +4)°
z2
1= @ vay

and the simple closed contour shown below, where R > 3.

Yy
Ca X3i
X 2i
(0] > R X
We start by writing
R 2 \
x“dx 22 d .
+ = 2B
.J;e(xz +9)(x* +4)* La (2 +9)* +4) m(B, + B,),
where
z 2
=Res and B, =Res
i e, i (Z+9)T +4)
Now

_ z 3
Bl - o2 2 - e
(z+3)("+4) |,  50i

To find B,, we write

z’ 163 a z?
(2 +9)(Z2+4)?® (-2 where  9(z)= (2> +9)(z +2i)*

Then

B = ¢(2z>—5§)—

This tells us that

J’f xtdx T J- 22dz
S+ +4)F 100 o (22 +9)(ZE +4)*
Finally, since

—0 as R— oo,

J' z2dz | 7R’
(22 +9)(2* +4)}|” (R* = 9)(R® - 4)?

we find that

I xde I T
| (x? +9)(x? +4)2 100 2 (x +9)(x +4)? =200
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7. Inorder to show that

vjz x dx __Z
2 OP+D(x+2x+2) 5

we introduce the function

z
@+ +2z+2)

f@)=

and the simple closed contour shown below.

y

G

0] R x

Observe that the singularities of f(z) are at i, zy=-1+4i and their conjugates —i,
Z, =—1—i in the lower half plane. Also, if R>+/2, we see that

R
| fax+ [ f2)dz=2ni(B, +B,),
-R &

where
1 3
B, =Res f(z SR, — = ———
0 z=7.of) (z2+1)(z—2'0):|z=z° 10 101
and
1 1
=Res = d =———i
=Rl O=ma +2z+2)]z_, 10 5

Evidently, then,

f __r "J zdz -

2 +l)(x +2x+2) 5 e+ +2z+2)

Since
J' zdz _ J' zdz < nR 0
(2 + 12’ +22+2)| [P (@ +Dz-2)z-3)| (R*—1)(R-2)

as R — oo, this means that
) j! xdx n
R L (7 +1)(x? +2x+2) 5

This is the desired result.
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2n
8. The problem here is to establish the integration formula | —— = —— using the simpl
P g J. P+l 303 using imple
closed contour shown below, where R > 1.

y

R eszm

namely z, =™, that is interior

There is only one singularity of the function f(z)= 31+ o
z

to the closed contour when R>1. According to the residue theorem,

3 T =2miRes—5— 1 ,
7+l Jaz’+1 =1 7° +1

d. d dz
ootz

where the legs of the closed contour are as indicated in the figure. Since C, has parametric
representation z=r (0<r<R),

R
ICIZ +1 '!

and, since —C, can be represented by z =re'”™* (0<r<R),

j' dz - dz - _JR' e.mmdr e eizulsj’E dr .
azl+1 ~a 2+l ey +1 1ri+1
Furthermore,
RS~ —= 27 = e
=0 2 +1 3z% 3¢
Consequently,
R B
i dr 2mi dz
_ pi2n/3 - -
(1 € )g r3 +1 38i2ﬂl3 J.Cn z3 +1 *
But

1 .Zﬂ'R
R-1 3

—0 as R— oo,

d.
chzsf-l 8

This gives us the desired result, with the variable of integration r instead of x:

T dr _ 27 _ 27i _m _2=&
, r3+1 3(ei27r13 _ei4n/3.e-i6x/3) 3(ei27t/3 _e-i27r/3) - 3sin(27tl3) 31/5'



125

9. Letm and n be integers, where 0 <m<n. The problem here is to derive the integration
formula

o4 2m
J"ix,,—-dx = lcsc(2m+ L n’).
o X +1 2n 2n

(a) The zeros of the polynomial z*” +1 occur when z*" =~1. Since

(~Dyen = expl:i(ik—zinl)—”-:l (k=0,12,...,2n-1),

it is clear that the zeros of z*" +1 in the upper half plane are

i(z—k“ﬂ] (*k=0,12,...,n-1)

G = cxp[ ™

and that there are none on the real axis.

(b) With the aid of Theorem 2 in Sec. 69, we find that

2m

es o = C’fm = —1—(;‘2:('".")+l (k =0,12,....n—- 1)
= 2" +1 2nct™'  2n

. 2m+1 .
Putting o = 7, we can write

c:(m-n)ﬂ = CXp

Ti Qk+Dr2m-2n+ 1)]
2n

= exp i (2k + l)§2m+ l)”]exp[_i(Zk + 1)”] - _ei(2k+l)a.
L n
Thus
z2m 1 ]
Res———— = ——pi@k+Da (k=0,1,2,...,n-1).

a7 +1  2n

In view of the identity (see Exercise 10, Sec. 7)

n-1 N
> = 11—2— (z#1),
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then,
2m 1 n-1 . i2an  -ix
o , .
ZmZRes Z ———e""Z(e’z"‘)‘t = _ﬂewl € - £ _
t=0 Tt z "+1 n pare n 1-e2®  pmic
_ __ﬂ.' ei(2m+1)1r _1 _E 2i B T
n e —e™ n ¢%—¢®  pdina’
(c) Consider the path shown below, where R>1.
y
X
The residue theorem tells us that
R 2m 2m
x
j = dx+f dz ZmZRes
_Rx +1 Clz koz‘ckz +1
or
x2m T ZZm
J 2n = . _J‘ n dz
X+l nsing Jxz" +1
Observe that if z is a point on C,, then
1Z2"l=R*™ and 1z +1I>R* ~1.
Consequently,
2 2 ——1
Z " R™ R—Z" R2(n—m)—l
JC.zz"-i-l ,st"—lﬂR'R'z":” 0
1_ R2n

and the desired integration formula follows.

10. The problem here is to evaluate the integral

J a)2 +1*’

0

where a is any real number. We do this by following the steps below.

——



(a)

()
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Let us first find the four zeros of the polynomial

g =G -a)l +1
Solving the equation ¢(z) =0 for z°, we obtain z* =a=*i. Thus two of the zeros are

the square roots of a+i, and the other two are the square roots of a—i. By Exercise
5, Sec. 9, the two square roots of a+i are the numbers

%= f(VA+a+tVA a) and -z,

where A=va®+1. Since(+z,)? =z’ =a+i=a—i, the two square roots of a—i, are
evidently

Zo a.nd - Zo.
The four zeros of g(z) just obtained are located in the plane in the figure below, which
tells us that z, and —Z, lie above the real axis and that the other two zeros lie below it.

y
4 .
—ZO zO
0 x
° °
—Z %

Let g(z) denote the polynomial in part (a); and define the function

I
fO=ror

which becomes the integrand in the integral to be evaluated when z =x. The method
developed in Exercise 7, Sec. 69, reveals that z, is a pole of order 2 of f. To be
specific, we note that g is entire and recall from part (a) that g(z,) = 0. Furthermore,

q'(z)=4z(z* —a) and z2 =a+i, as pointed out above in part (a). Consequently,
q'(z,) = 42,(z — a) = 4iz, # 0. The exercise just mentioned, together with the relations
Z2 =a+i and 1+a® = A%, also enables us to write the residue B, of fat z,:

q”(z,) __1223—4a_3z§-a 3a+i)-a a—t a—-i2a* +3)

B = [q'(zo)]3— (diz,)’ —16iz§z0 161(a+1)z0 a-i  16A%

As for the point —Z,, we observe that

7(-2)=-¢(z) and q"(-2)=¢"(2).
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(c)

Since g(~Z,) =0 and ¢'(-Z,) = —q’(z,) = 4iZ, # 0, the point —Z, is also a pole of order
2 of f. Moreover, if B, denotes the residue there,

B--LCR) _ G _ { q"(z,) }z_-f
@) &) 9T :

— —- ; 2
B+B,=B~B =2ImB =— Iml: a+i2a +3)].
8A°i 2,

We now integrate f(z) around the simple closed path in the figure below, where
R>\z,l and C, denotes the semicircular portion of the path. The residue theorem tells
us that

R
[+ [ f(2)dz=27i(B +B,),
R

or
£ dx n —-a+i(2a* +3) dz
J. T g s g - J’ 5
R =a) +1]° 4A Z  [g(2)]
In order to show that
) dx
lim =,
R-)e.JC, [q(z)]Z

we start with the observation that the polynomial g(z) can be factored into the form

4@ =(z-2 )2+ 2 )(z2-% )z +3).

X
& X

—>-

Recall now that R>|z,l. If z is a point on G, so that Izl= R, then

2+ z5l2Mlzl~Iz,ll= R—lz)l and Iz£Z,12l1zl~1Z,| 1= R~lzl.
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This enables us to see that 1g(z)l 2 (R-z,!)* when zis on C,. Thus

' 1 |1
[q@)F |~ (R-z))®

for such points, and we arrive at the inequality

7R R7

R-lz))* (l_l_id)s ’
R

which tells us that the value of this integral does, indeed, tend to 0 as R tends to oo.
Consequently,

1
——dz| <
IC- [q(2)F

dx . —a+i(2a* +3)
PV I_ [(x* —a)* +1]* ~ 4A° Im[ 2 ]

But the integrand here is even, and

—a+iQa’+3)]_ —a+i(2a’+3) VA+a-iVA-a
Im[ % ]_Im[:ﬁw/A+a+iw/A—a w/A+a—i«/A—a:|'

So, the desired result is

j[(x —a) +1] 81/12{143 [(2a2 +3)'\/A+a +a\[A—al,
0

where A =va® +1.

SECTION 74

where a>b>0. To do

1. The problem here is to evaluate the integral j’ = +Cozs)J(cdzx+ o
2O +a)x

1
(22 +a*)(Z* +b%)
inside the simple closed contour shown below, where R > a. The other singularities are, of

, whose singularities ai and bi lie

this, we introduce the function f(z)=

course, in the lower half plane.

NE
7N
8
=

AV
A
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According to the residue theorem,

R ix
-—J;i (x2 + Clez)(dxx2 +b2) ¥ &[f(Z)e‘Zdz - zm(Bl + Bz),
where
B, = Res[f(2)e"]= ——= I
z=ai (z+ai)2?+bY) | _, 2a(*-a®)i
and
B, = Res[f(2)e"] = ——o S
b (2 +a*)z+bi) |, 2b(a* -b*)i’
That is,
J'3 e” dx r [e? e y
(P +a’)(x’ +0) @ —b (—b—— a )—é[f(z)e dz,
or . . L
cosx n (e e’ :
_J;‘()c2 T+ a B (T_ a )— Reé[f(z)e“dz.

Now, if zis a pointon Cp,

| f(RI<M, where M,= 1

(RZ _aZ)(RZ _bZ)

and le%l=¢” < 1. Hence

iz - nR
sljckf(z)e dzls MynR = ARy —0 as R— ce.

IRe f,, f@edz

So it follows that

]-’ cosxdx I 2 A (@>b>0)
(P +a )P +bY) -\ b a :
2. This problem is to evaluate the integral f cosaxdx where a20. The function
xt
[
1 . . .
f(@)= 741 *i; and so we may integrate around the simple closed
contour shown below, where R>1.
y
Cr
Xi

’ X




We start with

where

Hence

Since

we know that

and so

That is,

To evaluate the integral J'
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R iax

“dz = 2 iB,

-R

resf o] £ ] o€
B=Res[f(2)e ]-z+,-] T2

z=i

em -a iaz
x2+1dx=”e —CJ;f(Z)e dZ,

-R

J‘ cosax

_Rx

dx me™* —Re I f(2)e*dz,

1

| f(I< M, where M, =TT
Re 5[ f(2)e™dz| S CJ; f(z)edz| s -E?E—l;
| S e
[ = Z e (a20).

xsin2x . .
————dx, we first introduce the function

b4
+3 (z=-z)(z— z,)

f(@)=—

where z, =+/3i. The point z, lies above the x axis, and Z, lies below it. If we write

f(z)eilz _ _?_(i)_ where ¢(Z) = Zexp(iZZ)
z-z -z,



132
we see that z is a simple pole of the function f(z)e”* and that the corresponding residue is

_ _ Biexp(=243) exp(—2\/§)
Bl - ¢(Zl) - 2‘/- 2 N

Now consider the simple closed contour shown in the figure below, where R > /3.

Yy

Cr

K3i

0 > R X

NS

Integrating f(z)e'** around the closed contour, we have

i2x

jx 4 =278 - [ f2)e™ dz.
Thus
j"s‘"’; dx =Im(2miB) - Imj ) dz.

-R

Now, when z isapointon C,,

| f(2)I< Mg, where MR=-RTR-§—)OasR—-)°°;

and so, by limit (1), Sec. 74,

i, foe =0

Consequently, since
lIm jc, f(z)e'™ dz, < 'J.C‘ f2)e'™ dzl,

we arrive at the result

jismxdx wexp(-243), or fxsm);dx=§exp(—2«/§).
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x3sinax

4 dx, where a>0. We define the function

6. The integral to be evaluated is J

3 e
fl2)= -Zf—-M-; and, by computing the fourth roots of —4, we find that the singularities

Zl = _\/EeiﬁMr - 1+l~ a.nd Zz = ‘\/Eei31r/4 = ‘\/Eeiﬂltieiﬁ/Z - (1+i)i - —1+i

both lie inside the simple closed contour shown below, where R>+/2. The other two
singularities lie below the real axis.

y
Cr
X X
% g
5 -~ 3 =

The residue theorem and the method of Theorem 2 in Sec. 69 for finding residues at simple
poles tell us that

R _3 iax
__J;;"i-4 dr+ J;;, f(@)e™dz =2mi(B + B,),
where
Bl =Res Z:e“‘z _ zl?’ei;zl _ e _ £+ _ e
=47 +4 4z 4 2 2
and
B, =Res z: e _ zge':" _ g _ D gregnie
=5 7" +4 4z 4 2 3
Since
27i(B, + B,) = m’e"‘(em te ) =ime *cosa,
we are now able to write
£ x*sinax '
J 'xT;‘Idx = me " cosa—Im IC. FD)e“dz.

-R
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Furthermore, if z is a point on C,, then

I f(2)ls

and this means that

3

—0 as R— oo,

jim [, r@re=ae]s|f. reae

according to limit (1), Sec. 74. Finally, then,

T x3sinax _,,
f P dx = me™* cosa (@a>0).
. T x’sinxdx .
8. In order to evaluate the integral I(x2+1)(x2+9)’ we introduce here the function
0
3
f(z)=z?—:—l)z(zz—+9). Its singularities in the upper half plane are i and 3i, and we

consider the simple closed contour shown below, where R > 3.

y
Cx X 3i
Xi
ol M
Since
R _zet | __ 1
es[f(z)e] (z+i)(Z +9)] 16¢
and
@ 9
Resl fa)e” ]”( +1)(z+3z)L, 166"

the residue theorem tells us that

R 3 ix
x’e” dx i [ 1 9
+ =27 ——
I 2+ (x> +9) jc.f (2)e"dx Zm( 16e+16e3)’

-R

R 3 .
x'sinxde _w(9 .
_jR(x2 +1)(x*+9)  8e (ez ‘IJ‘Im Jc, f(2)e dz.
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Now if zis a point on Cg, then

R

R-D(R =g S k==

|f(z)ISM, where M, =

So, in view of limit (1), Sec. 74,

lIm J‘C. f(2)e"dz

< lfc f(2)e"dz

—0 as R— oo;

and this means that

I x*sinxdx ___1(_9__1) or]: x’sinxdx _71:(2_1)
(P +D(x*+9) 8e\e® ) o P+ +9)  16e\e? )

The Cauchy principal value of the integral | ;zi‘f":—‘ii—s can be found with the aid of the
e X

function f(z)= and the simple closed contour shown below, where R>+/5.

22 +4z+5
Using the quadratic formula to solve the equation z’+4z+5=0, we find that f has

singularities at the points z; =—-2+iand zZ; =—2—i. Thus f(z)= , Where z,

(z=-z)z-7)
is interior to the closed contour and Z is below the real axis.

y
Cr

Xz

The residue theorem tells us that

R eixdx
£ 4 “de = 2 i

-";z x*+4x+5 Jc. f()e"de = 2mB,

where
iz i
B= RCS[ ¢ — = = ;
=u|(z-z)z-3)| (z-%)

and so

2 sinxdx l: 2mie™
I =Im

+4x+5 | (g —fl)]_hnjc,f&)eudz’

-R
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R .
sinxdx _ w_. 2
-J;exz +4x+5 e sin2 ImJC. f2)edz.

Now, if zis a pointon C,, then le®l=¢™ <1 and

1

. o
@I My where My = o RTZD) ~ RT3

Hence

7R

lIm J‘C‘ f(2)ede| < UC. f(z)e"‘dzl < MynR = BT —0as R— oo,

and we may conclude that

(x+1cosx

dx, we shall use
xX+4x+5

10. To find the Cauchy principal value of the improper integral f

z+1 z+1
+4z+5 (z2-7)(z-7)
same simple closed contour as in Exercise 9. In this case,

the function f(z) = ,» where zy =~2+i, and 7, =—2-1, and the

R ix
JEXDe & [ foretdr=2miB,

X +4x+5
where
B=Res[ @+De® |_(g+De™ _ (~1+i)e™
7=z (z._zl)(z_zl) (Z‘Zl) e .
Thus
(x+Dcosx , . .
J T e ds=ReQmB)- [ f@)e",
or

j (x+1Dcosx

=£ 1 - - iz
a5 &= (sin2-cos2) Jc. f(2)e'*dz.

Finally, we observe that if zis a point on C,, then

R+1 R+l

(RIZ(R-IZ))  (R—57 0 ® R

If(x)IsM, where M,=
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Limit (1), Sec. 74, then tells us that

—0 as R —> oo,

|ReJ'CR f (z)ei‘dzl < l IC‘ f(2)edz

and so

(x+1)cosx

P.V.
j X +4x+5

dx = Z (sin2 - cos2).
(4

12. (a) Since the function f(z)= exp(izz) is entire, the Cauchy-Goursat theorem tells us that its
integral around the positively oriented boundary of the sector 0<r<R,0<0<rn/4
has value zero. The closed path is shown below.

Reiﬂl4
CR

o >— R

A parametric representation of the horizontal line segment from the origin to the point
Ris z=x (0<x < R), and a representation for the segment from the origin to the point

Re™*is z=re™* (0<r<R). Thus

R R
2 2 2, 2

Je"‘ dx+fc e dz—e"'“je" dr=0,

0 R 0

R R
-2 . 2 .2
fe"‘ dx=e""4fe " dr-—fc e® dz.
R
0

0

By equating real parts and then imaginary parts on each side of this last equation, we
see that

Icos(xz)dx = %Ie"zdr - ReJ‘C. e dz

and

j‘:sin(xz)dx = %fe”zdr - Imjck e dz.
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(b) A parametric representation for the arc Cy is z=Re” (0<0< 7/ 4). Hence

. n/4 2 e . nl/4 ) )
J‘ e dr = J‘em “* Rie®®do =iR J‘e-k $in26 ;iR c0s26 ,i8 10
Cr d d
Since le"’z °°‘29| =1 and Ie“’l =1, it follows that

n/4

S do <R [e® 02049,
Cx d

Then, by making the substitution ¢ =28 in this last integral and referring to the form
(3), Sec. 74, of Jordan's inequality, we find that

J eizzdz|<£’]/‘ze"kz’in’d¢sﬁ‘j—=l—)0 as R— o
‘ "2 2 2R* 4R '

(c) Inview of the result in part (b) and the integration formula
fotanlE
0 2
it follows from the last two equations in part (a) that

T w1 m T, 1ll=x
!cos(x )dx—a-\/; and ‘([sm(x )dx—a\/;.

SECTION 77

1. The main problem here is to derive the integration formula

r - b
J-cos(ax)XZCOS( x) dx = _g_(b ~a) (@a20,b20),

0

using the indented contour shown below.
y




Applying the Cauchy-Goursat theorem to the function

mz_ezbz

f@=% -

we have

[ f@de+ [ f@de+ ], f@)dz+ [ fdz=0,

[ f@de+ |, f@de=~[ f@dz-[, f@)dz.

Since L, and —L, have parametric representations
L:z=re*=r(p<r<R) and -L:z=ré*=-r(p<r<R),
we can see that

-~ibr

ibr R —iar
e e —e
dr+ I—-———z dr
r
P

[, f@de+ [, f@de=], f@dz~[ fe)de= f b

P

cos(ar) cos(br) dr.
r

=j(eiar+e-iar);;(eibr+e :br d Zj

R
—cos(b
5 { cOS(ar)r2 cos®br) gy = _ jc, f(@)dz~ J.c, f(@)dz.

\

In order to find the limit of the first integral on the right here as p — 0, we write

_ ([, iaz  (iaz)® _(iaz)’ ibz | (ibe)* | (ibz)’
f(Z)—?'[(l‘l' T +—2'?—+-—§!—+ ) (1+ T 20 +T+"'

_ia=b)
Z

(O <lzi<e0).

From this we see that z =0 is a simple pole of f(z), with residue-B, = i(a—b). Thus

}:i—i»'% fc,, f(2)dz = —B,7i = —i(a— b) i = m(a—b). &

!
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As for the limit of the value of the second integral as R — o, we note thatif z is a point on

C,, then

e+ e +e® 141 2
z)< = < = —
1@ Iz)? R? RP R

Consequently,

2r
R=——>0 as R—> o,
R as R—

It is now clear that letting p — 0 and R — o yields

2:"' cos(ar) —2cos(br) dr = (b —a).

r

This is the desired integration formula, with the variable of integration r instead of x.
Observe that when a =0 and b = 2, that result becomes

J 1~ cos(2x)
x?

dx=m.

0

But cos(2x) =1-2sin® x, and we arrive at

oo . 2
J-smzx b=
0 X 2
2. Let us derive the integration formula
j - (oo (-1<a<3),

(x* + 1)2 4cos(an/2)

0

where x* =exp(alnx) when x >0. We shall integrate the function

_ _ exp(alogz) n 3n
f@= @ +l)2 s (lzl>0,—5<argz< > ),

whose branch cut is the origin and the negative imaginary axis, around the simple closed
path shown below.
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Branch cut

By Cauchy's residue theorem,

Jf@de+ [ f@dz+] f@det [ fle)de=2miRes £(2)
That is,

[ f@de+], f@)dz=2miResf(D)~ [ f)dz= [ FD)dz
Since

L:z=re®=r(p<r<R) and —-L:z=re"=-r(p<r<R),

the left-hand side of this last equation can be written

R a(ln r+i0) a(ln r+ir)

[, f@d-[ f)de j P [

a R

R
!( - M;[(r T ar=as em)J’ 1)zd

Also,

z
(z+0)*’

l}f,-sf (2)=¢’(i) where ¢(z)=

the point z =i being a pole of order 2 of the function f(z). Straightforward differentiation
reveals that

¢ (Z) e(a-l)logz[a(z + l) 22]

(z+i)®
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and from this it follows that

Res f(z) = m/Z(lTa).

We now have

R

iax ¢ 1 m:r/

U+ ) ot dr = 2029 g - [ rde- |, f@az
P

Once we show that
i, fde=0 i [, rore=
we arrive at the desired result:

_a(l-a) 7 " p(1- a) 2 _ (-anm
2+1)? 2 1+ e 4 e doos(an2)’

© ey §
~
~

The first of the above limits is shown by writing

”paﬂ
(1 _ p2)2

and noting that the last term tends to O as p — 0 since a+1> 0. As for the second limit,

p
7y mp =

1 1
Ra+1 vy ”—-3-7
dl R R __R
J.CR f(Z) Z (RZ 1)2 ” (R2 _1)2 i (1——!—)2 ’
R* R?

and the last term here tendsto 0 as R —» o since 3—a>0.

3. The problem here is to derive the integration formulas

Txx lnx 7t2 * AUx T
and L= dx = —
'([x T 2 £x2+1 \3

by integrating the function

1/310gz e(l/3)logzlogz
2Z2+1 - 22+l

n' 3r
z)= IzI>0, - — <argz<— |,
f() (Z> 2 argz 2)
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around the contour shown in Exercise 2. As was the case in that exercise,

[ f@dz+ [, f@de=2miResf()- [ f@)e- [ fode.

Since
e(lIS)logz lOgZ

f(z)=%(_z—3 where ¢(z) = ——==,

z+i

the point z =i is a simple pole of f(z), with residue
Res f(2) = ¢(i) = —¢"™".
The parametric representations

L:z=re®=r(p<r<R) and —LQ:z=re""=—r(pSrSR)

can be used to write

(Vrinr wrs (NrInr+ It‘v—
R e R

Rv;lnr iﬂ/3kv—lnr+lﬂ';v_ 752 . inl6
{ ) dr+e j———-———-——r +1 —ie”™" —~ L‘ f(2)dz - IC. f(2)dz.
By equating real parts on each side of this equation, we have

2
—dr= —ﬁz-sin(n/ 6)

| Y—l“ dr + os(n/s)j' 3‘/—l“’alr nsm(nls)j

P
~Re [ f()dz~Re | f(z)dz;
and equating imaginary parts yields

[Yrinr dr = —cos(n/ 6)

dr+ ﬂcos(n'/3)f

sin(z/ 3) j
~Im fc, f(2)dz-Im fc, f(2)dz.

\3

Now sin(n'/3)=?,‘ cos(n’/3)=-21-, sin(n‘/6)=-§-, cos(n:/6)=7 and it is routine to

show that
lim Iq, f@dz=0 and lim Ic. f(z)dz=0.
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Thus
J"V—lnr n'\/—J' dr =
r+1 S
\/—J‘;V—lnr J' \/3
dr = )
r'+l1 rr+1
That is,
2
31,—7"/512=‘£',
2 2 4
2
£1,+£12=”“/§.
2 2 4

Solving these simultaneous equations for I, and I,, we arrive at the desired integration

formulas.

4., Let us use the function

foy =082

(lzl> 0, —§< argz <§£)

22 +1 2

and the contour in Exercise 2 to show that

I (Inx)2
X +1

and [ =,
s X +1

Integrating f(z) around the closed path shown in Exercise 2, we have

[, f@de+], f@)dz=2miRes f@)~ [, f@)de- [, f@)de

Since

1@=42 where 90 - (og)’

Z+i

the point z =i is a simple pole of f(z) and the residue is

(Inl+in/2)  a°

Res f(z)=¢() =

Also, the parametric representations

L:z=re®=r(p<r<R) and

(logi)” _
2i 2i 8

-L:z=re"=-r(p<r<R)
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enable us to write
R 2 R . 2
_ ((nr) _t(nr+im)
‘Lf(Z)dz_;[r2+1d and J‘laf(z)dz:—;':——-——r2+1 dr.
Since
R 2 R R
_ofnr)” . ¢ dr .¢ Inr
Lf(z)dz+jqu(z)dz—2£ T - !—r2+1+2m;]:r2+1dr,
then,
(lnr) 7 dr Inr ____
e {,z+1+2 { dr=-" [ fdz-, frde

Equating real parts on each side of this equation, we have

(lnr) tdr o )
2Ir Dar - 2Im_——Z-Rejcpf(z)dz-—ReJCRf(Z)dz,

and equating imaginary parts yields

an

It is straightforward to show that

dr—Imj f(2)dz - Imj f(@dz.

lim fc, f@dz=0 and lim Jc. f(z)dz=0.
Hence

T(Inr)? . dr &
2! 1 dr—-m f——z

and

275}7‘3(1":0.

0

Finally, inasmuch as (see Exercise 1, Sec. 72),

we arrive at the desired integration formulas.
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Here we evaluate the integral _[ dx, where a>b>0. We consider the
5 (x+ a)(x+b)

function

ex (llo )
23 _ P 3 g2

(z+a)z+b) (z+a)z+h) (1z1>0,0<argz<27m)

f(2)=

and the simple closed contour shown below, which is similar to the one used in Sec. 77. The
numbers p and R are small and large enough, respectively, so that the points z=-a and

z =—b are between the circles.

Branch cut
R x

A parametric representation for the upper edge of the branch cut from p to R is z=re®
(p <r<R), and so the value of the integral of falong that edge is

R exp[;;- (Inr+ iO)] R Y

_ r

rta)r+b) | Sr+a)r+b)

A representation for the lower edge from p to is R is z=re”" (p <r<R). Hence the
value of the integral of f along that edge from R to p is

R exp[% (Inr+i2 71:)] i
_ = 127r
(r+a)r+b) ;[(r+ a)(r+b)

P

According to the residue theorem, then,

R
dr+ [ f@)de— ™" | dr+ [ f(2)dz = 27i(B + B,),
Cr p C,

R
;[(r+a)(r+b) (r+a)r+b)
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where
ex [llo (—a)] ex [1 (Ina +i7t)] ;
B = Ros f(2) = p 3 g | p3 7=_e'ﬂ/3;\/2
2=-a -a+b a-b a-b
and
ex l:l lo (—b)] ex [1 (Inb+ iﬂ:)] ;
B, =Res f(9) = p 3 4 | _ 1Y 3 ,=eWBVE
2= —-b+a ~b+a a-b
Consequently,

(1_ei2xl3)j__Ldr =_2m-em/3(%_%) - If(z)dz - Jf(Z)dz.
o Cr

p(r+a)(r+b) a-b

Now
273pp
0 0
p)(b 0 P apb-py S PT
and
VR 27R* 1

S——_(R—a)(R—b)an —-—-—-—-(R 2R—b) T-—)OasR—)

Hence

V; dr __ zﬂ.lemlii(v_ V_) e—m/S _ 27ti(% _ _V'b_)
(r+ a)(r+b) (1 e:27t/3)(a b) e—m/S (ein:/3 _e—izl3)(a _b)

© ey, 3

__a®a-3¥p) _n@la- %/‘)=_7_r_ Va-b
sin(z/3)(a-b) ﬁ( V3 a-b
2

Replacing the variable of integration r here by x, we have the desired result:

Vx dx—gﬁ;v_ ~b (a>b>0).

‘!(x+a)(x+b) V3 a-b
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6. (a) Letus first use the branch

1
-1/2 exp(——log Z)
f(z)=zz2 = 2 (lzl>0,—§<argz<§-7£)

+1 2Z2+1 2

and the indented path shown below to evaluate the improper integral

I dx
dAx(x*+1)°

y

Xi

“//X“
rf\ F

-R P 0 p R x
Branch cut

Cauchy's residue theorem tells us that

| f@de+] f@de+[ f@dz+ |, f(z)dz=2riRes f(2),

[, f@d+] f@dz=2miRes @) [, f@)de- [, f@)dz.
Since
L:z=re®=r(p<r<R) and -L:z=re"=-r(p<r<R),

we may write

Jf(z)dz+f f(z)dz:js dr —if dr =(1_i)}l__
- - pNr?+1) (P +1) NP +1)

Thus
R
. dr .
(1-i) ! Ty - PRS- [ f@dz- | fode.



(b)
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Now the point z =i is evidently a simple pole of f(z), with residue

1 1 Y]
_ ~—logi ——(In1+iZ .
Res f(z) =2 ”2] =CXP[ 2 ogz] = GXp[ 2( - 2)- _e =i(l_—£
o= z+i ], 2i 2i 2i 22
Furthermore,
mp wA\lp
f@)dz|< = —0as p—0
J, Jpi-p1) 1-p° P
and

¥

R
Ic’f(Z)dzls(Rz—l)_\/ﬁ(R__l_)_)O as R— oo,
R

Finally, then, we have
~( dr n(1-1i)
1- e
¢ ')of NrE+) . 2

which is the same as

"3

I_dx_ -

Sx(x*+1) A2

To evaluate the improper integral j"_____dx__ , we now use the branch
2 Vx(x2+1)

: ex (—-llo
72 _ p ) gz

Zrl 241 (1z>0,0<argz<2m)

f@)=

and the simple closed contour shown in the figure beloW, which is similar to Fig. 99 in
Sec. 77. We stipulate that p<1 and R>1, so that the singularities z =+i are between

C, and Cp.

Branch cut
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Since a parametric representation for the upper edge of the branch cut from p to R is

z=re" (pSr<R), the value of the integral of falong that edge is

exp -—;—(lnr+i0)] R

2

1
dr= [——adr.
7+ g ;‘;w[r—(r2+1)dr

© S 2

A representation for the lower edge from p tois R is z=re?" (p <r<R), and so the
value of the integral of f along that edge from R to p is

R exp[—%(lnr + i27t)] LB R 1
- 0] dr=—e J.—T—dr = f—-—-;———dr.
r+1 AN+ T NP+ D)

P
Hence, by the residue theorem,

R

1 B o
[ [fodr [+ [ ok =2mB )

P
where
1 . 1 ¥ 1
ek eXp[—Elogz] exp{-i(lnl + z-i-):l gminl4
B =Resfla)= z+iL T 2i T2
and
1 .3
-12 CXPI:"lIOg(—i)] CXP[_E(IH 1+ 1’575)] =314
B=Resf(z)=z = 2 : = P = ————,
e z—if,_, -2i -2i 2i
That is,
ot o~ [ e |
2| =———dr=m(e™* -~ | f(2)dz~ | f(2)dz.
{ Nr(r? +1) ¢ :
Since
27 p 27 \p
(z)dzls = —>0as p—0
.[Cpf _\/E(l_pZ) 1_p2 p
and

27R 2n
J. o] - V(x-1) Bt
R

R
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we now find that

oo 1 e—in‘/4 __e—l'37r/4 e—iﬂ/4+e-i3n’/4eiﬂ
IT-Z—-dr =T- =r
o Vr(r'+1) 2 2
_ ﬂemm +e—i1z/4 3 ”cos(”)_ T
2 4) 2"
When x, instead of r, is used as the variable of integration here, we have the desired
result:
j’___dx__ -7
cAx(x*+1) 42
SECTION 78
1. Write
T do 1 dz _ [ dz
€2z +5iz-2’

0

5+4sin@ j05+4(z—z"1) iz
2i

where C is the positively oriented unit circle [zl=1. The quadratic formula tells us that the

singular points of the integrand on the far right here are z=-i/2 and z=-2i. The point

z=-—i/2 is a simple pole interior to C; and the point z = -2i is exterior to C. Thus

2z

dé . [ 1 ] [ 1 ] (1) 2r
—————=27i Re§ | ———— | =27 =2mi| — |=—.
j5+4sm9 z==il2 2Z2+5i2‘2 4z+5i 7=~il2 & 3i 3

0

2. To evaluate the definite integral in question, write

:f de =J‘ 1 __d_z= 4izdz
l+sin20 C1+(z—z'l)2 iz CZ4"6ZZ+1’
2i

-~

where C'is the pbsitively oriented unit circle Izl=1. This circle is shown below.
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Solving the equation (z*)* —6(z*)+1=0 for z* with the aid of the quadratic formula, we
find that the zeros of the polynomial z* —6z? +1 are the numbers z such that z* = 3+ 2+/2.

Those zeros are, then, z=%vy3+ 242 and z=%y3-2+2. The first two of these zeros are
exterior to the circle, and the second two are inside of it. So the singularities of the
integrand in our contour integral are

z=V3-242 and gz, ==z,

indicated in the figure. This means that

T do
—————=27i(B +B
_J;l+sin29 (B, + B),
where
4iz 4iz i i i
B =Res L —— = =—
=a g —622+1 4z —12g -3 (3-2V2)-3 2v2
and
4iz —4iz i i
B, =Res L= =- .
=-uz* - 67° +1 --4zf+12z1 -3 242
Since
j 2w 2
27i(B, + B,) = 27| ——= |= =% X2 = \27,
Gi+R)= («/5) T oV
the desired result is
t do
——=A27.
_J;1+sin26 "

7. Let C be the positively oriented unit circle |zl=1. In view of the binomial formula (Sec. 3)

.4 T -l 2n
jsin“Gd@:ljsin”ede:lj (Z Z ) £ __ J'(z )™
0 2% 27\ 2i iz 2"“( -1)yide

22n+1( 1) lJ' 2( ) 2n—k(_z_l)kz—ldz

1 'l 2n k 2n~2k-1
22n+l( l)nl- perd ( k )(—1) J‘CZ dz.
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Now each of these last integrals has value zero except when k =n:

f c z'dz =27
Consequently,
T 2n 1 @emi=12xi _ (2n)!
[sin™ 640 = T
0 ‘ :
SECTION 80

5. We are given a function f that is analytic inside and on a positively oriented simple closed
contour C, and we assume that f has no zeros on C. Also, fhas n zeros z, (k=12,...,n)

inside C, where each z, is of multiplicity m,. (See the figure below.)

Y C

(4] X

The object here is to show that

z2f'(z)
L de=2n3m

To do this, we consider the kth zero and start with the fact that

f(@)=(z-z)™"g(2),

where g(z) is analytic and nonzero at z,. From this, it is straightforward to show that

2f'@) _ mz | 8@ _mG-z)tmy 28'() _ | 28 my
2 z-z gk z-z, gz ¢ g z-z

Since the term z_g(%)_ here has a Taylor series representation at z,, it follows that _____z; ((i)
8z Z

has a simple pole at z, and that
Res L@ 0.
=x f(2)

An application of the residue theorem now yields the desired result.
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6. (a)

(b)

To determine the number of zeros of the polynomial z® —5z* +z* — 2z inside the circle
Izl=1, we write

f(@)=-5z" and g(z)=z°+7’-2z.
We then observe that when z is on the circle,

lf(@=5 and Ig(z)l <1zl +1z°+21z1=4.

Since | f(2)l>1g(z)! on the circle and since f(z) has 4 zeros, counting multiplicities,
inside it, the theorem in Sec. 80 tells is that the sum

fD+g()=2°-5z"+7-27

- also has four zeros, counting multiplicities, inside the circle.

Let us write the polynomial 2z* -2z’ +2z* ~27+9 as the sum f(z)+ g(z), where
f(=9 and g(z)=2z"-27"+27*-22.
Observe that when z is on the circle Izl=1,
IfI=9 and lg(z)l <212+ 21z + 21z + 2171 = 8.

Since |f(z)l>Ig(z)l on the circle and since f(z) has no zeros inside it, the sum
f(@)+8(z)=2z* ~22° +27* —2z+9 has no zeros there either.

7. Let C denote the circle |zl=2.

(a)

(b)

The polynomial z*+3z* +6 can be written as the sum of the polynomials

f(2)=32" and g(z)=z*+6.
On C,

If()=31z2P=24 and Ig(z)l=1z*+6I<Izl*+6=22.

Since 1f(z)l>1g(z)l on C and f(z) has 3 zeros, counting multiplicities, inside C, it
follows that the original polynomial has 3 zeros, counting multiplicities, inside C.

The polynomial z* —2z° +9z% + z —1 can be written as the sum of the polynomials

f(2)=92% and g(z)=z*-2z°+z-1.
On C,

If(2)=91z°=36 and Ig(z)i=Iz* —22° + 7~ 1 S IzI* + 2P +ld+1 = 35.
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Since 1 f(z)l>1g(z)l on C and f(z) has 2 zeros, counting multiplicities, inside C, it
follows that the original polynomial has 2 zeros, counting multiplicities, inside C.

(c) The polynomial 2> +3z° +z* +1 can be written as the sum of the polynomials

f(x)=7" and g@)=32"+z>+1.
On C,

| f()l=1z’=32 and lg(z) =132° + 22 +11< 31z + 12 +1=29.

Since | f(z)I>1g(z)l on C and f(z) has 5 zeros, counting multiplicities, inside C, it
follows that the original polynomial has 5 zeros, counting multiplicities, inside C.

10. The problem here is to give an alternative proof of the fact that any polynomial
P()=a,+az+-+a, 2" +a,z" (a, #0),

where n 21, has precisely n zeros, counting multiplicities. Without loss of generality, we
may take a, =1 since

P(2)= a,,(gi’-+ﬂz+ ,,_+9_n_—_l__zn—l +zn).

n n a,
Let
f@=2" and g2)=a,+az++a, 2"
Then let R be so large that

R>1+lal+lal+---Ha,_|.
If z is a point on the circle C:lzl= R, we find that

g Slal +1alizl+ - +la 2" =la | +laIR+---+la_ IR
<la|R™ +1a) R + - +la, )R =(la,) +1a)] + -+ +]a,_)R*
<RR"'=R"=lz"=1f(z).

Since f(z) has precisely n zeros, counting multiplicities, inside C and since R can be made
arbitrarily large, the desired result follows.
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SECTION 82

1. The singularities of the function

253

F=53

are the fourth roots of 4. They are readily found to be
s =42 "
V2, V2i, -+2, and -3
See the figure below, where ¥>+/2 and R>+/2 + Y.
,_.? Y+iR
Ce ).

The function
257"

e"F(s)=
() st-4

has simple poles at the points

S =42, 5 =2i, s, =—-42, and s, = =2i;

and

3 s Sat
2 .‘R:?‘Is[exlF(s)]=i Ees ff?; =i zfeg -_—_i%eht
n=0 s

n=0

[N Y, | -Vt
=—e4+—¢
2 2 2°¢

B eﬁ: +e-~ﬁt N eiwﬁ: +e-i~/7:
2 2

= cosh+/2t + cos V28,

(k=0,1,2,3),
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Suppose now that s is a point on C,, and observe that

Isl=ly+Re“I<Sy+R=R+y and Isl=ly+Re®|21y~Rl=R-y>+2.

It follows that
125l = 21sP < 2(R+ 7)?

and

Is* =412 1isl*~412(R-y)* -4>0.
Consequently,

2(R+y)
IF(S L ——— 0 oo,
(s) R—-7) -4 —-0as R—

This ensures that

f(®)=cosh N2t +cos4/2t.

The polynomials in the denominator of

- 25 -2
(s+1)(s*+25+5)

F(s)
have zeros at s =—1 and s =—1+%2i. Let us, then, write

e.nF(s) = e“(2s - 2) ,
(s+D(s—s)s~5)

where s, =—1+2i. The points —1,5,, and 5 are evidently simple poles of e”F(s) with the
following residues:

Bl =1}=e—ls[e.stF(s)]=_e.i(l{—_2_)_} =_e-—t’
g=—1

(s—5)(s—5)

(25, ~2) 1 i .
B, =Res|e”F =_e¥__=(___ -t i2t
2 ml[ (s)] D6 —5) \2 72 e'e’,

rechtral o €025 =2) [ (25 -2) ___(1 i) i
B, l‘{gls[e F(s)] GG -5 [(s,+l)(sl—§l)}_32_ 2+2 ‘e,
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It is easy to see that

2 (1 QY | :
B +B,+B,=—e '+(——-—)e g '2‘+(_+_. ~t,=i2t
1 2 3 2 2 4 2%3 e’e

_ _ e:2t _e-i2t ei2t+e-i23 .
=—e"+e ’( Y + 5 =¢ '(sin2t +cos2t - 1).

Now let s be any point on the semicircle shown below, where ¥ >0 and R > A5+ Y.

Y+iR
L,
Y
Y-iR
Since
Isl=ly+Re®IS y+ R=R+7 and lsl=ly+ Re®I2ly—Ri=R-y>4/5,
we find that
125 =21<2Isl +2 S 2(R+ 7) +2,
ls+12lsl-1=(R-y)-1>0,
and
152 + 25+ 5l=ls — s lls =5 2 (si-1s,)* 2 [(R- 7)* =5 | >0.
Thus

25-20 2(R+7)+2

|s+1||s2+2s+5|‘[(R_y)_l][(R_y)z_ﬁ]z —0as R,

LF(s)l =

and we may conclude that

f&)=e"'(sin2¢ +cos2t—-1).
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4. The function

2
—-a

F()—(s + a2y

(a>0)

has singularities at s =*ai. So we consider the simple closed contour shown below, where
y>0and R>a+7.

|
8,
N
ray

— 7—iR

Upon writing

__9G) s’ —d’
F(s)——-—(s__ai)2 where ¢(s )-——-——( Tay

we see that ¢(s) is analytic and nonzero at s, =ai. Hence s, is a pole of order m =2 of
F(s). Furthermore, F(s) = F(3) at points where F(s) is analytic. Consequently, 5, is also
a pole of order 2 of F(s); and we know from expression (2), Sec. 82, that

Res[e"F(s)]+Res[e"F(s)] 2Re[e” (B, +b,1)],

s=3,

where b, and b, are the coefficients in the principal part

b, b
s—ai (s—ai)’

of F(s) at ai. These coefficients are readily found with the aid of the first two terms in the

Taylor series for ¢(s) about s, = ai:

F(s)= ¢( i)

[q‘)( )+ ——=(s—ai)+-- ]

1
(s —ai) ai)’
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o(ai) , 9'Gai)

B (s—ai)? s—ai

(0 <ls = ail< 2a).

It is straightforward to show that @(ai) =1/2 and ¢’(ai) =0, and we find that b, =0 and
b, =1/2. Hence
Res [e"F (s)]+ l}_gs [e“F (s)] = 2Re[e‘“‘(%t)] =tcosat.

s=5,

We can, then, conclude that

f(®) =tcosat (a>0),
provided that F(s) satisfies the desired boundedness condition. As for that condition, when
zisapointon G,
ld=ly+Re®ISy+R=R+y and ld=ly+Re®i2ly-Rl=R-y>a;
and this means that

12" ~a’I<izP+a’ S(R+y) +a® and 122 +a* 21izF-a%1 2 (R-y): —a® > 0.

Hence
(R+9) +ad* |
|F(z)l < oo,
(2) (R—7)7 —a'T —0as R—
We are given
inh
F(s) = Sinh(xs) O<x<1),
s“coshs
which has isolated singularities at the points
5=0, 5=V, 4 5=-Gn-Dz, (n=12,.).
2 2
This function has the property F(s) = F(5), and so
f(t)=Res[e"F(s)]+ Z{Res [¢"F(s)]+ Res [e“F(s)]}.
=50 ao L85 $=5,
To find the residue at s, =0, we write
sinh(xs) _ xs+(xs)’ /314 _x+xs 6+ (O <Is|<£)
s*coshs s2(1+s2/2!+---)- S+ /24 .
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Division of series then reveals that s, is a simple pole of F(s), with residue x; and,

according to expression (3), Sec. 82,

Res[e"F(s)]= Res F(s) = x.

s=80

As for the residues of F(s) at the singular points s, (n=1,2,...), we write

F(s)= :(( ; where  p(s) =sinh(xs) and g(s) = s> coshs.
We note that
p(s") = isin_(_zm_ #0 and Q(S”) =0;

furthermore, since

q’(s) =2scoshs + s’ sinhs,

we find that
__(2n—1)27t2. . @n=-Dr _ .(2n-1)*n* . n
q'(s,)= 2 isin——o—=—=— 2 sxn(nn - -2-)
- (z—nﬂi(sm mz'cosZ —cosnmsin ) @n-1'z ( 1" :# 0
4 2 2 4 '

In view of Theorem 2 in Sec. 69, then, s, is a simple pole of F(s), and

ResF(s)= 2 - 4 _CU'_; @n '21)’“.

5= 7G) ©° Q2n-1)

Expression (4), Sec. 82, now gives us

Res [e"F(s)] + Res [e*F(s)]=2Re

3=3,

4 D) . @n-Dmx .(2n—1)7tt]
{ Gn-7 " 2 e"p[' 2 }

D" . @n=-Dmx (2n-Dmt
=17 $in==——=——cos"————.
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Summing all of the above residues, we arrive at the final result:

z (=" (2n l)mcc S(2n-—1)7tt.

FO=x+ 32 o ST 2

7. The function

1
F(s)=——,
() scosh(s"?)

172

where it is agreed that the branch cut of s"'* does not lie along the negative real axis, has

2 _@n-1'z?

isolated singularities at s, =0 and when cosh(s'*) =0, or at the points s, = 2

(n=1,2,...). The point s, is a simple pole of F(s), as is seen by writing

1 1 _ 1
scosh(s”®)  o[1+ ()P 1204+ (s") 1414 ] s+ 5P 12450 124+

and dividing this last denominator into 1. In fact, the residue is found to be 1; and

expression (3), Sec. 82, tells us that

Res [e"F(s)] =Res F(s)=1.

As for the other singularities, we write
F(s)= —Z—((-g where  p(s)=1 and g(s) = scosh(s"?).

Now
p(s,)=1#0 and gq(s,)=0;

also, since

q'(s)= %s” ?sinh(s"%) + cosh(s"?),

it is straightforward to show that

ey @2n-Dzm . _®\_@n-Drx
q'(s,) 1 sm(mr 2)_———4 (-1)" #0.



163
So each point s, is a simple pole of F(s), and

ResF(s) = p,(s,,) =i- D .
s=5, q'(s,) 7w 2n-1

Consequently, according to expression (3), Sec. 82,

st Syt 4 (_1)" (2n - 1)2 ﬂzt
R F = " R F TS e+ —— . =
,f;f[" ®)]=e Res Fs)=— 2n_ltaxp[ " (n=12,...).
Finally, then,
f(®)=Res[e“F(s)]+ 3 Res[e"F(s)],
=30 n=1 =5,
or

4 (=1 (2n-1)*7*
t)=1+—) ~———exp| —~———|.
fO=1+ 23 XP[ 4
Here we are given the function

_coth(zms/2) - cosh(zms/2)
s +1 (s +Dsinh(zs /2)’

F(s)

which has the property F(s)= F(5). We consider first the singularities at s=%i. Upon
writing

cosh(ms/2)
(s +i)sinh(ms /2)’

F(s)= -g% where ¢(s) =

we find that, since ¢(i) =0, the point i is a removable singularity of F(s) [see Exercise
3(b), Sec. 65]; and the same is true of the point —i. At each of these points, it follows that
the residue of e”F(s) is 0. The other singularities occur when 7s/2=nmni
(n=0,£1,12,...), or at the points s =2ni (n=0,£1,£2,...). To find the residues, we write

F(s)= -gg)l where p(s) = cosh(?) and q(s) = (s* + l)sinh(—zﬁ)
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and note that

p(2ni) = cosh(nzi) = cos(nw) = (-1)" 20 and q(2ni)=0.

Furthermore, since
, 2 /4 s . o[ ;s
=(s"+1)—cosh| — |[+2 —
g =(s )2 cos ( > ) ssmh( > ),

we have

¢'2ni) = (=4n* +1)7 cosh(nm) = (~4n* + )7 cos(nm) = -”—(‘"‘22—“-9(—1)" 0.

Thus
p(2ni) 2 1 '
ResF(s)=—"—=—Z.—— =0,t1,%2,...).
s=2ni (s) q’(2ni) m 4n* -1 (n )

Expressions (3) and (4) in Sec. 82 now tell us that

| 2
st - -~
Res[e”F(s)] = Res F(s) = -

and

2 1 )_ 4 cos2nt
s=2ni b/ 4n2"1

Res[e“F(s)|+ Res [¢"F(s)] = 2Re[e‘2"'(—— T

The desired function of ¢ is, then,

2 4 cosnt
=——— .
f( ) /1 b4 n=1 4”2 _'1

The function
sinh(xs'?)
s?sinh(s"?)

F(s)=

(n=12,...).

(O<x<)),

where it is agreed that the branch cut of 5" does not lie along the negative real axis, has

isolated singularities at s=0 and when sinh(s"?)=0, or at the points s=-n’s?

(n=1,2,...). The point s =0 is a pole of order 2 of F(s), as is seen by first writing

sinh(xs'"”) _ x5" 4+ (x5"2) /314 (x52)° /Sl x+x%s/ 64+ x%52 1120 +---

ssinh(s™) 2[5+ (Y /314 (5 U514 s +5716+50 1120 +--
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and dividing the series in the denominator into the series in the numerator. The result is

1
—(x’—-x);+--- (0 <lsi< 2).

sinh(xs'?) 1 1
26

n——— L — — +
5% sinh(s"?) xS
In view of expression (1), Sec. 82, then,
st 1 3 1 2
l§=eos [e F(s)] = g(x -X)+xt= gx(x —- 1)+ xt.

As for the singularities s =—n’n* (n=1,2,...), we write

ps)
q(s)

Observe that p(-n’#?)#0 and q(-n’m*)=0. Also, since

F(s)= where  p(s) =sinh(xs'?) and q(s) = s?sinh(s"?).

q’(s) = 2s sinh(s"?) + —;-ss” 2 cosh(s"?),

it is easy to see that ¢’(-n’n*) = 0. So the points s =-n’2? (n=1,2,...), are simple poles

of F(s), and

p(s) - 2sinh(xs'?) 2 (-p™
,st,,zF(s)_ ()] 2 W 2 =? ( n) sinnmx (n=12,..).

Thus, in view of expression (3), Sec. 82,

. 2 n+l
‘Ess [e’ F(s)]=? ( ’ll) * sinnmx (n=12,..).

Finally, since
SO=Res[e"FO)]+ 3 Reg [e"FO)],

we arrive at the expression

n+l

f@)= —x(x —D+xt+ —2-3-i e ™ sinnmx.

The function

1
F(s)=—~
() s*  ssinhs

has isolated singularities at the points

=0 and s,=nm, 5, =-nm (n=12,...).
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Now

ssinhs=s(s+é—s3+~--)=s2+%s4+--- (0 «lsi< o0),

and division of this series into 1 reveals that

1 1 1 1
F(s)=s_2__(;2_+.6_+...)=_.g+... (O <lsl< ).

This shows that F(s) has a removable singularity at s,. Evidently, then, ¢*F (s) must also

have a removable singularity there; and so

Res[e”F(s)] = 0.

To find the residue of F(s) at s, =nzi (n=1,2,...), we write
F(s)= ﬁfs—)) where p(s)=sinhs—s and g(s)=s>sinhs
q(s
and observe that
pmi)=-nmi#0, g(nmi)=0, and gq'(nmi)=n’m*(=1)"" £0.

Consequently, F(s) has a simple pole at s,, and
p(nmi)  —nmi -

Res F(s)= = = i(n=12,...).
S PO = m) ~ R )

Since F(s) = F(5), the points 5, are also simple poles of F(s); and we may write

(o)l

nw

Res[e”F(s)]+Res [e"F(s)] = 2Re[ﬂie""“] = 2Re[ (icosnmt —sin nﬂ:t)]
s=5, s=5, nw

(_1 n+l

=2 sinnt,

nmw

Hence the desired result is

f@®= 155}05 [e“F (s)] + i{l}:?s [e" F (s)] +Re s [e"F (s)]},

oo n+l
==y D" innm

n=1 h

ale
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11. We consider here the function

sinh(xs)
F(s)=
) s(s* + %) coshs

0O<x<l),

2n-1
where @ >0 and 0 # @, = _(_1'_2__215 (n=1,2,...). The singularities of F(s) are at

s=0, s=twi, and s=zxw, (n=12,..).
Because the first term in the Maclaurin series for sinh(xs) is xs, it is easy to see that s =0 is

a removable singularity of e F(s) and that

Res[e”F(s)] = 0.

s=3,

To find the residue of F(s) at s = wi, we write

F(s):s"’T(z-l; where ¢(s)=;(::—“al:i§cxf.;—h:,

from which it follows that s = wi is simple pole and

sinh(xai) _  isinax
wi2wicosh(wi) —2w'cose’

Res F(s) = ¢(ai) =

Since F(s) = F(5), then,

. isinax . sinax . sin ax sin @t
Res [e“F(s)]+ Res [e 'F(s)]= ZRC[ > ""]=22——sma)t=—2-—-—.
s=ai s=-oi -20°cos@ 20°cos® a°cos@

As for the residues at s=@,i (n=12,...), we put F(s) in the form
_ p(s) ol 3 2
F(s)= ;(;3 where p(s)=sinh(xs) and gq(s)=(s’ + @*s)coshs.

Now p(w,i) =sinh(x@,i) =isinw,x #0 and g(®,i) =0. Also, since

q’(s) = (s* + @*s)sinhs + (3s* + ®*)coshs,

we find that
¢ (@,) = (-0)i + ©*,i)sinh(w,i) = -0, (®* - ©*)sinw, #0.

Hence we have a simple pole at s = @, i, with residue

Res F(s) = p’(a),,t? - 1:mw,2x . .
5=, 9(0i) -0, (0°-o))sina,
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Consequently,

si i i in@,¢
" Fi + RCS “ (s 2Re Isimna@,x oy | o SIn@, xsin @, .
Res[e"F(s)]+ Res [¢"F(s)] = [ o Tl

But sinw, = sin(mr— g) =(-1)"", and this means that

n+l
Res [e*F(s)]+ Res [e“F(s)] L ED sinwxsinw,t ,
3—0) 1 $=—-0) w’. w w

Finally,

S==W 1

fo= l}fbs [e"F (s)] + {litzxs [e"F (s)] + 59 S [e"F (s)]} + E{Res [ "F(s)] + Res [e" F (s)]

‘.,—J

That is,

f(t)_sinazxsina)t Z( =)™ sinw, xsinw,t
o’ cos@ 4 o, o’ - @}




