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DEFII:IMF!N The column space consists of all linear combinations of the colum,,
combinations are all possible vectors Ax. They fill the column space C (A), ¥ The

This column space is crucial to the whole book, and here is why. To solve 4,
to express b as a combination of the columns. The right side b has to be in (), r;

space produced by A on the left side, or no solution! fump

The system Ax = b is selvable if and only if b is in the column space of A,

When b is in the column space, it is a combination of the columns. The coefficign, i
that combination give us a solution x to the system Ax = b. i

Suppose A is an m by n matrix. Its columns have m components (not n). Sq ,
columns belong to R™. The column space of A is a subspace of R™ (not R" ). The o
of all column combinations Ax satisfies rules (i) and (ii) for a subspace: When we 344
linear combinations or multiply by scalars, we still produce combinations of the columps,
The word “subspace” is justified by taking all linear combinations.

Here is a 3 by 2 matrix A, whose column space is a subspace of R*. The column space

of A is a plane in Figure 3.2.

Example 4
15D : | 0
Ar is |4 3 [‘r'} whichis x; |4 | +x2] 3
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A= 143
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Plane = C(A) = all vectors Ax
pis

Figure 3.2: The r'mlumn space C(A) is a plane containing the two columns. Ax =
solvable when b is on that plane. Then b is a combination of the columns.
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1.2, The Nullspace of A: Solving Ax = 0 133
This is the best way to describe the nullspace, by computing special solutions 1o Ax = 0,
This example has one special solution and the nullspace is a line.

The nullspace consists of all combinations of the special solutions.

The plane x + 2y 4 3z = () in Example | had two special solutions:

X 2 =3
l . ."r] ¥ | = U has the special solutions 5| = 1| and 53 = 0
z ] |
Those vectors 5y and 52 he on the plane x 4+ 2y 4+ 3z = (), which is the nullspace of

A=[1 2 3]. All vectors on the plane are combinations of 5; and 5.

Notice what is special about 5¢ and 52. They have ones and zeros in the last two
CcOmponents, Those components are “free” and we choose them specially. Then the first
components —2 and —3 are determined by the equation Ax = 0.

The first column of A = [ i ] contains the pivol, so the first component of x is
not free. The free components correspond to columns without pivots. This description of
special solutions will be completed after one more example.

The special choice (one or zero) is only for the free variables.

Example 3 Describe the nullspaces of these three matrices A. B, C:
2

|
142 A5 3 =8 W
‘4:[3 E] 2[1.4]= e alagd 1"*]=[3 8 6 Iﬁ]'
6

Solution  The equation Ax = 0 has only the zero solution x = 0. The nullspace is Z.
It contains only the single point x = 0 in R*. This comes from elimination:

5 s)la]= o] o 2][5]=[o] = (52 5]

A is invertible. There are no special solutions. All columns of this A have pivots.

The rectangular matrix B has the same nullspace Z. The first two equations in Bx =0
again require x = 0. The last two equations would also force x = 0. When we add
extra equations, the nullspace certainly cannot become larger. The extra rows impose more
conditions on the vectors x in the nullspace.

The rectangular matrix C is different. It has extra columns instead of extra rows. The
solution vector x has four components. Elimination will produce pivots in the first two
columns of C, but the last two columns are “free”. They don’t have pivots:

Ty A e
C=[3aﬁlﬁ]b""°m‘“u‘[uzu4
gl B

For the free variables x3; and x4, we make special choices of ones and zeros. First x3 = 1,
x4 = 0 and second x3 = 0, x4 = 1. The pivot variables x; and x; are determined by the
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3.3. The Rank and the Row Reduced Form 145

Rank One

Matrices of rank one have only one pivor. When elimination produces zero in the first
column, it produces zero in all the columns. Every row is a multiple of the pivot row. At
the same time, every column is a multiple of the pivot column!

1 3 .10 1 3 10
Rank one matrix A=|2 6 20 — R=|0 0 0]|.

3 900 00 0

The column space of a rank one matrix is “one-dimensional™, Here all columns are on the
line through # = (1,2, 3). The columns of A are ¥ and 3u and 10u. Put those numbers
intotherow ™ = [ 1 3 10 ] and you have the special rank one form A = uv":

1 3 10 1701 3 10]
A = column times row = uv' 26 2 |=]| 2 (3)

349, 30 3

With rank one, the solutions to Ax = 0 are easy to understand. That equation u(v'x) = 0
leads us to v'x = 0. All vectors x in the nullspace must be orthogonal to v in the
row space. This is the geometry: row space = line, nullspace = perpendicular plane.
Now describe the special solutions with numbers:

Pivot row [1 3 10] -3 -10
Pivot variable x, 7= |1 s2=| 0
Free variables x; and x5 0 1

The nullspace contains all combinations of s, and 5. This produces the plane x + 3y +

10z = 0, perpendicular to the row (1,3, 10). Nullspace (plane) perpendicular to row
space (line).

Example 1 When all rows are multiples of one pivot row, the rank is r = 1:

; £ |
Bl o e

For those matrices, the reduced row echelon R = rref ( A) can be checked by eve:

== [ e PR = TS TR i | - # i -

Our second definition of rank will be at a higher level. It deals with entire rows and
entire columns—vectors and not just numbers. The matrices 4 and U' and R have r inde-
pendent rows (the pivot rows). They also have r independent columns (the pivot colummns).
Section 3.5 says what it means for rows or columns to be independent.

A third definition of rank, at the top level of linear algebra, will deal with spaces of
vectors. The rank r is the “dimension” of the column space. It is also the dimension of
the row space, The great thing is that r also reveals the dimension of the nullspace.
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the upper Wiang, l
i

The three matrices A;.A;. A4 are a basis for a subspace
‘M, i,

matrices. Its dimension is 3. A; and A4 are a basis lor the diagonal matrices,

a basis for the symmetric matrices? Keep A and Ay, and throw in A; + A;,
To push this further, think about the space of all n by n matrices. One |‘|1w-.|h|._ bag
uses matrices that have only a single nonzero entry (that entry is 1). There are 52 pnmt..,n

for that 1, so there are n® basis matrices:
The dimension of the whole n by n matrix space is n”
In2 4 1

The dimension of the subspace of upper triangular matrices is Sn° + 1y

The dimension of the subspace of diagonal matrices is n.

The dimension of the subspace of symmetric matrices is %n 241y (why ),

Function spaces Thcequathmsdlj',f'd.tz =0and d?y/dx* = —y and d?y/dx? = :
involve the second derivative. In calculus we solve to find the functions v(x):

¥'=0 issolved by any linear function y = cx + d

" =~y issolved by any combination y = ¢ sin.x + d cos x

y" =y issolved by any combination vy = ce* + de™".

That solution space for v" = —y has two basis functions: sin x and cos x, The Space
for y* = 0 has x and 1. It is the “nullspace” of the second derivative! The dimension is 2
in each case (these are second-order equations).

The solutions of " = 2 don't form a subspace—the right side b = 2 is not zero, A
particular solution is y(x) = x°. The complete solution is y(x) = x? + cx +d. Al
those functions satisfy ¥" = 2. Notice the particular solution plus any function cx + d
in the nullspace. A linear differential equation is like a linear matrix equation Ax = b,

But we solve it by calculus instead of linear algebra.
We end here with the space Z that contains only the zero vector. The dimension of this
space is zero. The empty set (containing no vectors) is a basis for Z. We can never allow

the zero vector into a basis, because then linear independence is lost.

® REVIEW OF THE KEY IDEAS =

L. The columns of A are independent if x = 0 is the only solution to Ax = 0.

2. The vectors vy,... , v, span a space if their combinations fill that space.

3. A basis consists of linearly independent vectors that span the space. Every veelt
in the space is a unique combination of the basis vectors.

4, All bases for a space have the same number of vectors, This number of vectors mni
basis is the dimension of the space.
'_5-' ’fhm wlnmm one basis for the column space. The dimension is r.

























