
Chapter 7

Nilpotent Groups

Recall the commutator is given by

[x, y] = x−1y−1xy.

Definition 7.1 Let A and B be subgroups of a group G. Define the com-
mutator subgroup [A,B] by

[A,B] = 〈 [a, b] | a ∈ A, b ∈ B 〉,

the subgroup generated by all commutators [a, b] with a ∈ A and b ∈ B.

In this notation, the derived series is given recursively by G(i+1) =
[G(i), G(i)] for all i.

Definition 7.2 The lower central series (γi(G)) (for i ! 1) is the chain of
subgroups of the group G defined by

γ1(G) = G

and

γi+1(G) = [γi(G), G] for i ! 1.

Definition 7.3 A group G is nilpotent if γc+1(G) = 1 for some c. The least
such c is the nilpotency class of G.

It is easy to see that G(i) " γi+1(G) for all i (by induction on i). Thus
if G is nilpotent, then G is soluble. Note also that γ2(G) = G′.

Lemma 7.4 (i) If H is a subgroup of G, then γi(H) " γi(G) for all i.

(ii) If φ : G → K is a surjective homomorphism, then γi(G)φ = γi(K) for
all i.
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(iii) γi(G) is a characteristic subgroup of G for all i.

(iv) The lower central series of G is a chain of subgroups

G = γ1(G) ! γ2(G) ! γ3(G) ! · · · .

Proof: (i) Induct on i. Note that γ1(H) = H " G = γ1(G). If we assume
that γi(H) " γi(G), then this together with H " G gives

[γi(H),H] " [γi(G), G]

so γi+1(H) " γi+1(G).

(ii) Induct on i. Note that γ1(G)φ = Gφ = K = γ1(K). Suppose
γi(G)φ = γi(K). If x ∈ γi(G) and y ∈ G, then

[x, y]φ = [xφ, yφ] ∈ [γi(G)φ, Gφ] = [γi(K),K] = γi+1(K),

so γi+1(G)φ = [γi(G), G]φ " γi+1(K).
On the other hand, if a ∈ γi(K) and b ∈ K, then a = xφ and b = yφ for

some x ∈ γi(G) and y ∈ G. So

[a, b] = [xφ, yφ] = [x, y]φ ∈ [γi(G), G]φ = γi+1(G)φ.

Thus γi+1(K) = [γi(K),K] " γi+1(G)φ.

(iii) If φ is an automorphism of G, then φ : G → G is a surjective homo-
morphism, so from (ii)

γi(G)φ = γi(G).

Thus γi(G) char G.

(iv) From (iii), γi(G) ! G. Hence if x ∈ γi(G) and y ∈ G, then

[x, y] = x−1xy ∈ γi(G).

Hence
γi+1(G) = [γi(G), G] " γi(G) for all i.

#

We deduce two consequences immediately:

Lemma 7.5 Subgroups and homomorphic images of nilpotent groups are
themselves nilpotent.

Proof: Let γc+1(G) = 1 and H " G. Then by Lemma 7.4(i), γc+1(H) "

γc+1(G) = 1, so γc+1(H) = 1 and H is nilpotent.
Let φ : G → K be a surjective homomorphism. Then Lemma 7.4(ii)

gives γc+1(K) = γc+1(G)φ = 1φ = 1, so K is nilpotent. #
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Note, however, that

N ! G, G/N and N nilpotent %⇒ G nilpotent.

In this way, nilpotent groups are different to soluble groups.

Example 7.6 Finite p-groups are nilpotent.

Proof: Let G be a finite p-group, say |G| = pn. We proceed by induction
on |G|. If |G| = 1, then γ1(G) = G = 1 so G is nilpotent.

Now suppose |G| > 1. Apply Corollary 2.41: Z(G) %= 1. Consider the
quotient group G/Z(G). This is a p-group of order smaller than G, so by
induction it is nilpotent, say

γc+1(G/Z(G)) = 1.

Let π : G → G/Z(G) be the natural homomorphism. Then by Lemma 7.4(ii),

γc+1(G)π = γc+1(G/Z(G)) = 1,

so γc+1(G) " ker π = Z(G). Thus

γc+2(G) = [γc+1(G), G] " [Z(G), G] = 1,

so G is nilpotent. #

The example illustrates that the centre has a significant role in the study
of nilpotent groups. We make two further definitions:

Definition 7.7 The upper central series of G, denoted (Zi(G)) for i ! 0, is
the chain of subgroups defined by

Z0(G) = 1;

Zi+1(G)/Zi(G) = Z(G/Zi(G)) for i ! 0.

Suppose that Zi(G) ! G. Then Z(G/Zi(G)) is a normal subgroup
of G/Zi(G), so corresponds to a normal subgroup Zi+1(G) of G contain-
ing Zi(G) by the Correspondence Theorem. In this way we define a chain
of subgroups

1 = Z0(G) " Z1(G) " Z2(G) " · · · ,

each of which is normal in G. Here Z1(G) = Z(G).

Definition 7.8 A central series for a group G is a chain of subgroups

G = G0 ! G1 ! · · · ! Gn = 1

such that Gi is a normal subgroup of G and Gi−1/Gi " Z(G/Gi) for all i.
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Lemma 7.9 Let
G = G0 ! G1 ! · · · ! Gn = 1

be a central series for G. Then for all i:

γi+1(G) " Gi and Zi(G) ! Gn−i.

Proof: First observe that γ1(G) = G = G0. Suppose that γi(G) " Gi−1

for some i. If x ∈ γi(G) and y ∈ G, then

Gix ∈ Gi−1/Gi " Z(G/Gi),

so Gix commutes with Giy. Therefore

Gi[x, y] = (Gix)−1(Giy)−1(Gix)(Giy) = Gi,

so [x, y] ∈ Gi. Hence

γi+1(G) = [γi(G), G] " Gi.

Thus, by induction, the first inclusion holds.
Now, Z0(G) = 1 = Gn. Suppose that Zi(G) ! Gn−i. Since (Gi) is a

central series for G,

Gn−i−1/Gn−i " Z(G/Gn−i).

Thus if x ∈ Gn−i−1 and y ∈ G, then

Gn−ix and Gn−iy commute; i.e., [x, y] ∈ Gn−i.

Hence [x, y] ∈ Zi(G), so Zi(G)x and Zi(G)y commute. Since y is an arbitrary
element of G, we deduce that

Zi(G)x ∈ Z(G/Zi(G)) = Zi+1(G)/Zi(G)

for all x ∈ Gn−i−1. Thus Gn−i−1 " Zi+1(G) and the second inclusion holds
by induction. #

We have now established the link between a general central series and
the behaviour of the lower and the upper central series.

Theorem 7.10 The following conditions are equivalent for a group G:

(i) γc+1(G) = 1 for some c;

(ii) Zc(G) = G for some c;

(iii) G has a central series.

Thus these are equivalent conditions for a group to be nilpotent.
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Proof: If G has a central series (Gi) of length n, then Lemma 7.9 gives

γn+1(G) " Gn = 1 and Zn(G) ! G0 = G.

Hence (iii) implies both (i) and (ii).
If Zc(G) = G, then

G = Zc(G) ! Zc−1(G) ! · · · ! Z1(G) ! Z0(G) = 1

is a central series for G (as Zi+1(G)/Zi(G) = Z(G/Zi(G))). Thus (ii) im-
plies (iii).

If γc+1(G) = 1, then

G = γ1(G) ! γ2(G) ! · · · ! γc+1(G) = 1

is a central series for G. (For if x ∈ γi−1(G) and y ∈ G, then [x, y] ∈ γi(G),
so γi(G)x and γi(G)y commute for all such x and y; thus γi−1(G)/γi(G) "

Z(G/γi(G)).) Hence (i) implies (iii). #

Further examination of this proof and Lemma 7.9 shows that

γc+1(G) = 1 if and only if Zc(G) = G.

Thus for a nilpotent group, the lower central series and the upper central
series have the same length.

Our next goal is to develop further equivalent conditions for finite groups
to be nilpotent.

Proposition 7.11 Let G be a nilpotent group. Then every proper sub-
group of G is properly contained in its normaliser:

H < NG(H) whenever H < G.

Proof: Let
G = γ1(G) ! γ2(G) ! · · · ! γc+1(G) = 1

be the lower central series. Then γc+1(G) " H but γ1(G) %" H. Choose i as
small as possible so that γi(G) " H. Then γi−1(G) %" H. Now

[γi−1(G),H] " [γi−1(G), G] = γi(G) " H,

so
x−1hxh−1 = [x, h−1] ∈ H for x ∈ γi−1(G) and h ∈ H.

Therefore
x−1hx ∈ H for x ∈ γi−1(G) and h ∈ H.

We deduce that Hx = H for all x ∈ γi−1(G), so that γi−1(G) " NG(H).
Therefore, since γi−1(G) %" H, we deduce NG(H) > H. #

87



Let us now analyse how nilpotency affects the Sylow subgroups of a finite
group. This links into the previous proposition via the following lemma.

Lemma 7.12 Let G be a finite group and let P be a Sylow p-subgroup of G
for some prime p. Then

NG(NG(P )) = NG(P ).

Proof: Let H = NG(P ). Then P ! H, so P is the unique Sylow
p-subgroup of H. (Note that as it is a Sylow p-subgroup of G and P " H, it
is also a Sylow p-subgroup of H, as it must have the largest possible order
for a p-subgroup of H.) Let g ∈ NG(H). Then

P g " Hg = H,

so P g is also a Sylow p-subgroup of H and we deduce P g = P ; that is,
g ∈ NG(P ) = H. Thus NG(H) " H, so we deduce

NG(H) = H,

as required. #

We can now characterise finite nilpotent groups as being built from
p-groups in the most simple way.

Theorem 7.13 Let G be a finite group. The following conditions on G are
equivalent:

(i) G is nilpotent;

(ii) every Sylow subgroup of G is normal;

(iii) G is a direct product of p-groups (for various primes p).

Proof: (i) ⇒ (ii): Let G be nilpotent and P be a Sylow p-subgroup of G
(for some prime p). Let H = NG(P ). By Lemma 7.12, NG(H) = H. Hence,
by Proposition 7.11, H = G. That is, NG(P ) = G and so P ! G.

(ii) ⇒ (iii): Let p1, p2, . . . , pk be the distinct prime factors of |G|, say

|G| = pn1

1 pn2

2 . . . pnk

k ,

and assume that G has a normal Sylow pi-subgroup Pi for i = 1, 2, . . . , k.
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Claim: P1P2 . . . Pj
∼= P1 × P2 × · · · × Pj for all j.

Certainly this claim holds for j = 1. Assume it holds for some j, and
consider N = P1P2 . . . Pj

∼= P1 × · · · × Pj ! G and Pj+1 ! G. Then |N | is
coprime to |Pj+1|. Hence N ∩ Pj+1 = 1 and therefore NPj+1 satisfies the
conditions to be an (internal) direct product. Thus

NPj+1
∼= N × Pj+1

∼= P1 × P2 × · · · × Pj × Pj+1,

and by induction the claim holds.
In particular, note

|P1P2 . . . Pk| = |P1 × P2 × · · ·× Pk| = |P1| · |P2| · . . . · |Pk| = |G|,

so
G = P1P2 . . . Pk

∼= P1 × P2 × · · ·× Pk.

(iii) ⇒ (i): Suppose G = P1×P2×· · ·×Pk, a direct product of non-trivial
p-groups. Then

Z(G) = Z(P1) × Z(P2) × · · ·× Z(Pk) %= 1

(by Corollary 2.41). Then

G/Z(G) = P1/Z(P1) × P2/Z(P2) × · · ·× Pk/Z(Pk)

is a direct product of p-groups of smaller order. By induction, G/Z(G) is
nilpotent, say γc(G/Z(G)) = 1. Now apply Lemma 7.4(ii) to the natural
map π : G → G/Z(G) to see that γc(G)π = γc(G/Z(G)) = 1. Thus γc(G) "

ker π = Z(G) and hence

γc+1(G) = [γc(G), G] " [Z(G), G] = 1.

Therefore G is nilpotent. #

This tells us that the study of finite nilpotent groups reduces to under-
standing p-groups. We finish by introducing the Frattini subgroup, which is
of significance in many parts of group theory.

Definition 7.14 A maximal subgroup of a group G is a subgroup M < G
such that there is no subgroup H with M < H < G.

Thus a maximal subgroup is a proper subgroup which is largest amongst
the proper subgroups.

If G is a nilpotent group, then Proposition 7.11 tells us that

M < NG(M) " G,

for any maximal subgroup M of G. The maximality of M forces NG(M) =
G; that is, M ! G. Thus:
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Lemma 7.15 Let G be a nilpotent group. Then every maximal subgroup
of G is normal in G. #

Definition 7.16 The Frattini subgroup Φ(G) of a group G is the intersec-
tion of all its maximal subgroups:

Φ(G) =
⋂

M maximal
in G

M.

(If G is an (infinite) group with no maximal subgroups, then Φ(G) = G.)

If we apply an automorphism to a maximal subgroup, we map it to
another maximal subgroup. Hence the automorphism group permutes the
maximal subgroups of G.

Lemma 7.17 If G is a group, then the Frattini subgroup Φ(G) is a char-
acteristic subgroup of G. #

Our final theorem characterising nilpotent finite groups is:

Theorem 7.18 Let G be a finite group. The following are equivalent:

(i) G is nilpotent;

(ii) H < NG(H) for all H < G;

(iii) every maximal subgroup of G is normal;

(iv) Φ(G) ! G′;

(v) every Sylow subgroup of G is normal;

(vi) G is a direct product of p-groups.

Proof: We have already proved that (i) ⇒ (ii) (Proposition 7.11), (ii) ⇒
(iii) (see the proof of Lemma 7.15) and (v) ⇒ (vi) ⇒ (i).

(iii) ⇒ (iv): Let M be a maximal subgroup of G. By assumption,
M ! G. Since M is maximal, the Correspondence Theorem tells us that
G/M has no non-trivial proper subgroups. It follows that G/M is cyclic
and so is abelian. Lemma 6.16 gives

G′ " M.

Hence
G′ "

⋂

M max G

M = Φ(G).
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(iv) ⇒ (v): Let P be a Sylow p-subgroup of G and let N = P Φ(G)
(which is a subgroup of G, since Φ(G) ! G by Lemma 7.17). Let x ∈ N
and g ∈ G. Then

x−1xg = [x, g] ∈ G′ " Φ(G) " N.

Hence xg ∈ N for all x ∈ N and g ∈ G, so N ! G. Now P is a Sylow
p-subgroup of N (since it is the largest possible p-subgroup of G, so is
certainly largest amongst p-subgroups of N). Apply the Frattini Argument
(Lemma 6.35):

G = NG(P )N

= NG(P )P Φ(G)

= NG(P )Φ(G) (as P " NG(P )).

From this we deduce that G = NG(P ): for suppose NG(P ) %= G. Then
NG(P ) " M < G for some maximal subgroup M of G. By definition,
Φ(G) " M , so

NG(P )Φ(G) " M < G,

a contradiction. Hence NG(P ) = G and so P ! G.

This completes all remaining stages in the proof. #

Theorem 7.19 Let G be a finite group. Then the Frattini subgroup Φ(G)
is nilpotent.

Proof: Let P be a Sylow p-subgroup of Φ(G). The Frattini Argument
(Lemma 6.35) gives

G = NG(P )Φ(G).

If NG(P ) %= G, then there is a maximal proper subgroup M of G with
NG(P ) " M < G. By definition, Φ(G) " M . Hence

NG(P )Φ(G) " M < G,

contrary to above. Therefore NG(P ) = G. Hence P ! G, and so in partic-
ular P ! Φ(G). Therefore Φ(G) is nilpotent by Theorem 7.13. #

We have used one property of the Frattini subgroup twice now, so it is
worth drawing attention to it.

Definition 7.20 A subset S of a group G is a set of non-generators if it
can always be removed from a set of generators for G without affecting the
property of generating G.
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Thus S is a set of non-generators if

G = 〈X,S〉 implies G = 〈X〉

for all subsets X ⊆ G.

Lemma 7.21 The Frattini subgroup Φ(G) is a set of non-generators for a
finite group G.

Proof: Let G = 〈X,Φ(G)〉. If 〈X〉 %= G, then there exists a maximal
subgroup M of G such that 〈X〉 " M < G. By definition of the Frattini
subgroup, Φ(G) " M . Hence X ∪Φ(G) ⊆ M , so 〈X,Φ(G)〉 " M < G which
contradicts the assumption. Therefore G = 〈X〉 and so we deduce Φ(G) is
a set of non-generators for G. #

Theorem 7.22 Let G be a finite group. Then G is nilpotent if and only if
G/Φ(G) is nilpotent.

Proof: By Lemma 7.5, a homomorphic image of a nilpotent group is nilpo-
tent. Consequently if G is nilpotent, then G/Φ(G) is nilpotent.

Conversely suppose G/Φ(G) is nilpotent. Let P be a Sylow p-subgroup
of G. Then PΦ(G)/Φ(G) is a Sylow p-subgroup of G/Φ(G). Hence

PΦ(G)/Φ(G) ! G/Φ(G),

as G/Φ(G) is nilpotent. Therefore

P Φ(G) ! G

by the Correspondence Theorem. Now P is a Sylow p-subgroup of P Φ(G)
(as even G has no larger p-subgroups), so we apply the Frattini Argument
(Lemma 6.35) to give

G = NG(P ) · P Φ(G).

Therefore
G = NG(P )Φ(G)

(as P " NG(P )). Now as Φ(G) is a set of non-generators for G (see
Lemma 7.21), we deduce

G = NG(P ).

Thus P ! G. Hence G is nilpotent by Theorem 7.13. #
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