





2.1. Vectors and Linear Equations 33

If the components of a vector v are vy and v, then ¢v has components ¢vy and cvs.
The other basic operation is vector addition. We add the first components and the
second components separately. The vector sum is (1, 11) as desired:

ot [3]:[1]-[ 1]

The right side of Figure 2.2 shows this addition. The sum along the diagonal is the vector
b = (1, 11) on the right side of the linear equations.

To repeat: The left side of the vector equation is a linear combination of the columns,
The problem is to find the right coefficients x = 3 and y = |. We are combining scalar
multiplication and vector addition into one step. That step is crucially important, because
it contains both of the basic operations:

Of course the solution x = 3, y = | is the same as in the row picture. I don’t know
which picture you prefer! I suspect that the two intersecting lines are more familiar at first.
You may like the row picture better, but only for one day. My own preference is to combine
column vectors. It is a lot easier to see a combination of four vectors in four-dimensional
space, than to visualize how four hyperplanes might possibly meet at a point. (Even one
hyperplane is hard enough. . .)

The coefficient matrix on the left side of the equations is the 2 by 2 matnx A:

Coefficient matrix A= [ ; _i ]

This is very typical of linear algebra, to look at a matrix by rows and by columns. Its rows
give the row picture and its columns give the column picture. Same numbers, different
pictures, same equations. We write those equations as a matrix problem Ax = b:

s [ 3][7]-[ 4]

The row picture deals with the two rows of A. The column picture combines the columns.
The numbers x = 3 and y = 1 go into x. Here is matrix-vector multiplication:

Looking ahead This chapter is going to solve n equations in n unknowns (for any n).
1 am not going at top speed, because smaller systems allow examples and pictures and
complete understanding. You are free to go faster, as long as matrix multiplication and
inversion become clear. Those two ideas will be the keys to invertible matrices, ' 5

I can list four steps to understanding elimination using matrices. v
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Figure 2.7: Row and column pictures for Example 2: infinitely many solutions,

Examples 1 and 2 are singular—there is no second pivot. Example 3 is nonsingulay._.
there is a full set of pivots and exactly one solution. Singular equations have no solution o
infinitely many solutions, Pivots must be nonzero because we have to divide by them,

Three Equations in Three Unknowng

To understand Gaussian elimination, you have to go beyond 2 by 2 systems. Three by three
is enough to see the pattern. For now the matrices are square—an equal number of rows
and columns. Here is a 3 by 3 system, specially constructed so that all steps lead to whole
numbers and not fractions:

2x+4y—-2z=12

4x+9y—-3z=8 (1)

-2x=-3y+7z=10

What are the steps? The first pivot is the boldface 2 (upper left). Below that pivot we want

to eliminate the 4. The first multiplier is the ratio 4/2 = 2. Multiply the pivot equation by
£21 = 2 and subtract, Subtraction removes the 4.x from the second equation:

Step 1 Subtract 2 times equation 1 from equation 2. This leaves y + z = 4.

We also eliminate —2.x from equation 3—still using the first pivot. The quick way is to add
equation I to equation 3. Then 2x cancels —2x. We do exactly that, but the rule in this book
is 10 subtract rather than add. The systematic pattern has multiplier £5; = —2/2 = -1
Subtracting ~1 times an equation is the same as adding:

Step 2 Subtract 1 times equation 1 from equation 3, This leaves y 4 5z = 12.

The two new equations involve only y and z. The second pivot (in boldface) is 1:

Iy +1z=4
¥l elimiasied Iy 45z = 12

We have reached a 2 by 2 system. The final step eliminates y to make it 1 by 1:
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Step 3 Subtract equation 2pew from 3pew. The multiplieris 1/1 = 1, Then 4z = 8.
The original Ax = b has been converted into an upper triangular Ux = ¢:

xx +4y =2z =2 v
4x +9y -3z =8 has become

2
4 (2)
-2x =3y +7z2=10 Ux=¢ ]

The goal is achieved—forward elimination is complete from A to U. Notice the pivots
2, 1,4 along the diagonal of U. The pivots | and 4 were hidden in the original system,
Elimination brought them out. Ux = ¢ is ready for back substitution, which is quick:

(4z=8 pgives z2=2) (y+z=4 gives y=2) (equationl gives x = —I)

The solution is (x,y,z) = (=1,2,2). The row picture has three planes from three equa-
tions. All the planes go through this solution. The original planes are sloping, but the last
plane 4z = 8 after elimination is horizontal,

The column picture shows a combination Ax of column vectors producing the right
side b. The coefficients in that combination are —1, 2, 2 (the solution):

2 4 -2 2
Ax=(-1)| 4|+2| 9|+2|—-3|equals | 8| =0b. (3)
-2 -3 I 10

The numbers x, y, 2 multiply columns 1, 2, 3in Ax = b and also in the triangular Ux = ¢.
For a 4 by 4 problem, or an n by n problem, elimination proceeds the same way. Here
is the whole idea, column by column from A to U, when elimination succeeds.

Column 1. Use the first equation to create zeros below the first pivot.
Column 2, Use the new equation 2 to create zeros below the second pivol.
Columns 3 to n. Keep going to find all n pivots and the triangular U
X
After column 2 we have

We want

X X
X

* (4)
X
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L= =l = ]

The result of forward elimination is an upper triangular system. It is nonsingular if there
is a full set of n pivots (never zero!). Question: Which x on the left could be changed
to boldface x because the pivot is known? Here is a final example to show the original
Ax = b, the triangular system Ux = ¢, and the solution (x, v, z) from back substitution:

X+ y+ z2=6 X+y+2=06 X 3 Back
X+2y+2:=9 Forward y+zr= yl=]2 Back
x+2y+3z2=10 Forward z= z 1

All multipliers are 1. All pivots are 1. All planes meet at the solution (3, 2, 1). The columns
of A combine with 3,2, 1 to give & = (6,9, 10). The triangle shows Ux = ¢ = (6,3, 1).
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2.3 Elimination Using Matrices

We now combine two ideas—elimination and matrices. The goal is to express all the steps
of elimination (and the final result) in the clearest possible way. In a 3 by 3 example,
elimination could be described in words, For larger systems, a long list of steps would be
hopeless. You will see how to subtract a multiple of row j from row { —using a matrix [,

2x1 + 4x3 — 2xa 2 2 4 -
h

The 3 by 3 example in the previous section has the beautifully short form Ax = 4
2 X 2
4x; + 9x2 —3x3 4 9 -3 (1)
X3 10

8  is the same as
-2 =3 7

hnon

=X =3x2 4+ Tx;3 =10
The nine numbers on the left go into the matrix A. That matrix not only sits beside x, ji
multiplies x. The rule for “A times x " is exactly chosen to yield the three equations,

Review of A times x. A matrix times a vector gives a vector, The matrix is square whep
the number of equations (three) matches the number of unknowns (three). Our matrix is
3 by 3. A general square matrix is n by n. Then the vector x is in n-dimensional space,

[

-------

X1
The unknownin R is x = | xa and the solutionis x = | 2

X3 2

Key point: Ax = b represents the row form and also the column form of the equations

2 4 -2 2
Columnform Axr=(-1)| 4[+2| 9|+2|-3(=]| 8| =5b.

-2 -3 7 10

This rule for Ax is used so often r.hnl we express it once more fnr ¢mphus:s

Ax = x; times {:ulumn IJ + +x, tlmes (cuhtmn n.
'- ”'-.: ?ﬂﬂuﬁhﬁmﬁq 5

When we compute the components of Ax, we use the row form of matrix multlpilca-
tion, The ith component is a dot product with row i of A, which is [a;, a2 ... aia
The short formula for that dot product with x uses “sigma notation”,

Components of Ax are dot products with rows of A.

= ] and stop with j = n.

The sigma symbol ¥ is an instruction to add.! Start with j
- Start the sum with a;;.x; and stop with a;,x,. That produces (row i) « x.

~ Einstein shortened this even more by omitting the 3, The repeated / inaj;x; automatically meant addition.
_' Heﬂhwmﬂumuaf:;.ﬂuhh;mmtdn.mmﬂmduz.

Il.I 1
Iﬂ.ll

E
-
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One point to repeat about matrix notation: The entry in row 1, column 1 (the top left
comer) is @yy. The entry in row 1, column 3 is ays. The entry in row 3, column 1 is a,.
(Row number comes before column number.) The word “entry” for a matrix corresponds
to “component” for a vector, General rule: a;; = Al J)isinrow i, column j.

Example 1  This matrix has aj; = 2i + j. Thenay; = 3. Alsoay; = 4 and a3y = 5.
Here is Ax with numbers and letters:

3 4112]1_13+2+4-1 du izl x| _ lanx +dix
5 611 Se24 6.1 dz) dzz || X2 azi Xy +anxa |
The first component of Ax 15 6 4 4 = 10. A row fimes a column gives a dot product.

The Matrix Form of One Elimination Step

Ax = b is a convenient form for the original equation. What about the elimination steps?
The first step in this example subtracts 2 times the first equation from the second equation,
On the right side, 2 times the first component of b is subtracted from the second component:

2 2
First step h=| 8| changesto bpew =| 4
10 10

We want to do that subtraction with a matrix! The same result bpew = Eb is achieved
when we multiply an “elimination matrix” E times b. It subtracts 2by from b,:

i el
L3
i T,

.
L
-

Multiplication by £ subtracts 2 times row 1 from row 2. Rows | and 3 stay the same:

Josni Ol Oal T2 2 1. .0 0T Fby by
T ] B [ =2 a4 0kik]=]-0n
R ] 10 0 0 1|]|h by

The first and third rows of E are rows from the identity matrix /. The new second compo-
nent is the number 4 that appeared after the elimination step. This is by — 2by.

It is easy to describe the “elementary matrices™ or “elimination matrices™ like this E.
Start with the identity matrix /. Change one of its zeros to the multiplier —L:

4
[,
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Example 2 The matrix £3; has —£ in the 3, I position:

1 00 ) ol 1y
Identity /=|0 1 0 Elimination Es;=| 0 1 01,
sl R | ~{ () |

When you multiply / times b, you get b. But E4y subtracts [ times the first componen
from the third component. With £ = 4 this example gives 9 — 4 = 5.

$ 00 | | | 0 0 | |
Ik=l10 1 0l13]=1]3 and Eb=| 0 1 0O 3l=]1831.
0.0°1 9 9 -4 0 1 9 5

What about the left side of Ax = 47 Both sides are multiplied by E31. The purpose of
E+y is to produce a zero in the (3, 1) position of the matrix.

The notation fits this purpose. Start with A. Apply E’s to produce zeros below the
pivots (the first £ is E3;). End with a triangular U. We now look in detail at those steps,

First a small point. The vector x stays the same. The solution is not changed by
elimination. (That may be more than a small point.) It is the coefficient matrix that is
changed. When we start with Ax = b and multiply by E, the result is EAx = Ep,
The new matrix EA is the result of multiplying E times A.

Confession The elimination matrices E;; are great examples, but you won't see them
later. They show how a matrix acts on rows. By taking several elimination steps, we will
see how to multiply matrices (and the order of the E's becomes important). Products and
inverses are especially clear for E's. It is those two ideas that the book will now use.

Matrix Multiplication

The big question is: How do we multiply two matrices? When the first matrix is E,
we already know what to expect for EA. This particular E subtracts 2 times row 1 from
row 2 of this matrix A and any matrix. The multiplier is £ = 2:

Jetigy0 2 4 =2 2 4 =2
EA=|-2 1 0 4 9 =-3|l=10 1 1 (with the zero). (2)
0 0 1}||-2 -3 17 -2 =3 7

This step does not change rows 1 and 3 of A. Those rows are unchanged in £ A—only
row 2 is different. Twice the first row has been subtracied from the second row. Matrix
Mﬁpﬂuﬁmmﬂm:m—mdth&mwumnfequanmn is EAx = Eb.
sty EAx is simple but it involves a subtle idea. Start with Ax = b. Multiplying both
O liﬁubg E gives E(Ax) = Eb. With matrix multiplication, this is also (EA)x = Eb.
ptt 'Iblsﬁ'lt“ E times Ax, the second is EA times x. They are the same, Parentheses
B - ded. We just write EAx.
mwnmmﬁ C with several column vectors like C = [¢ ¢ ¢3). When
AC, you can do AC first or EA first. This is the point of an “associative
ike 3 % (4 x 5) = (3 % 4) x 5. Multiply 3 times 20, or multiply 12 times 5. Both
are 60, That law seems so clear that it is hard to imagine it could be false.
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10 (a) What 3 by 3 matrix £;3 will add row 3 to row 17
(b) What matrix adds row | to row 3 and at the same time row 3 to row 17
(¢) What matrix adds row 1 to row 3 and then adds row 3 to row 17

11 Create a matrix that has ay; = a3z = a3y = | butelimination produces two negatiye
pivots without row exchanges. (The first pivot is 1.)
12 Multiply these matrices:

2 JE5 1 0 L B N G 0 1 Lol OFl Y 2
04 506 10 o St U 1) B 0
R 0MNT 8 -9 0 0 -1 0 1 LA

13 Explain these facts, If the third column of B is all zero, the third column of EB is
all zero (for any E). If the third row of B is all zero, the third row of EB might not

be zero.

_— =
=R T

14  This 4 by 4 matrix will need elimination matrices £2; and E3z and Eg3. What are
those matrices?

T S
E el et il
42l spmty~n sl
DM ls 7

mmmawammmmj = 2i — 3j. This matrix has a3, = 0, but
elimination still needs £3; to produce a zero in the 3,2 position. Which previous
xlﬂnoﬂsinal zero and what is E4,7

=i

....ﬂ:mshﬂwpoinu (x,y) = (1,4) and (2.8)
- 'g@i‘mfnrllwunhwm(a b,c).

e

"".
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2.4 Rules for Matrix Operations

I will start with basic facts. A matrix is a rectangular array of numbers or “entries”. When
A has m rows and n columns, it is an “m by n™ matrix. Matrices can be added if their
shapes are the same. They can be multiplied by any constant ¢. Here are examples of
A + B and 2A, for 3 by 2 matrices:

._‘_
B
0

L 2 3 4 1
4 7 8 and 2|3
9 0

N
Il
=1

9

—
—

Matrices are added exactly as vectors are—one entry at a time. We could even regard a
column vector as a matrix with only one column (so # = 1). The matrix — A comes from
multiplication by ¢ = —1 (reversing all the signs). Adding A to —A leaves the zero matrix,
with all entries zero. All this is only common sense.

The entry in row i and column j is called a;; or A(i, j). The n entries along the first
row are dayy, a2, . . ., d1p. The lower left entry in the matrix is a,,; and the lower right is
Amp- The row number i goes from | to m. The column number j goes from 1 to n.

Matrix addition is easy. The serious question is matrix multiplication. When can we
multiply A times B, and what is the product AB? We cannot multiply when A and B are
3 by 2. They don’t pass the following test:

To multiply AB:  If A has n columns, B must have n rows.

When A is 3 by 2, the matrix B can be 2 by 1 (a vector) or 2 by 2 (square) or 2 by 20,
Every column of B is multiplied by A. 1 will begin matrix multiplication the dot product
way, and then return to this column way: A times columns of B. The most important rule
is that A B times C equals A times BC. A Challenge Problem will prove this.

Suppose A is m by n and B is n by p. We can multiply. The product AB is m by p.

(mxn)nxp)=(mxp) m rows n rows | mrows
bie P ncolumns | | p columns | | p columns |

A row times a column is an extreme case. Then 1 by n multiplies # by 1. The result is |
by 1. That single number is the “dot product™.

In every case AB is filled with dot products. For the top comer, the (1. 1) entry of AB
is (row 1 of A) - (column 1 of B). To multiply matrices, take the dot product of each row
of A with each column of B.

The entry in row i and column j of AB is (row i of A) - (column j of B) .

Figure 2.8 picks out the second row (i = 2) of a 4 by 5 matrix A. It picks out the third
column (j = 3) of a 5 by 6 matrix 8. Their dot product goes into row 2 and column 3
of AB. The matrix AB has as many rows as A (4 rows), and as many columns as B,










.--“_'l‘

Look at the special case when A = B = ¢ = square matrix, Then (A timey 42

equal to (A? times A). The product in either order is A*. The matrix powers
same rules as numbers:

) iy

A? follow the

AP = AAA- A (plactors)  (AP)(A%) = APH (AP) = Ama,

Those are the ordinary laws for exponents. A* times A* is A7 (seven factors), 4 @
the fourth power is A'? (twelve A's). When p and g are zero or negative these ruleg stil|
hold, provided A has a *“~1 power"—which is the inverse matrix A~'. Then A% = J the
identity matrix (no factors).

For a number, a~" is 1/a. For a matrix, the inverse is written A~". (It is never I/4
except this is allowed in MATLAB.) Every number has an inverse except a = 0. To dr:c;dé
when A has an inverse is a central problem in linear algebra. Section 2.5 will start on the
answer. This section is a Bill of Rights for matrices, to say when A and B can be multiplieg
and how.

Block Matrices and Block Multiplication

We have to say one more thing about matrices. They can be cut into blocks (which are
smaller matrices). This often happens naturally. Here is a 4 by 6 matrix broken into blocks
of size 2 by 2—in this example each block is just /:

B 103l DA A0S
| 4by6matrix 010 l‘ﬂl _[f / I]
K 2 by 2 blocks '1u|ul10_fff'
E EoReRl Ot abio -1 .

- If Bisalso 4 by 6 and the block sizes match, you can add A + B a block at a time.
~ We have seen block matrices before. The right side vector b was placed next to A in
iented matrix”. Then [A b ] has two blocks of different sizes. Multiplying by
rix gave [EA  Eb]. No problem to multiply blocks times blocks, when
%

l-._.*‘

R

12 [4uBu + 4By -
R e
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For square maltrices, an inverse on one side is automatically an inverse on the other side.

If AB = I then automatically BA = [. In that case B is A~ This is very useful to know
but we are not ready to prove it.

Example 3 Suppose F subtracts 4 times row 2 from row 3, and F~! adds it back:

| 0 0 0 0
F=lygywsg " 0 and F~! = P O1.
0 24 Y %

Now multiply F by the matrix E in Example 2 to find FE. Also multiply £~ times F~!
to find (FE)~!. Notice the orders FE and E~' F~!

20 -

1 0 O 1 0 O
FE=| =5 1 0O} ‘isinventedby E'F'=| 5 I 0]. (6)
20 -4 1 0 4 1

The result is beautiful and correct. The product FE contains “20" but its inverse doesn’t.
E subtracts 5 times row 1 from row 2. Then F subtracts 4 times the new row 2 (changed
by row 1) from row 3. In this order FE, row 3 feels an effect from row 1.

In the order E~' F~', that effect does not happen. First F~! adds 4 times row 2 to
row 3. After that, E~! adds 5 times row 1 to row 2. There is no 20, because row 3 doesn’t
change again. In this order E~'F~', row 3 feels no effect from row 1.

In elimination order F follows E. In reverse order E~' follows F~'.

EF~" is quick. The multipliers 5, 4 fall into place below the diagonal of s

This special multiplication £~ F~! and E~' F~'G " will be useful in the next sec-
tion. We will explain it again, more completely. In this section our job is A~!, and we
expect some serious work to compute it. Here is a way to organize that computation.

Calculating A~' by Gauss-Jordan Elimination

I hinted that A~! might not be explicitly needed. The equation Ax = b is solved by
x = A~'b. But it is not necessary or efficient to compute A~' and multiply it times b.
Elimination goes direcily to x. Elimination is also the way to calculate A~ as we now
show. The Gauss-Jordan idea is to solve A4A~! = I, finding each column of A™.

A multiplies the first column of A™! (call that x;) to give the first column of [ (call
that e ). This is our equation Ax; = e; = (1.0,0). There will be two more equations.
Each of the columns x,, x3, x3 of A~" is multiplied by A to produce a column of /:

ot R A1l RO

To invert a 3 by 3 matrix A, we have to solve three systems of equations: Ax; = e and
Axs = €3 = (0.1,0) and Ax3 = e3 = (0,0, 1). Gauss-Jordan finds A~ this way.




“uy

-~ The Gauss-Jordan method computes A" by solving all n equationg 10ger,
Usually the “augmented matrix” [4 4] has one extra column b. Now we have g, i
feg

right sides ey.e5,e3 (when A is 3 by 3). They are the columns of /, so the augmey,

matrix is really the block matrix [ A 7 |. I take this chance to invert my favorite Matriy g

with 2's on the main diagonal and —1's next to the 2’s:

[ 2 =1 01 0 0] Start Gauss-Jordan on g
[K e1 ez es]=(HIE2=1'0 | 0
FORIRDR 0 0 1
=] DA ST a0, 50
-] 0 3 -1 3 el = J0 (3 row 1 + row 2)
IR =T 2 S0l T
P00 sl 05208
—-| 0 % -1 % R
Lo o % 3 %2 1) (Grow2+row3)

We are halfway to K. The matrix in the first three columns is U (upper triangular), The
pivots 2. 3. 4 are on its diagonal. Gauss would finish by back substitution. The contributigy
of Jordan is fo continue with elimination! He goes all the way to the “reduced echelpy
form”. Rows are added to rows above them, to produce zeros above the pivols:

[ 25 =18 x 0 1580010
Zero above 3 O R 3
A Al e S e (5 row 3 + row 2)
(thﬂﬂpﬂ'ﬂ' e I %
b O3 8
Bl s e IR e 2 row 2 + row 1
. .ngnhoive -] 0 3 0 i 3 ; i )
- second pivot L5 kgt A g
Ll EinIr a3 1500 ]

a Gam—i’mdan step is to divide each row by its pivot. The new pivots are 1. We

1 in the first half of the matrix, because K is invertible. The three columns

 second half of [LK=2):

i
=[] x| X2 ;3]=[f K"IJ.

------
ldivide oy ]

-

ended with [/ K~']. Here is the whoé
tible matrix A:
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The elimination steps create the inverse matrix while changing A to /. For large matrices,
we probably don’t want A~" at all. But for small matrices, it can be very worthwhile to
know the inverse. We add three observations about this particular K ' because it is an
important example. We introduce the words symmetric, tridiagonal, and determinant:

1. K is symmetric across its main diagonal, Sois K.

2. K is tridiagonal (only three nonzero diagonals). But K~ is a dense matrix with

no zeros. That 15 another reason we don’t often compute inverse matrices. The
inverse of a band matrix is generally a dense matrix.

3. The product of pivots is 2(3)(%$) = 4. This number 4 is the determinant of K .

K=" involves division by the determinant K= 3

—_ ) W
b e B

1
2. (8)
3

This is why an invertible matrix cannot have a zero determinant.

Example 4 Find A~! by Gauss-Jordan elimination starting from A = [%3]. There are
two row operations and then a division to put 17s in the pivots:

[ A .’]:[i 2 {l] [I}]-[f} i_; ?:] (thisis [U L~'])

7
Syt i 08 diés (thisis[7 A~1])
QL =) 0 1 -2 1 '

That A~" involves division by the determinant ad — bc = 2:7 — 3 -4 = 2. The code for
X = inverse(A) can use rref, the “row reduced echelon form™ from Chapter 3:

[ = eye (n); % Define the n by n identity matrix
R = rref ([A I]); % Eliminate on the augmented matrix [A /]
X=R(:,n+1:n4+n) % Pick A™! from the last n columns of R

A must be invertible, or elimination cannot reduce it to [ (in the left half of K).
Gauss-Jordan shows why A~! is expensive. We must solve n equations for its n columns.

To solve Ax = b without A~", we deal with one column b to find one column x.

In defense of A~!, we want to say that its cost is not n times the cost of one system
Ax = b. Surprisingly, the cost for n columns is only multiplied by 3. This saving is
because the n equations Ax; = e; all involve the same matrix A. Working with the right
sides is relatively cheap, because elimination only has to be done once on A.

The complete A~! needs n* elimination steps, where a single x needs n3 /3. The next
section calculates these costs.
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2.6 Elimination = Factorization: A = LU

Students often say that mathematics courses are too theoretical. Well, not this section.
It is almost purely practical. The goal is to describe Gaussian elimination in the most
useful way. Many Key ideas of linear algebra, when you look at them closely, are really
factorizations of a matrix. The original matrix A becomes the product of two or three
special matrices, The first factorization—also the most important in practice—comes now
from elimination. The factors L and U are triangular matrices. The factorization that
comes from elimination is A = LU,

We already know U, the upper triangular matrix with the pivots on its diagonal. The
elimination steps take A to U. We will show how reversing those steps (taking U back
to A) is achieved by a lower triangular L. The entries of L. are exactly the multipliers
£ij—which multiplied the pivot row j when it was subtracted from row i.

Start with a 2 by 2 example. The matrix A contains 2, 1, 6, 8. The number to eliminate
is 6. Subtract 3 times row | from row 2. That step is E;; in the forward direction with
multiplier £2; = 3. The return step from U to A is L = E3' (an addition using +3):

=3 11|08 0 5

weammvon sio- [ -+

The second line is our factorization LU/ = A. Instead of E;,l we write L. Move now to

larger matrices with many E's. Then L will include all their inverses.

Each step from A to U multiplies by a matrix E;; to produce zero in the (i. j ) position.
To keep this clear, we stay with the most frequent case—when no row exchanges are
involved, 1f A is 3 by 3, we multiply by E2; and Es; and Es3. The multipliers {;; produce
zeros in the (2, 1) and (3. 1) and (3, 2) positions—all below the diagonal. Elimination ends
with the upper triangular U,

Now move those E's onto the other side, where their inverses multiply U

y . SRV AR i)
Forward from Ato U ©  Ey A --[ }[ ] = [ ] =]

(EagEa Eay)A = U  becomes A = (E;Eq'E5 WU wllhllk b A - LU. (1)

The inverses go in opposite order, as they must. That product of three inverses is L.
We have reached A = LU. Now we stop to understand it.

Explanation and Examples

First point:  Every inverse matrix E~" is lower triangular. Its off-diagonal entry is £,
to undo the subtraction produced by —£;;. The main diagonals of E and E ~! contain 1's.
Our example above had {3 = 3and £ = [._” ad L = E~' = [.H .

Second point:  Equation (1) shows a lower triangular matrix (the product of the £;;)
multiplying A. 1t also shows all the £ ' multiplying U to bring back A. This lower
triangular product of inverses is L.

il



+ =ny

: One reason for working with the inverses is that we want to factor A, not {/ -
“inverse form™ gives A = LU. Another reason is that we get something extry. 1
more than we deserve. This is the third point, showing that L is exactly right,

Third point:  Each multiplier £;; goes directly into its i, J position—unchanged—;, |
product of inverses which is L. Usually matrix multiplication will mix up all e “ur:f
bers. Here that doesn't happen. The order is right for the inverse matrices, 1o keep e £

unchanged. The reason is given below in equation (3).
Since each £ ! has 1's down its diagonal, the final good point is that L does 1

B
JITI:}“

(A = LU) This is elimination without row exchanges. The upper triangulg, [,
has the pivots on its diagonal. The lower triangular L has all 1's on its diagonal, pp,
multipliers [ ;; are below the diagonal of L.

Example 1  Elimination subtracts 11 times row I from row 2. The last step subtragy 2

times row 2 from row 3, The lower triangular L has &3, = % and £3; = % l"a.rIuI|1'|-;|:,-jnE
LU produces A:

-2g T (O o 1 W
A=l gsr =1t 1. 0]f{0 £ 1|=LU.
01 2 g4 R0 03

The (3, 1) multiplier is zero because the (3, 1) entry in A is zero. No operation needed,

Example 2 Change the top left entry from 2 to 1. The pivots all become 1. The muls;
pliers are all |. That pattern continues when A is 4 by 4:

1 LS LR

Special P 1 |

pattern W E) I |
0

0
0
1
7] |

Lo B T e R

o =

0 ]
I I
2 0
1 0

= e L

These LU examples are showing something extra, which is very important in practice.
Assume no row exchanges. When can we predict zeros in L and U'?

When a row of A starts with zeros, so does that row of L.
When a column of A starts with zeros, so does that column of U.

If a row starts with zero, we don't need an elimination step. L has a zero, which saves

computer time. Similarly, zeros at the start of a column survive into U, But please realize:
- Zeros in the middle of a matrix are likely to be filled in, while elimination sweeps forward
' %mwexphinwhthuth: multipliers £;; in position, with no mix-up.

The key reason why A equals LU : Ask yourself about the pivot rows that are sublracied
B ﬁ'un!uwumws. Are they the original rows of A? No, elimination probably changed ther
S,  Are they rows of U? Yes, the pivot rows never change again. When computing the thit
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row of U, we subtract multiples of earlier rows of U (not rows of A!):
Row 3 of U = (Row 3 of A) — £4;(Row 1 of U) — £32(Row 2 of U). (2)
Rewrite this equation to see that the row [£3; £33 1] is multiplying U:
(Row 3 of A) = €31(Row 1 of U) + £43(Row 2 of U/) + 1(Row 3 of U). (3)

This is exactly row 3 of A = LU . That row of L holds £4;, £33, 1. All rows look like this,
whatever the size of A. With no row exchanges, we have A = LU.

Better balance The L U factorization is “unsymmetric” because U has the pivots on its
diagonal where L has 1's. This is easy to change. Divide U by a diagonal matrix D that
contains the pivots. That leaves a new matrix with 1’s on the diagonal:

dy | uyz/dy uy3/d,

{jz | H;j,."'dg

Split U into

B dy | I
It is convenient (but a little confusing) to keep the same letter U for this new upper trian-

gular matrix. It has 1’s on the diagonal (like L). Instead of the normal LU, the new form
has D in the middle: Lower triangular L times diagonal D times upper triangular U .

The triangular factorization can be written A = LU or A =LDU.

Whenever you see LDU, it is understood that U has 1's on the diagonal. Each row is
divided by its first nonzero entry—the pivot. Then L and U are treated evenly in LDU':

] O]|2 8 i _ 1 0]]2 L4
[3 IH:U 5] splits further into [:3 1”: 5][” I]' (4)

The pivots 2 and 5 went into D. Dividing the rows by 2 and 5 left the rows [1 4] and
[0 1] in the new U with diagonal ones. The multiplier 3 is still in L.

My own lectures sometimes stop at this point. The next paragraphs show how elimina-
tion codes are organized, and how long they take. If MATLAB (or any software) is available,

you can measure the computing time by just counting the seconds.

One Square System = Two Triangular Systems

The matrix L contains our memory of Gaussian elimination. It holds the numbers that
multiplied the pivot rows, before subtracting them from lower rows. When do we need this
record and how do we use it in solving Ax = b?

We need L as soon as there is a right side b. The factors L and U were completely
decided by the left side (the matrix A). On the right side of Ax = b, we use L™ and
then U ', That Solve step deals with two triangular matrices.
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1 Factor (into L and U, by elimination on the left side matrix A)

2 Solve (forward elimination on b using L, then back substitution for x using /),

Earlier, we worked on A and & at the same time. No problem with that—jug; aug.
ment to [A b]. But most computer codes keep the two sides separate. The memory
elimination is held in L and U, to process & whenever we want to. The User’s Guige I
LAPACK remarks that “This situation is so common and the savings are so important that
no provision has been made for solving a single system with just one subroutine.”

How does Selve work on #? First, apply forward elimination to the right side (1,
multipliers are stored in L, use them now). This changes b to a new right side ¢. We gy,
really solving Le = b. Then back substitution solves Ux = c as always. The original
system Ax = b is factored into two triangular systems:

Forward and backward  Solve Lc =5 andthensolve Ux=c . (5

To see that x is correct, multiply Ux = ¢ by L. Then LUx = Lc is just Ax = p,

To emphasize: There is nothing new about those steps. This is exactly what we have
done all along. We were really solving the triangular system Lc¢ = b as elimination wep
forward. Then back substitution produced x. An example shows what we actually did,

Example 3 Forward elimination (downward) on Ax = bendsat Ux = c:

H+2v=>5 u+2v=>5 .
Ax=1b W L0y 2] becomes e Ux =

The multiplier was 4, which is saved in L. The right side used it to change 21 to I:

’fﬁ:”ﬁf The lower triangular system [i ?] c] = [;:I gave ¢ = [? !

Ux = ¢ The upper triangular system [}1 f] x]:[f] gives x = [‘? ,

L and U can go into the n* storage locations that originally held A (now forgettable),

The Cost of Elimination

A very practical question is cost—or computing time. We can solve 1000 equations on &
PC. What if n = 100,000? (Net if A is dense.) Large systems come up all the time
in scientific computing, where a three-dimensional problem can easily lead to a million
unknowns. We can let the calculation run overnight, but we can't leave it for 100 years.
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Problems 15-16 use L and U (without needing A ) to solve Ax = b.

15  Solve the tnangular system Le = b to find ¢. Then solve Ux = ¢ to find x:

e . ] Al , S
1.—[4 !] and L-{” 1-‘\ and ﬁ—[“].

For safety multiply LU and solve Ax = b as usual. Circle ¢ when you see it

16 Solve Le = b 1o find ¢. Then solve Ux = ¢ 1o find x. What was A7

1 0 0 1y — 4
o O e B | and U=10 1 1 and b=1|51].
}: 51 o3 0 0 1 6

17 (a) When you apply the usual elimination steps to L, what matrix do you reach?

1 0 0
L = "-Zl | 0.
£y E3p 1

(b) When you apply the same steps to /, what matrix do you get?
(c) When you apply the same steps to LU, what matrix do you get?
18 [If A = LDU and also A = L, DU, with all factors invertible, then L = L; and
D = Dy and U = U,. “The three factors are unigque.”
Derive the equation L7' LD = D U,U~". Are the two sides triangular or diagonal?
Deduce [. = L and U = Uj (they all have diagonal 1's). Then D = D,.

19  Tridiagonal matrices have zero entries except on the main diagonal and the two ad-
jacent diagonals. Factor these into A = LU and A = LDLT:

1.1 D a a 0
A=]11 2 1 and A=\|a a+b b
() el i) 0 b b+c¢

20 When T is tridiagonal, its L. and U factors have only two nonzero diagonals. How
would you take advantage of knowing the zeros in T, in a code for Gaussian elimi-
nation? Find L and U.

L2 0 0
2+ i«
Tridiagonal T = A gl
0 0D 3 4
21 If A and B have nonzeros in the positions marked by x, which zeros (marked by 0)
stay zero in their factors L and U'?
ity X > g5 gl S |
UL 5 e S ) Fx e
A=lo x x «x B={x 0 x «x
EE e e 0y X
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Symmetric Products K ° K ana nnx- ang L‘E’U

Choose any matrix R, probably rectangular, Multiply R" times K. Then the prodyg Ky
is automatically a square symmetric matrix: '

The transpose of R'R is RY(R™)" whichis R'R. o
|

That is a quick proof of symmetry for RT R. We could also look at the (i, /) entry of R
It is the dot product of row i of R" (column i of R) with column j of R. The U‘”'"tq
is the same dot product, column j with column i. So R' R is symmetric, -

The matrix RR" is also symmetric. (The shapes of R and R" allow multiplicatiy,
But RR" is a different matrix from R' R. In our experience, most scientific problems,
start with a rectangular matrix R end up with R' R or RR" or both. As in least square

-1 (0
Example 4 Muluply R = [_[I} _: I']] and R" = I —1 | in both orders,
0 |
et | -1 0
RRT = [_'I' ,}] and RTR = | -1 2 =1 | are both symmetric matrices,
B 0 -1 I

The product R" R is n by n. In the opposite order, RR™ is m by m. Both are symmey,
with positive diagonal (why?). But even if m = n, it is not very likely that R'R = gyt
Equality can happen, but it is abnormal.

Symmetric matrices in elimination A" = A makes elimination faster, because we ¢y
work with half the matrix (plus the diagonal). It is true that the upper triangular [/
probably not symmetric. The symmetry is in the triple product A = LDU. Rememby
how the diagonal matrix D of pivots can be divided out, to leave 1's on the diagonal of b
L and U:

[1 2] B g REd i el L U misses the symmetry of A
1

a._
fed d

227

=
w o

0 1| Now Ulis the transpose of L.

1

2

i 0051 0] [l 2] L DU captures the symmetry
2l

- = b .

When A is symmetric, the usual form A = LDU becomes A = LDL". The final U
(with 1's on the diagonal) is the transpose of L (also with 1's on the diagonal). Th
diagonal matrix D containing the pivots is symmetric by itself.

The symmetric factorization of a symmetric matrix is A = LDL".

Notice that the transpose of L DL is automatically (LT)" DTLT which is L DL again
The work of elimination is cut in half, from n” /3 multiplications to n* /6. The storage i

~ also cut essentially in half. We only keep L and D, not U which is just L.

_E e TN 1.0 |
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Permutation Matrices

The transpose plays a special role for a permutation matrix, This matrix P has a single *1"
in every row and every column, Then PT is also a permutation matrix—maybe the same
or maybe different. Any product P, P; is again a permutation matrix. We now create every
P from the identity matrix, by reordering the rows of [.

The simplest permutation matrix is P = [ (no exchanges). The next simplest are the
row exchanges Fy;. Those are constructed by exchanging two rows i and j of /. Other
permutations reorder more rows. By doing all possible row exchanges to [, we get all
possible permutation matrices:

DEFINITION A permutation mairix P has the rows of the identity [ in any order.

Example 5 There are six 3 by 3 permutation matrices. Here they are without the zeros:

L : P = | 1 Py Py = I

Py = I Py = I PyPia=1|1

There are n! permutation matrices of order n. The symbol n! means “n factorial,” the
product of the numbers (1)(2) -+ (n). Thus 3! = (1)(2)(3) which is 6. There will be 24
permutation matrices of order n = 4. And 120 permutations of order 5.

There are only two permutation matrices of order 2, namely [ 3§ ] and [§§ .

Important: P~" is also a permwtation marrix. Among the six 3 by 3 P’s displayed
above, the four matrices on the left are their own inverses. The two matrices on the right
are inverses of each other. In all cases, a single row exchange is its own inverse. If we
repeat the exchange we are back to /. But for Py; Py, the inverses go in opposite order
as always. The inverse is P2 Pia.

More important: P~ is always the same as P', The two matrices on the right are
transposes—and inverses—of each other. When we multiply PPT, the *1” in the first row
of P hits the *1" in the first column of PT (since the first row of P is the first column of
PT). It misses the ones in all the other columns. So PPT = [.

Another proof of PT = P~ looks at P as a product of row exchanges. Every row
exchange is its own transpose and its own inverse. PT and P! both come from the
product of row exchanges in reverse order. So P' and P~ are the same,

Svmmetric matrices led to A = LDL". Now permutations lead to PA = LU,







