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54 The Fundamental Theorem of Calculus

HISTORICAL BIOGRAFHY

Sir Tsaac Newtan

In this section we present the Fundamental Theorem of Calculus, which is the central the-
orem of integral calculus. It connects integration and differentiation, enabling us to com-
pute integrals using an antiderivative of the integrand function rather than by taking limits
of Riemann sums as we did in Section 5.3. Leibniz and Newton exploited this relationship
and started mathematical developments that fueled the scientific revolution for the next

(1642-1727) 200 years.

Along the way, we present the integral version of the Mean Value Theorem, which is an-

other important theorem of integral calenlus and wsed to prove the Fundamental Theorem.

¥ Mean Value Theorem for Definite Integrals
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FIGURE 5.16 The value fe) in the

v y In the previous section, we defined the average value of a continuous function over a

closed interval [a, &] as the definite integral J';_ftx]it divided by the length or width
T b — a of the interval. The Mean Value Theorem for Definite Integrals asserts that this av-
] erage value is alwayys taken on at least once by the function f in the interval.
: The graph in Figure 5.16 shows a pesitive continuous function y = fix) defined over
l heigh! the interval [a, b|. Geometrically, the Mean Value Theorem says that there is a number ¢ in
= I [ex, &) such that the rectangle with height equal to the average value fic) of the function
f—— b~ —— and I;asn: width # — a has exactly the same area as the region beneath the graph of f from

a o b,

Mean Value Thearem is, in a sense. the
average {of mean) height of  on [a, 8.
When { = 0, the area of the rectangle
14 the area under the graph af { from e
ok,

THEOREM 3 The Mean Value Theorem for Definite Integrals
If f is continuous on [a, b], then at some point ¢ in [a, B],

I B
fich = = Ef_f{.r]dx.

b
fleMb — a) —f Flahdr.
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FIGURE 5.17 A discontinoous function
need ol assume iis average value.
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FIGURE 5.18 The area of the reclangle
with base |0, 3] and height 5/2 (he average
valwe of the function flx) = 4 — 1) i
equal 1o the area berween the graph of
and the r-axis from 010 3 (Example 1),
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Proof If we divide both sides of the Max-Min Inequality (Table 5.3, Rule 6) by (b — a),
we ohtain

b
nﬂnfﬂﬁfﬂx}dxﬁmn_f.

Since f is continuous, the Intermediate Value Theorem for Continuous Functions {Section
2.6) says that f must assume every value between min f and max f. It must therefore as-

sume the value {1/{b — a]J_Il':jbj[x} dx at some point ¢ in [a, b]. ]

The continuity of f is important here. It is possible that a discontinuous function never
cquals its average value (Figure 5.17).

EXAMPLE 1  Applying the Mean Value Theorem for Integrals

Find the average value of fix) = 4 — xon [0, 3] and where f actually takes on this value
at some point in the given domain.

Solution

1 I
avifl = Tea "f Flx) dx

1 3 1 3 3
=ﬁ-£14—.1'1d1'=§(.];44x—-£xix)
= —;' (4[3 -0} - (gj: = %:)) Beciion 5.3, Egs. i1} and (2)

1
&=

(B [

=3
3-

The average value of flx) = 4 — x over [0, 3] is 5/2. The function assumes this value
whend4 — x = 5/2 orx = 3/2. (Figure 5.18) | ]

In Example 1. we actually found a point ¢ where f assumed its average value by set-
ung fix) equal to the calculated average value and solving for x. It's not always possible to

solve casily for the value o, What clse can we learn from the Mean Value Theorem for inte-
grals? Here's an example.

EXAMPLE 2  Show that if f is continuous on [a, b|, a # b, and if

L]
fﬁx]dr=ﬂ',

then fix) = 0 at lcast once in [a, #].

Solution  The average value of f on [a, b] is

1 % 1
Evl_f]=mf_f[1]rir=b_a~ﬂ=[!.

By the Mean Value Theorem, f assumes this value at some point ¢ £ |a, b]. ]



THEOREM 4 (Continued) The Fundamental Theorem of Caleulus Part 2
If f 1= continueus at every poant of [a, b and F is any antiderivative of f on [a, &),
then

]
f_ﬂ.r]:ir = Fib) — Fla).

Proof Part 1 of the Fundamental Theorem tells us that an antiderivative of f exists, namely

x) =f:l’tflldf.

Thus, if F is any antiderivative of f, then Fix) = Gix) + C for some constant C for
a < x < b {by Corollary 2 of the Mean Value Theorem for Derivatives, Section 4.2).
Since both F and G are continuouws on [a, &), we see that Flx) = Gx)y + C also holds
when v = gand x = bh}-mj;j_ng one-sided limits {as x —*a” and x — &7 ).
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Evaluating Flb) — Fla), we have
F(b) — Fla) = [G{b) + C] — [Gla) + C]

Gib) — H{a)

[ i
=fﬂr}dr—fﬂ:}dr
[

= [ fithadt — D

The theorem says that to calculate the definite integral of f over [a, &] all we need o
do is:

1. Find an antiderivative F of f, and
2. Calculute the number [* f(x) dx = F{b) — Fla).

The usual notation for F{k) — Fla)is
I I3
Ft.ril] or [Fli.t]l] :
depending on whether F has one or more terms.

EXAMPLE 5  Evaluating Integrals

T L3
{n:lf c'n:;.1'dx=5jn.r] =gnwr —sin0l=0—-0=0
o i

o -
[1:1) f sor xtan x dy = scc.r]u = secD — s«:c(—z) =1- V2

w4 —#4 4

o [[i-2)a- o]

kb i _ A i
[m +4] [m‘ +1]

[8 + 1] — [5] = 4. m

The process used in Example 5 was much casier than a Riemann sum computation.
The conclusions of the Fundamental Theorem tell us several things. Equation (2) can
be rewritten as

da [* _dF _
E-’(,f[f}dr—E—_ﬂ.t],

which says that if you first integrate the function f and then differentiate the result. you get
the function § back again. Likewise, the equation

,[{;_fd' =_[f'[f]d'i = Flx) - 1’-'-;;;423 [! 606

says that if vou first differentiate the function F and then integraie e resuli, you get the
function F back (adjusted by an integration constant). In a sense, the processes of imegra-
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Evaluating Integrals
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Evaluate the integrals in Exercises 1-26.
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o ]
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Derivatives of Integrals
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18. f (-1 sec’t + %) dr
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Find the derrvatsves in Exercises 27-30
a. by evaloating the integral and differentiating the resuli
b. by differentiating the imegral disectly.
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Find ev/dx in Exercises 31-36.
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Area

In Exercises 3742, find the ol area berween the region and the
EELITS

B oy=

Moy=m—at—2y -I=ixE2
MW oy=3'-3 —I=x=1
Woy= -t O=x=2
W y='—dy, -Imr=1
dl. _n--xl"."‘, -l =r=8&

£ v=xF -z -1=x=8

Find the areas of the shaded regions i Exercises 4346,
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