
The Phase Rule and One- 
and Two-Component Systems

Questions to be Considered in this Chapter:

1. How do crystallization and melting of chemically complex natural systems differ from simple systems such as
water–ice?

2. How might we simplify natural systems in laboratory studies sufficiently to understand the complexities?

3. How can we formally analyze the behavior of systems in phase diagrams in order to make the dynamics most
clear and to understand the effects of changing intensive variables?

4. Why do minerals crystallize (or melt) in repeatable sequences, and what controls the sequence?

5. How do liquids and associated mineral solids vary in composition during crystallization or melting?

1 INTRODUCTION: CRYSTALLIZATION BEHAVIOR OF NATURAL MAGMAS

In this chapter, we address the behavior of simple chemical systems as analogues of more complex natural ones. To see
why it is advantageous to do so, let’s begin by observing what happens when a natural melt crystallizes. In a work that
combined natural samples of a cooling magma with laboratory analysis, Wright and Okamura (1977) studied the crystal-
lization behavior of the Makaopuhi lava lake in Hawaii. They drilled through the thin crust of the lava lake and sampled
the magma beneath, using stainless steel and ceramic probes. Because the upper portion of the ponded basaltic magma
cools from the surface downward, by inserting the probe deeper into the liquid, just beneath the crust, one can sample
progressively hotter portions of the magma. Thermocouples were also inserted into the drilled holes to determine the
temperature gradient in the magma, in order to estimate the temperature at which each sample was collected. The result
is a series of samples of uniform basaltic composition collected at a range of known cooling temperatures.

Once extracted, the small samples cool quickly and solidify. Fortunately, this process is so rapid that the solidifica-
tion of the liquid portion of the sample has no time to form crystals. Rather, it rapidly solidifies (“quenches”) to a glass
(a solid phase with no ordered arrangement of the atoms). If any crystals were present in the original liquid at depth, they
remain embedded in the newly formed glass because they, too, have no time to grow or react with the melt during
quenching. Wright and Okamura took these types of quenched samples to the laboratory for chemical and microscopic
analysis.

The results of the Makaopuhi study are summarized in Figures 1 to 3. Figure 1 shows that the amount of glass 
(representing liquid magma at the time of sample acquisition) decreases continuously from 100% at ~1200°C to 0% at
~950°C. Liquid is progressively replaced by crystals over this temperature range. Contrast this to some familiar simple
substance, such as H2O. At atmospheric pressure, water solidifies to ice at a constant 0°C. The Makaopuhi lava, on the
other hand, began to crystallize at 1205°C and only became completely solid when it got 250° cooler.

Figure 2 shows that a specific sequence of solids formed as the magma cooled. Olivine began to crystallize first,
followed by pyroxene, then plagioclase, and finally opaque iron–titanium oxide minerals (ilmenite and titanomagnetite).

From Chapter 6 of Principles of Igneous and Metamorphic Petrology, Second Edition, John D. Winter. 
Copyright © 2010 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.
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The Phase Rule and One- and Two-Component Systems

If you remember Bowen’s Reaction Series from previous
classes, it might help a bit as you consider basaltic melt
crystallization. The formation of olivine, followed by pyrox-
ene, is exactly what Bowen’s Series predicts. Plagioclase
crystallization at Makaopuhi, however, begins to form after
pyroxene and not along with olivine, as Bowen’s Series indi-
cates. Another unusual feature in Figure 2 is that the amount
of olivine increases as crystallization of the magma proceeds
from 1205 to 1180°C, and then decreases as the melt cools
and crystallizes further. Microscopically, the early-forming
olivines first grew and then began to appear embayed and
corroded below 1180°C, indicating that the olivine began to
be resorbed (consumed by reacting with the melt) as cooling
progressed.

Figure 3 shows that the composition of the minerals
also varies with temperature. The mafic phases get more Fe

rich, whereas the plagioclase, although somewhat irregular,
gets less calcic and more sodic (in agreement with Bowen’s
Series). Although not shown in Figure 3, the composition 
of the glass also changed progressively during crystalliza-
tion, with the remaining glass becoming preferentially de-
pleted in Mg, Fe, and Ca.

Instances in which we can observe the crystallization
behavior of natural melts are rare. We can study crystalliza-
tion indirectly, however, by using sequential textures or by
creating melts in the laboratory. From such textural and ex-
perimental criteria, we have confirmed that melts do indeed
crystallize over a temperature range, a sequence of minerals
forms over that range, and the composition of most minerals
varies across the range as well. But there are many varia-
tions on this theme. Clearly, the minerals that form in a gran-
ite are not the same as those that form in a basalt, nor, we
have discovered, is the temperature range over which that
crystallization takes place the same. More silicic melts crys-
tallize at lower temperatures than basalts, and the mineral
sequence in silicic magmas may begin with biotite or am-
phibole and end with alkali feldspar or quartz. The actual se-
quence of minerals that crystallizes varies with composition
and pressure. Parts of the sequence may even be reversed
from one rock type to another.

From the accumulated textural and experimental data,
we can make the following general observations about the
complex crystallization behavior of natural melts (following
Best, 1982):

1. Cooling melts crystallize from a liquid to a solid over
a range of temperature.

2. Several mineral phases crystallize over this tempera-
ture range, and the number of minerals tends to in-
crease as temperature decreases.

3. Minerals usually crystallize sequentially, generally
with considerable overlap.

4. Minerals that involve solid solution change composi-
tion as cooling progresses.

5. The melt composition also changes during crystallization.
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in samples extracted from the cooling of basalt of the
Makaopuhi lava lake, Hawaii. Lines represent ranges 
observed. After Wright and Okamura (1977).

1250

1200

1150

1100

1050

1000

950
0 0 0 010 10 20 10 102030 40 3050 40 50

Liquidus

Melt
Crust

Solidus

Olivine Clinopyroxene Plagioclase Opaque

Te
m

pe
ra

tu
re

 º
C

FIGURE 2 Weight percent minerals in Makaopuhi lava 
lake samples as a function of temperature. From Wright and
Okamura (1977).

100

90

80

70

60

50
708090 0.9 0.8 0.7 0.6 80 70 60

AnMg / (Mg + Fe)Fo

W
ei

gh
t %

 G
la

ss

Olivine Augite Plagioclase

FIGURE 3 Model composition of minerals in Makaopuhi 
lava lake samples. From Wright and Okamura (1977).

100

Hannan
Highlight



The Phase Rule and One- and Two-Component Systems

6. The minerals that crystallize, as well as the sequence
in which they form, depend on the temperature and
composition of the melt.

7. Pressure can affect the temperature range at which a
melt crystallizes. It may also affect the minerals that
crystallize.

8. The nature and pressure of any volatile components
(such as H2O or CO2) can also affect the temperature
range of crystallization and the mineral sequence.

At this point, it may seem that magmas are simply too com-
plex to understand. The chemical complexity of natural melts
makes it difficult to focus on the various factors that control
the behaviors described above. A basaltic melt doesn’t be-
have the same as a granitic one, but why? Which of the many
chemical variables is responsible for what aspect of the dif-
ference? A successful approach is to simplify the systems we
study. By doing so, we reduce the complexity and make it
possible to assess the effects of individual chemical con-
stituents and minerals during crystallization and melting.

Of course, there is a price for this benefit, and that
price is that the simplified systems are not really the natural
ones that interest us. We may understand the simple “model”
systems better, but the results may not apply directly to the
more complex natural phenomena. Nonetheless, we shall
see that this approach has been of great benefit to petrolo-
gists. With a bit of theory and some experimental results
from simplified systems, we can understand the basis for the
behaviors listed above. Application of model systems to real
rocks is indeed possible, and we shall do so effectively.

2 PHASE EQUILIBRIUM AND THE 
PHASE RULE

If we are to understand the simplified systems that follow,
we need a bit of theoretical preparation. We want to be able
to analyze systems in a way that allows us to grasp the dy-
namics of each and to account for the contribution of each
chemical constituent to the variations in those dynamics. If
we understand how the introduction of additional con-
stituents affects a system, we can not only understand each
new system better, but we become prepared to apply the sys-
tems we study to the more complex systems in nature. The
phase rule is a simple, yet rigorous and elegant, theoretical
treatment for this approach. To develop the phase rule, we
must first define a few terms.

A system is some portion of the universe that you
want to study. In the lab, we get to choose the system, but in
the field, the system may be forced upon us. The
surroundings can be considere d the bit of the universe just
outside the system. A system may be open (if it can transfer
energy and matter to and from the surroundings), closed
(only energy, such as heat, may be exchanged with the sur-
roundings), or isolated (neither energy nor matter may be
transferred).

Although we commonly refer to the state of a system
as simply whether it is a liquid, solid, or gas, physical
chemists have a far more specific definition of the term. To
them, to specify the state of a system is to provide a com-
plete description of the macroscopic properties of that sys-
tem. For example, consider a system composed of pure
water. It may be contained in a glass, but we can define the
system as only the water and consider the glass a part of the
surroundings. We can measure the temperature (T), pressure
(P), volume (V), mass (m), density (ρ), composition (X), or
any of a number of other possible parameters of the water
and thereby determine each. All these variables must be
known if the state of the system is to be completely de-
scribed. However, once a critical number of these variables
is known, the others become fixed as a result because many
of the properties are interdependent. For example, if we
know the mass and the volume of our water, we know its
density. But just how many of these variables must we spec-
ify before the others are determined? The phase rule was
formulated to address this question.

A phase is defined as a type of physically distinct ma-
terial in a system that is mechanically separable from the
rest. A phase may be a mineral, a liquid, a gas, or an amor-
phous solid such as glass. A piece of ice is a single phase,
whereas ice water consists of two phases (the ice and the
water are separable). Two pieces of ice are mechanically
separable, but because they are equivalent, they are consid-
ered different pieces of the same phase, not two phases. A
phase can be complex chemically (such as a tequila sunrise),
but as long as you cannot separate it further by mechanical
means, it is a single phase.

A component is a chemical constituent, such as Si,
H2O, O2, SiO2, or NaAlSi3O8. We can define individual
components as we please, but, for purposes of the phase rule
treatment, we shall define the number of components as the
minimum number of chemical species required to com-
pletely define the system and all of its phases. For example,
ice water, although two phases, has but one component
(H2O). We could define it as H and O, but because H2O de-
scribes both ice and water as a single component, not two, it
is preferred for phase rule purposes. A pure mineral, such as
albite, has a single component (NaAlSi3O8). Minerals that
exhibit solid solution, however, are commonly treated as
multicomponent systems. Plagioclase is commonly a single
phase that comprises two components: NaAlSi3O8 and
CaAl2Si2O8. Why? Because we need to vary the proportions
of these two components to determine the state of plagio-
clases of varying composition.

The proper choice of the number of components for
the application of the phase rule is not always easy. The
choice commonly depends on the behavior of the system
and the range of conditions over which it is studied. For ex-
ample, calcite may be considered a single-component sys-
tem (CaCO3). Although this is true at relatively low
temperatures if we heat it to the point that it decomposes to
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The Phase Rule and One- and Two-Component Systems

solid CaO and gaseous CO2, it would be a two-component
system because we would have to use both CaO and CO2 to
describe the composition of the solid and gaseous phases.
Compare this to our ice water: a single component suffices
to describe the chemical composition of each phase. But for
calcite, lime (CaO), and CO2, we require two components,
separately or in combination, to describe them all. This con-
cept will become clearer with practice.

The variables that must be determined to completely
define the state of a system can be either extensive or inten-
sive in nature. Extensive variables depend on the quantity
of material (the extent) in the system. Mass, volume, num-
ber of moles, etc. are all extensive variables. Such variables
are not intrinsic properties of the substances in the system.
In other words, it is possible to have 10 g of water, or 100 g.
Either way, it’s still the same water. Although it is nice, per-
haps, to have more of some things (money, influence . . .)
and less of others (debts, nose hairs . . .), such extensive
variables are of little concern to us now, as they do not af-
fect the macroscopic properties (the state) of matter in a
system.

Intensive variables, on the other hand, don’t depend
upon the size of the system and are properties of the sub-
stances that compose a system. Intensive variables include
pressure, temperature, density, etc. If we divide any exten -
sive variable by another one, the extent cancels, and the ratio
is an intensive variable. For example, the volume of a phase
divided by the number of moles is the molar volume, an in-
tensive variable. Density (mass divided by volume) is an-
other example. These latter two intensive variables are
certainly properties that can change for substances in a
closed system, and therefore must be specified if we are to
determine the state of that system. The molar volume and
density of water is different at 10°C than at 50°C, and it is
also different than the corresponding values for CO2 at the
same temperature. Because materials expand with increas-
ing heat and contract with increasing pressure, the pressure
and temperature must also be specified when describing the
state of a system. Another important intensive variable is the
composition of the phases present. Although the number of
moles of Fe and Mg in olivine are extensive variables, the
ratio of Fe/Mg is intensive and affects such properties as
molar volume, density, etc.

There are a large number of possible intensive vari-
ables, and we’ve seen that many are interdependent. We now
return to the question stated above: How many must we
specify before the others are fully constrained and the state
of the system is known? The phase rule of Gibbs (1928) is
designed to do this. If we define F, the number of degrees
of freedom (or the variance) of a system, as the minimum
number of intensive variables that need to be specified to
completely define the state of the system at equilibrium, the
phase rule can be expressed as:

(1)

Where φ is the number of phases in the system, and C
is the number of components. A rigorous derivation of the

F = C - � + 2 (the Gibbs phase rule)

phase rule (Gibbs, 1928) is based upon the number of vari-
ables (one for each component, plus P and T) minus the
number of equations relating those variables [one for each
phase]. Hence, F = C + 2 - φ. The mathematics of Equation
(1) is simple enough and tells us that for each component we
add to a system, we must specify one additional intensive
variable to completely constrain the state of the system. For
each additional phase, there is one fewer variable that needs
to be specified. Once we have specified this critical number
of independent intensive variables, all other intensive vari-
ables are fully constrained (invariable).

The phase rule applies only to systems in chemical
equilibrium. One cannot count disequilibrium assemblages,
such as incomplete replacement of biotite by chlorite in a
cooled granitic rock, as separate phases for most phase rule
applications. The reaction of biotite to chlorite is typically
arrested because the rock cooled too quickly for the reaction
to run to completion. As a more extreme example, consider
the great number of mineral phases that can coexist in a clas-
tic sediment such as a graywacke. These minerals are col-
lected together and deposited by clastic processes, but they
are not in chemical equilibrium at low, near-surface temper-
atures, and to apply the phase rule to such a system would be
useless.

3 APPLICATION OF THE PHASE RULE TO
THE H2O SYSTEM

Let’s see how the phase rule works by applying it to a very
simple system: the heating of ice on a hot plate. The system
is defined by a single component, H2O, so C = 1. If we begin
with ice at equilibrium at some temperature below 0°C (we
left the window open in January), then our system is com-
pletely solid, and φ = 1 as well. The phase rule [Equation
(1)] at this point would tell us:

meaning that we must specify only two intensive variables
to define the system completely. In the natural world, pres-
sure and temperature are the most common independent
variables, so if we were to specify P and T, the state of the
system would be completely defined. If we were to specify
-5°C and 0.1 MPa (atmospheric) pressure, all the other in-
tensive parameters of the ice would necessarily also be fixed
(density, molar volume, heat capacity . . . everything). By
fixed, I mean that they are measurable parameters that are
constant properties of ice under the conditions specified.

We can think of F as the number of variables that we
must specify, or we can think of it as the number of variables
that we are free to change independently. The fact that F
variables can vary independently explains why we need to
specify each. In the present case, we are free to change two
intensive variables as long as the value of the other parame-
ters in the phase rule (C and φ) remain the same. With our
ice, we have F = 2 and have chosen P and T as the ones that

F = 1 - 1 + 2 = 2
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The Phase Rule and One- and Two-Component Systems
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FIGURE 4 Schematic pressure-temperature phase diagram 
of a portion of the H2O system.

we shall specify. Alternatively, we could say that we can
change P and T independently in our pan of ice (either or
both), and still have only ice.

Let’s heat the system at constant pressure (turn on the
hot plate beneath our pan of ice). We can heat it initially
with no change in the parameters of the phase rule (i.e., F re-
mains equal to 2 as long as φ and C are both equal to 1). At
each new temperature we can specify T, and the other inten-
sive parameters also have new values (e.g., the ice expands,
so the density changes). The phase rule still holds, however,
telling us we need to specify two intensive variables if we
want to fix the others.

Eventually we heat the ice until a new phase appears:
the ice begins to melt, and ice and water coexist stably at equi-
librium in the pan. Now φ = 2 and F = 1 - 2 + 2 = 1. We need
to specify only one intensive variable to completely define the
state of the system. Which variable do we choose? Pressure or
temperature? The phase rule cannot make this choice for us. It
tells us about the variance, but it cannot choose the variables
for us. In other words, the phase rule is a tool for the analysis
of chemical systems; it does not attempt to tell a system how
it should behave. The responsibility is ours to apply the phase
rule appropriately and interpret the results.

If we look at a pressure–temperature phase diagram
for the H2O system in Figure 4, we can interpret the phase
rule more clearly. We began at point A in the field labeled
“Ice” and moved along the dashed path to the melting point
(point B on the ice–water boundary). Initially in the ice field
we could vary pressure and temperature independently and
still have only one phase. Thus we had to specify both vari-
ables to define the state of the phase. When we heated the
ice to point B, we encountered the line separating the ice and
water fields, meaning that both phases can coexist at equilib-
rium (“ice water”) under P-T conditions anywhere along this
line. Because φ = 2, then F = 1, meaning that we must spec-
ify only one variable now (pressure or temperature), and all
the other intensive variables for both phases are then deter-
mined. This may seem counterintuitive at first because we
now have twice as many phases, each with its own density,
molar volume, etc. to be determined, but the phase rule tells
us that for each new phase, the number of independent vari-
ables is actually decreased. For example, if we specify that
ice and water are at equilibrium at a pressure of 0.1 MPa (at-
mospheric pressure, represented by our dashed line in
Figure 4), then the temperature must be 0°C (point B). We
thus know both T and P, and the density, molar volume, etc.
of each phase are therefore fixed.

Alternatively, F = 1 means that we cannot vary pres-
sure and temperature independently anymore without chang-
ing the parameters of the phase rule (i.e., losing a phase).
Consider point B in Figure 4 again. If we were to vary pres-
sure independently vertically upward, we would leave the
water–ice equilibrium boundary curve and enter the water
field, losing ice and changing the phase rule parameter φ to
one. If we were to raise the pressure and still maintain φ = 2,
we would have to change temperature in a sympathetic
 fashion so as to remain on the ice–water equilibrium line. So
if φ = 2, P and T are not independent. More generally, we can

say that, at equilibrium in a one-component, two-phase sys-
tem (such as ice water), there must be a relationship between
pressure and temperature. This relationship is expressed as
the slope of the equilibrium curve that separates the ice and
water fields on the pressure– temperature diagram (Figure 
4). If we change either variable, we would also have to
change the other along the curve to maintain two coexisting
phases.

As mentioned above, the phase rule tells us the vari-
ance but can’t choose which variable(s) are determinative. If
we run our experiment in a lab on a hot plate at atmospheric
pressure, the phase rule is not aware that pressure is not a
possible variable. We can simply remember that one of our
variables is fixed, or we can modify the phase rule to ac-
count for such restricted operating conditions. If all of our
experimentation is conducted at constant pressure, we have
forced the removal of a degree of freedom from our analysis.
Under these conditions, the phase rule (Equation 1) would
be reduced to:

(2)

We could use a similarly reduced phase rule for any system
with one fixed variable (e.g., constant temperature, constant
volume).

In our constant 0.1 MPa pressure system, having ice
water at equilibrium on our hot plate in the lab, Equation 
(2) tells us that F = 1 - 2 + 1 = 0. Such a system is com-
pletely fixed. The temperature must be 0°C, and every inten-
sive variable of both phases is determined. At a constant
pressure, we cannot change the temperature of our ice water
as long as we have two phases. We can add heat, but this
won’t change the temperature! The hot plate is hot, pumping
heat into the system, but the phase rule tells us that the tem-
perature must remain constant as long as ice and water are
both in the pan. Here we see an example of the difference
between heat and temperature. In thermodynamics, heat
has the symbol q. Heat is supplied to the ice water and has
the effect of melting the ice at a constant temperature until
the ice is consumed. This heat, which drives the transition
from the solid to the liquid form, is called the latent heat of
fusion.

Once we have melted all the ice, we again have one
phase (water). Returning to our general system with variable
pressure, Equation (1) tells us that F = 1 - 1 + 2 = 2, and 

F = C - � + 1 (isobaric)
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The Phase Rule and One- and Two-Component Systems

we must specify temperature and pressure independently,
just as we did for the single-phase ice case. This is true until
we get to the boiling point; then φ becomes 2 again, and F
returns to 1, and we get a situation similar to that of water +
ice discussed previously. Because F = 1, there is a relation-
ship between pressure and temperature, expressed by the
slope of the water–steam boundary curve in Figure 4. 
There is no reason, however, that this slope has to be the
same as that of water–ice. The slope of each is determined
not by the phase rule but by the molar volume and entropy of
the coexisting phases, as expressed by the Clapeyron 
equation.

If the pressure is fixed, as in our lab, the modified
phase rule [Equation (2)] for φ = 2 reduces F to 0, mean-
ing we can only have boiling water (coexisting water and
steam at equilibrium) at a single specific temperature
(100°C at 0.1 MPa). The heat supplied at this constant tem-
perature converts the water to steam and is now called the
latent heat of vaporization.

Some cooks think that briskly boiling water is hotter
than slowly boiling water. This is clearly impossible as
long as liquid water and water vapor coexist (a prerequisite
for boiling). The added (wasted) energy used for brisk
boiling simply supplies the latent heat to make more
steam. If your cooking goal is to reduce the quantity of liq-
uid, go ahead and boil away briskly. If you’re only trying
to cook some pasta, however, boil it as slowly as you can
and save some money.

Smart cooks know how to get boiling water hotter
than 100°C. They use a pressure cooker, which frees them
from the 1 atmosphere restriction. Because water and
steam coexist in the pressure cooker, the temperature and
pressure must change along the water–steam boundary
curve in Figure 4. Because heat is added, the pressure 
must increase because the boundary has a positive slope.
This situation could get dangerous because the pressure
could explosively overcome the strength of the container.
That’s why a valve with a weight is placed on the top of a
pressure cooker. Once the pressure reaches a specific
value, the vapor lifts the weight, and steam is released.
Thus pressure cookers operate at a constant, though ele-
vated, pressure (and therefore constant elevated tempera-
ture). Incidentally, the steam released by the valve
instantly drops to atmospheric pressure while cooling only
slightly in the one-phase steam field of Figure 4. Re-
leased steam is thus very hot and can cause severe burns.
Most cooks know of another way to elevate the tempera-
ture of boiling water a little: They add salt. But this 
violates our premise of a single-component system (constant
composition) and will be dealt with later.

Let’s now apply the phase rule to some simple model
systems of geological significance. The phase diagrams we
shall use have been derived empirically (by experiments on
simple mineral systems). As you are, I hope, beginning to
recognize, the phase rule is a theoretical treatment that helps
us understand the dynamics of the systems represented by
these diagrams. Remember that the phase rule is F = C - φ + 2
for the general case (not artificially fixing pressure or tem-

perature) and that the final term is decreased by 1 for each
variable that we fix externally. We shall look at a number of
synthetic and natural rock systems.

Experiments on silicate systems require furnaces ca-
pable of melting rocks (or chemically simplified rock
analogs) at high pressure. Figure 5 is a schematic cross
section through a typical high-pressure furnace. Note that
the size of the cylindrical sample in Figure 5 is less than 
1 cm in diameter. In furnaces that are combined with high-
pressure hydraulic rams, small samples can be heated to
temperatures sufficient for complete melting at pressures
equivalent to those attained in the upper mantle. The sam-
ple is prepared and inserted into the furnace, and the fur-
nace is then closed and gradually heated as the pressure is
increased by the ram. The pressure is loaded vertically in
Figure 5, but the furnace is confined radially, so that the
horizontal pressure quickly approaches that of the vertical
load. A thermocouple inserted just above the sample
records the temperature attained and permits external tem-
perature control. The result is that we can expose a sample
to a variety of temperatures and pressures. In the ensuing
discussion, we shall begin with the simplest one-component
experimental systems and gradually explore the effects of
added chemical complexity.

4 ONE-COMPONENT SYSTEMS

Figure 6 is the pressure–temperature phase diagram for the
SiO2 system. The upper limits of 10 GPa and 1900°C reflect
generous limits of pressure and temperature to which a pure
SiO2 phase would typically be subjected in nature (remem-
ber, 1 GPa represents the approximate pressure at the base of
35 km of continental crust, and SiO2 minerals are not com-
mon in the mantle or core). There are a number of solid sil-
ica polymorphs, and there is a liquid phase, each with a
stability field shown on the diagram.

For conditions that fall within any one field in Figure 6,
only one phase is stable, hence φ = 1 and F = 1 - 1 + 2 = 2.
These areas are called divariant fields because the variance
in them is two. Both pressure and temperature are variable
for these single-phase situations, and both must be specified
to determine the state of any one-phase system. Curves sep-
arating the fields represent conditions under which two
phases coexist at equilibrium. Because φ = 2 and F = 1 - 2 +
2 = 1, the curves are called univariant curves. Along these
curves, because two phases coexist, one need only specify
pressure or temperature. Specifying one of these permits us
to determine the other from the location on the curve, and
thus the state of the whole system (both phases) is defined. This
is true for any two phases in stable equilibrium, such as
water and ice in Figure 4, cristobalite and liquid in Figure 6,
or any two coexisting silica polymorphs. For example, if I
were to ask at what temperature α- and β-quartz coexist at
1 GPa, we could look along the curve separating the fields
of low quartz and high quartz at the pressure specified and
determine the temperature: approximately 810°C. Note
the positive slope for any solid/liquid equilibrium curve.
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FIGURE 5 Cross section through a typical furnace for the experimental study of natural and synthetic rocks and minerals at 
pressures equivalent to depths as great as 150 km. Diagonally hatched areas are steel, and stippled areas are typically ceramic. 
After Boyd and England (1960). Copyright © AGU with permission.

Note that there are also points where univariant lines
intersect. At these points, three phases coexist. When φ = 3, 
F = 1 - 3 + 2 = 0. Whenever three phases coexist at equilib-
rium in a one-component system, the system is completely
determined, and these points are called invariant points.
Such points are obviously possible only at specific tempera-
tures and pressures. Try this yourself. Under what conditions
are low quartz, high quartz, and coesite stable together? What
about high quartz, cristobalite, and liquid?

The phase rule and phase diagrams are very closely 
related. You have probably noticed that the variance of a sys-
tem corresponds directly to the dimensions of the appropriate
assemblage in the diagram. Divariant assemblages (F = 2)
exist as two-dimensional fields (areas) on the phase diagram.
Univariant assemblages (F = 1) are represented by the one-
 dimensional curves that act as boundaries between the divari-
ant fields, and invariant assemblages are represented by the
zero-dimensional points where three fields meet.

Figure 6 is a fairly representative one-component P-T
phase diagram for minerals, showing a high-T liquid field and
a solid field that may be subdivided into fields for various
polymorphs. For substances with lower melting points and
higher vapor pressures (natural liquids, gases, and some
minerals), there may also be a vapor phase field. The phase
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FIGURE 6 Pressure–temperature phase diagram for SiO2.
After Swamy et al. (1994). Copyright © AGU with permission.
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FIGURE 7 Pressure–temperature phase diagram for H2O 
(after Bridgman, 1911, 1935–1937). Ice IV was created using 
D2O and is not stable for H2O.

diagram for H2O shown in Figure 4 is only figurative, sim-
plified to illustrate our discussion of heating ice in a lab. The
experimentally determined phase diagram is shown in
Figure 7. As with silica, there are several solid polymorphs
of ice, each with its own stability range. The negative slope
of the ice I/liquid curve is very rare. Ice I has a greater vol-
ume than the liquid. This irregularity, however, does not ex-
tend to the other ice polymorphs. Note the vapor field and
the boundary for the transition from ice to steam at very low
pressure. The process whereby a solid passes directly to a
vapor is called sublimation. The phase rule treatment for
sublimation is the same as for any one-component, two-
phase situation.

There are several invariant points in the H2O system—
for example, where ice I, water, and steam all coexist. Note
also that the liquid/vapor curve ends in a critical point at
374°C and 21.8 MPa. You can see from the diagram that it is
possible to begin with liquid water at 0.1 MPa, increase the
pressure above the critical pressure, heat it above the critical
temperature, and then decrease the pressure again to pro-
duce steam. The effect is to create steam from water, but at
no point in the process do two phases, water and steam, co-
exist. When increasing pressure is applied to coexisting
water and vapor along the equilibrium curve in Figure 7, 
the vapor compresses more than the liquid, and their proper-
ties (density, etc.) gradually converge. At the critical point,
they become identical. At pressures and temperatures above
the critical point (called the supercritical region), there is no
distinction between the liquid and vapor phases. The condi-
tions required to create a supercritical fluid in aqueous sys-
tems are readily attainable in igneous and metamorphic
processes. The terms liquid and vapor lose their meaning
under these conditions, and we call such phases supercritical
fluids, or simply fluids.

5 TWO-COMPONENT (BINARY) SYSTEMS

When a second component is added to a system, it can inter-
act with the first in a number of different and interesting
ways. We shall investigate four common types of geological
binary  systems. Because C = 2, the variance can be as
high as 3 in one-phase systems, requiring three-dimensional
 diagrams to illustrate properly. Rather than attempt this,
we simplify most two-component igneous systems and
 illustrate their  cooling and melting behavior on phase
 diagrams by fixing pressure and discussing the interactions
of temperature and the compositional variables. If we
 restrict pressure, the phase rule becomes F = C - φ + 1
[Equation (2)] in the discussions that follow. Because
 temperature–composition (T-X) diagrams depreciate the
 importance of pressure in natural systems, we will occasion-
ally discuss pressure  effects on the systems in question in
this chapter.

5.1 Binary Systems with Complete Solid
Solution

First, we shall look at a system exhibiting complete solid
solution, in which both components mix completely with
each other. The plagioclase system, composed of the two
components NaAlSi3O8 and CaAl2Si2O8, is a common ex-
ample. Note that the two components given are equivalent
to the phases albite and anorthite, respectively. There might
be a tendency to confuse components and phases here. Re-
member that C (the number of components in the phase
rule) is the minimum number of chemical constituents re-
quired to constitute the system and all of its phases. It is
most convenient to treat this system as the two components
CaAl2Si2O8-NaAlSi3O8, corresponding to the composition
of the two phases. This is not a coincidence because this
choice of C is the easiest one we can make to represent the
phases in the system. Using the simple oxides, CaO-Na2O-
Al2O3-SiO2 may seem like a more logical choice for chem-
ical components, but it results in a larger number of
components than is necessary (thus violating the definition
of C). For the remainder of this chapter, I shall often use the
mineral abbreviation to indicate components and the min-
eral name proper to refer to the phases in a system. Thus the
abbreviation Ab will be used to indicate the component
NaAlSi3O8, and An will indicate CaAl2Si2O8. From your
mineralogy course, you may remember that the solid solu-
tion for this system involves the coupled substitution of
(Na1+ + Si4+) for (Ca2+ + Al3+) in a constant AlSi2O8 refer-
ence frame. Figure 8 is an isobaric temperature–composition
(T-X) phase diagram at 0.1 MPa pressure. Before we pro-
ceed to analyze the behavior of the system, I must stress
that all the phase diagrams we shall cover are empirically
determined by melting real mineral samples and analyzing
the  results.

At each end of the horizontal axis in Figure 8, we
have a one-component system, representing each pure
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FIGURE 8 Isobaric T-X phase diagram for the albite–
anorthite system at 0.1 MPa (atmospheric) pressure. After
Bowen (1913). Reprinted by permission of the American 
Journal of Science.

“end-member” of the solid-solution series, pure albite on the
left and pure anorthite on the right. Each of these pure sys-
tems behaves like a typical isobaric one-component system,
in that the solids melt at a single fixed temperature, at which
solid and liquid coexist in equilibrium (φ = 2), just as in our
ice–water example. Applying the isobaric phase rule [Equa-
tion (2)] with C = 1 and φ = 2 yields F = 1 - 2 + 1 = 0. Al-
bite melts at 1118°C, and anorthite melts at 1553°C.

Now we proceed to the effects of an added compo-
nent on either pure system. First, the addition of the Ab
component to pure anorthite lowers the melting point (just
as adding salt lowers the melting point of ice on a frozen
sidewalk). Adding An to pure albite raises its melting point.
But this is not the only effect. Crystallization of multicom-
ponent melts becomes much more interesting than pure
one-component melts.

To understand this, let’s use the phase rule to analyze
the behavior of a melt of intermediate composition. Con-
sider cooling a melt of composition a in Figure 8. We refer
to the composition of the system as the bulk composition
(Xbulk). The composition in question is 60% anorthite and
40% albite, by weight. This composition may be referred to
as An60. Note: An60 is usually a reference to mole % An. The
notation doesn’t preclude its use for weight % (wt. %), and
because Figure 8 has been created for weight %, we will 
use it this way. At point a in Figure 8, at about 1600°C, we
have a single liquid of composition An60. In this case, the
liquid composition is equal to the bulk composition because
the system is entirely liquid. Because C = 2 and φ = 1, Equa-
tion (2) yields F = 2 - 1 + 1 = 2. There are thus 2 degrees 
of freedom for a single two-component liquid at constant
pressure. What are they? Once again, any two intensive vari-
ables will do, but they should be geologically realistic. Be-
cause the diagram is a temperature–composition diagram, it
might seem appropriate to choose these two. What are the
possible compositional variables? They must be intensive,

so the choices are the weight (or mole) fraction of any com-
ponent in any phase. We can define the weight fraction of
the An component in the liquid phase:

(3)

where: n = number of grams of any component

If the system weighs 100 g, and nAn = 60 g, then
, or 0.60. The phase rule thus tells

us that, if we have a liquid in the Ab-An system at fixed
pressure, we must specify T and a single compositional
variable to completely determine the system. If we choose
to specify T as 1600°C, and , all the other
variables, such as density and the other compositional
variables, are fixed. Under the present circumstances,
the only remaining intensive compositional variable is

. Because the system is binary, it follows that 

.
If we cool the system to point b in Figure 8, at 

about 1475°C, plagioclase begins to crystallize from the
melt. However, the plagioclase that first forms has a com-
position at c (An87), a different composition than that of
the melt. How does the phase rule help us understand
what’s going on at this point? Because C = 2 and φ = 2, 
F = 2 - 2 + 1 = 1. Now we must specify only one intensive
variable to completely determine the system. If we specify
any one of T, the others must be
fixed. From Figure 8 we can see that this is true. Whereas
the one-component systems has a single curve separating
the liquid and solid fields, there are now two curves that
specify a relationship between the composition of both the
liquid and the solid with respect to the temperature. The
upper curve is called the liquidus. It specifies the composi-
tion of any liquid that coexists with a solid at a particular
temperature. The lower curve is the solidus, which speci-
fies the composition of any solid that coexists with a liquid
phase at some particular temperature. Remember that these
diagrams are determined empirically. There is no way to
theoretically predict the actual compositions, and the phase
rule merely tells us about the variables, not what values
they should have. We can thus specify one variable, such as
T = 1475°C. If plagioclase and liquid coexist, φ = 2, then
we specify a horizontal line at 1475°C that intersects the
liquidus at point b and the solidus at point c. Points b and c
represent the composition of the liquid and solid, respec-
tively, which we could determine from the abscissa. The
system is therefore fully determined. The dashed line
 connecting b and c is called a tie-line, and it connects the
composition of coexisting phases, by definition at a partic-
ular temperature. Try choosing another temperature and
determine the composition of the phases that coexist at that
T. Next, choose any other variable from the list above. If
your choice of temperature meets the requirement that φ = 2
on Figure 8, you can determine all the remaining vari-
ables. If φ = 2 for this system at fixed pressure, we need
only specify one intensive variable to determine the full
state of the system. In a practical sense, temperature be-
haves as a determining variable most commonly in nature.

Xliq
An = 0.60

Xliq
An = 60/(60 + 40)

Xliq
An =

nAn/(nAn + nAb) in the liquid

Xliq
Ab = 1 - Xliq

An = 0.40

Xliq
An , Xliq

Ab, Xplag
An , or Xplag

Ab ,

X
liq
Ab
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The Phase Rule and One- and Two-Component Systems

What the phase rule then says for this situation is: For a
two-component–two-phase system at a fixed pressure, the
composition of both phases (in this case the liquid and the
solid) depend only upon temperature. This follows directly
from the liquidus and solidus curves on Figure 8. The
phase diagram, which is determined by experiment, is a
manifestation of the relationships predicted by the phase
rule. Picture this situation in a magma chamber at some
particular depth (pressure) in the crust. The composition of
the plagioclase that crystallizes from a melt is a function of
the temperature of that melt and thus changes as tempera-
ture changes.

As we continue to cool our original bulk mixture of
60% An below 1475°C (point b in Figure 8), the composi-
tions of both coexisting phases (liquid and solid) vary. The
liquid composition changes along the liquidus from b to-
ward g, whereas the plagioclase changes from c toward h.
This process is one in which the solid reacts with the liquid,
enabling the exchange of components between
them, resulting in a compositional change in the phases.
Such reactions that have at least 1 degree of freedom, and
thus occur by exchange over a range of temperatures (and/or
pressures), are called continuous reactions. In this case, the
generalized reaction may be represented by:

(4)

By cooling, new Liquid2 becomes incrementally more Na
rich than old Liquid1, and new Plagioclase2 becomes more
Na rich than old Plagioclase1.

We can use the length of the tie-lines at any specified
temperature to calculate the relative amounts of the phases.
At 1445°C and a bulk composition of An60, for example, we
have the tie-line d-f connecting the liquid and solid phases in
Figure 8. The bulk composition = e, whereas the composi-
tion of the liquid = d (An49), and plagioclase has composi-
tion f (An82). The relative amount of liquid versus solid is
calculated geometrically by reference to Figure 9, in 
which the quantities of each phase must balance on the bulk
composition fulcrum point.

Using the lengths of the tie-line segments:

(5)

where: = length of the line segment e-f
= length of the line segment d-e in Figures 8

and 9

This approach is called the lever principle, and it works like
a fulcrum, with the amounts of the phases balanced at the ful-
crum point represented by the bulk composition in Figure 9.
According to Equation (4), the amount of a given phase is
proportional to the length of the segment on the opposite side
of the fulcrum. The closer a phase is to the fulcrum point
(bulk composition), the more predominant it is. At 1445°C

and Thus
the proportion of liquid/solid is 22/12, or 1.83, or 65% liquid
ef = An82 - An60 = 22 de = An60 - An48 = 12.

de
ef

amtliq

amtplag
=

—
ef

de

Liquid1 + Plagioclase1 = Liquid2 + Plagioclase2

by weight. At 1475°C, the liquid composition was essentially
equal to the bulk composition, corresponding to the first
 appearance of a few crystals of plagioclase of  composition c.
As we continue to cool the system, with a constant bulk com-
position, gets progressively larger, whereas gets
smaller, corresponding with a decreasing ratio of liquid to
solid, just as we would expect to occur upon cooling. Note
that as cooling of the two-phase system in Figure 8 conti-
nues, the composition of both the solid and liquid becomes
richer in the Ab (low melting point) component. As the tem-
perature approaches 1340°C, the composition of the plagio-
clase reaches h, which is equal to the bulk composition
(An60). Obviously, there can be only a tiny amount of liquid
present at this point. This last liquid has composition g (An22)
in Figure 8. Continued cooling consumes this immediately.
We then lose a phase and gain a degree of freedom. We have
only a single solid phase below 1340°C (plagioclase of com-
position An60) that cools along the line h-i. With a single
phase, F = 2 - 1 + 1 = 2, so we must specify both T and
a compositional variable of the plagioclase to specify the
 system completely.

Crystallization of any liquid of a composition interme-
diate between pure Ab and pure An will behave in an analo-
gous fashion.

Equilibrium melting is simply the opposite process.
The divariant one-phase solid system of composition i in
Figure 8 heats up until melting begins. The partially 
melted system is univariant, and the first liquid formed has
composition g. The first liquid to form is not the same as
the solid that melts. As heating continues, the composi-
tions of the solid and liquid are constrained to follow the
solidus and liquidus, respectively (via a continuous reac-
tion). The liquid moves to composition b as the plagioclase
shifts to composition c (the composition of the last plagio-
clase to melt). Whether the process is crystallization or
melting, the solid is always richer in An components (Ca
and Al) than the coexisting liquid. Ca is thus more
refractory than Na, meaning that it concentrates in the
residual solids during melting.

Notice how the addition of a second component affects
the crystallization relationships of simple one-component
systems:

1. There is now a range of temperatures over which
a liquid crystallizes (or a solid melts) at a given
pressure.

2. Over this temperature range, the compositions of both
the liquid melt and the solid mineral phases change.

ef de

d

e

f

liquid
composition

48

bulk
composition

60

solid
composition

82

FIGURE 9 Use of the lever principle to determine the 
relative quantities of two phases coexisting along an 
isothermal tie-line with a known bulk composition.
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The Phase Rule and One- and Two-Component Systems

Compare these to the list of eight observations on the
crystallization behavior of natural melts in Section 1. Even
though we have studied only a simple model system, the
processes responsible for observations 1, 4, and 5 should be
getting clear.

The above discussion considers only equilibrium
crystallization and equilibrium melting, in which the pla-
gioclase that crystallizes or melts remains in chemical equi-
librium with the melt. It is also possible to have fractional
crystallization or melting. Purely fractional crystallization
involves the physical separation of the solid from the melt
as soon as it forms. If we remove the plagioclase crystals as
they form (perhaps by having them sink or float), the melt
can no longer react with the crystals. The melt composition
continues to vary along the liquidus as new plagioclase
crystallizes along the solidus. Because the crystals are re-
moved from the system, however, the melt composition
continuously becomes the new bulk composition, thus shift-
ing inexorably toward albite. As a result, the composition of
both the final liquid and the solids that form from it will be
more albitic than for equilibrium crystallization and will
approach pure albite in efficiently fractionating systems.
Fractional crystallization implies that a range of magma
types could be created from a single parental type by re-
moving varying amounts of crystals that have formed in a
magma chamber.

Fractional melting is another important geologic
process. Purely fractional melting refers to the nearly con-
tinuous extraction of melt increments as they are formed. If
we begin to melt a plagioclase of An60 composition in
Figure 8, the first melt has composition g (An20). If we re-
move the melt, the residual solids become progressively en-
riched in the high-melting-temperature component and
continuously become the new bulk composition of the re-
maining solid system. The final solid, and the liquid that
may be derived from it, shift toward anorthite.

Most natural magmas, once created, are extracted
from the melted source rock at some point before melting is
completed. This is called partial melting, which may be
fractional melting or may involve equilibrium melting until
sufficient liquid accumulates to become mobile. For exam-
ple, suppose we begin with An60 in Figure 8 and melt it at
equilibrium to 1445°C, at which point there is 65% melt (ac-
cording to the lever principle) with a composition d (An49).
If melt d rises to a shallow magma chamber and cools, the
bulk composition in the chamber is now An49, as is the final
plagioclase to crystallize from this melt (assuming equilib-
rium crystallization). Partial melting, then, increases the
concentration of the low-melting-point component in the 
resulting melt system (An49 rather than An60). Likewise, it
increases the concentration of the high-melting-point com-
ponent in the residual solids (point f, An82, at the time of
melt extraction).

Partial melting processes have some important impli-
cations for the source of melts. Suppose we partially melt
the mantle to produce a basaltic liquid. If only small quan-
tities of melt are produced, the remaining solid mantle
must be more refractory (enriched in high-temperature

components) than the melt produced. The mantle source
will also be progressively depleted in the low-melting-
point components and gradually become more refractory
as partial melting continues over time, requiring succes-
sively higher temperatures in order to melt. Unless the
melted source rocks are replenished by mixing with un-
melted mantle, they may become sufficiently refractory
that further melting is inhibited.

As soon as a system permits the solid and liquid por-
tions to have different compositions, separating these
phases can have a profound effect on the composition of
the derivative systems. The ability to change the composi-
tion of magmas and the resulting rocks by fractional
processes of melting and crystallization are thus prime
methods for the production of the range of compositions of
igneous rocks found at the surface of the Earth. Indeed
these fractional processes are probably more common in
nature than their equilibrium counterparts. We shall en-
counter numerous examples of these phenomena, both ex-
perimental and natural, as we proceed in our study of
igneous processes.

Compositional zoning is another disequilibrium
process that can occur in solid-solution systems. Rather than
react with the melt and re-equilibrate, a mineral may simply
add a rim with a composition equal to the solidus composi-
tion. Plagioclase, for example, may add a rim of new growth
rather than react to maintain a single composition through-
out. This results in a more calcic core and a progressively
more sodic rim. Plagioclase is noted for this characteristic
because the re-equilibration exchange is not simply Na for
Ca but requires Al for Si as well, and this involves breaking
the strong Si-O and Al-O bonds, which inhibits re-equilibra-
tion. Figure 8 implies that uniform cooling would produce
successive rims of progressively more albitic composition
(“normal” zoning).

Solid solutions are common in natural minerals. The
most common substitution in the mafic minerals is that be-
tween Fe and Mg. This occurs in all mafic minerals and 
has an effect on the melting relationships similar to that in
plagioclase. The olivine system, Mg2SiO4 (Fo, forsterite) -
Fe2SiO4 (Fa, fayalite), is illustrated in Figure 10. Mg and
Fe have the same valence and similar size. Mg is slightly
smaller and thus forms a stronger bond in the mineral
phase. As a result, the Mg-rich end-member typically has a
higher melting point in olivine and other mafic minerals,
and Mg is thus enriched in the solid as compared to the liq-
uid at intermediate compositions. A melt of composition a
(Fo56), for example, will first produce a solid at c (Fo84) at
about 1700°C, and it will completely crystallize at 1480°C,
when the final liquid (point d, Fo23) is consumed. The be-
havior of the olivine system is entirely analogous to that of
plagioclase.

5.2 Binary Eutectic Systems

Adding a second component certainly has a profound ef-
fect on a one-component system, but the effects are not
limited to solid-solution behavior. In a great number of
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 binary systems, the additional component does not enter
into a solid solution but changes the melting relationships
nonetheless. As an example of a binary system with no
solid solution, let’s turn to a system with considerable nat-
ural applicability. The system CaMgSi2O6 (Di, diop-
side)–CaAl2Si2O8 (An, anorthite) is interesting in that it
provides a simplified analog of basalt: clinopyroxene and
plagioclase. The system is illustrated in Figure 11 as an-
other isobaric (atmospheric pressure) T-X phase diagram.
In this type of system, there is a low point on the liquidus,
point d, called the eutectic point. Such systems are thus
called binary eutectic systems. Because there is no solid
solution, there is no solidus (although some petrologists
refer to the line g-h as a type of solidus).

Let’s discuss equilibrium cooling and crystallization
of a liquid with a bulk composition of 70 wt. % An from
point a in Figure 11. This T-X phase diagram is also iso-
baric, so Equation (2) with a single liquid yields F = 2 -
1 + 1 = 2. We can thus specify T and or to com-
pletely determine the system. Cooling to 1450°C (point b)
results in the initial crystallization of a solid that is pure An
(point c). F = 2 - 2 + 1 = 1, just as with the plagioclase sys-
tem. If we fix only one variable, such as T, all the other
properties of the system are fixed (the solid composition is
pure anorthite, and the liquid composition can be deter-
mined from the position of the liquidus at the temperature
specified).

As we continue to cool the system, the liquid compo-
sition changes along the liquidus from b toward d as the
composition of the solid produced remains pure anorthite.
Naturally, if anorthite crystallizes from the melt, the com-
position of the remaining melt must move directly away
from An (on the left in Figure 11) as it loses matter of that
composition. The crystallization of anorthite from a cool-
ing  liquid is another continuous reaction, taking place

Xliq
DiXliq

An

over a range of temperature. The reaction may be repre-
sented by:

(6)

We can still apply the lever principle [Equation (5)] 
at any temperature to determine the relative amounts of solid
and liquid, with the fulcrum at 70% An. If we do so at a
number of temperatures, we would see that the ratio of solid
to liquid increases with cooling, as we would expect.

At 1274°C, we have a new situation: diopside begins
to crystallize along with anorthite. Now we have three coex-
isting phases, two solids and a liquid, at equilibrium. Our
horizontal (isothermal) tie-line connects pure diopside at g,
with pure anorthite at h, and a liquid at d, the eutectic point
minimum on the liquidus. φ = 3, so F = 2 - 3 + 1 = 0. This is
a new type of invariant situation, not represented by any spe-
cific invariant point on the phase diagram. Because it is in-
variant, T and the compositional variables for all three
phases are fixed (points g, d, and h). The system is com-
pletely determined and remains at this temperature as heat is
lost and crystallization proceeds (just as with our ice water
and boiling water, as discussed above). The amount of liquid
decreases, and both diopside and anorthite are produced.
Because the amounts (extensive variables) of all three
phases change at a constant temperature, it is impossible to
determine the relative amounts of them geometrically using
the lever principle. The lever principle can be applied, how-
ever, to determine the ratio of diopside to anorthite that is
being crystallized at any instant from the eutectic liquid. If
the liquid composition is the fulcrum (about 42% An), and
the solids are pure (0% An and 100% An), the ratio of diop-
side to anorthite crystallizing at any moment must be 58/42.
Removing this ratio keeps the liquid composition from
changing from the eutectic as crystallization proceeds.

The fact that the compositions of diopside, anorthite,
and liquid are collinear is an example of an important rela-
tionship that we encounter often in petrology. It is one type
of geometric relationship that implies a possible reaction.
When three points are collinear, the central one can be cre-
ated by combining the two outer compositions (in the pro-
portion determined by the lever principle). In the present
case the reaction must be:

(7)

because liquid is in the middle. This type of reaction is a
discontinuous reaction because it takes place at a fixed
temperature until one phase is consumed. When crystalliza-
tion is complete, the loss of a phase (liquid, in this case) re-
sults in an increase in F from 0 to 1, and thus temperature
can once again be lowered, with the two phases diopside
and anorthite coexisting at lower temperatures. Because the
composition of the two solids is fixed, we have a unique op-
portunity to determine exactly which of our intensive vari-
ables is free to vary; temperature is the only variable left.

A discontinuous reaction involves one more phase than
a corresponding continuous reaction in the same system, and

Liquid1 = Solid + Liquid2

Liquid = Diopside + Anorthite
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FIGURE 10 Isobaric T-X phase diagram of the olivine 
system at atmospheric pressure. After Bowen and Schairer
(1932). Reprinted by permission of the American Journal of
Science.
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American Journal of Science.

because this decreases the variance, the compositions of the
reacting phases do not vary as the reaction progresses. Only
the proportion of the phases changes (usually until one phase
is consumed). Such reactions are discontinuous in the sense
that the phase assemblage changes at a single temperature
due to the reaction. In this case, diopside + liquid gives way
to diopside + anorthite as the system is cooled through the re-
action temperature (1274°C).

Let’s see what happens on the left side of the eutectic
point. Cooling a liquid with a composition of 20 wt. % An re-
sults in the crystallization of pure diopside first, at 1350°C as
the liquidus is encountered at point e in Figure 11. Diop-
side continues to crystallize as the liquid composition pro-
ceeds directly away from diopside toward point d. At point d
(1274°C again), anorthite joins diopside and the eutectic liquid
in the same invariant situation as above. The system remains at
1274°C as the discontinuous reaction, liquid = Di + An, runs to
completion, and the liquid is consumed.

In these eutectic systems note that, for any binary bulk
composition (not a pure end-member), the final liquid to
crystallize must always be at the eutectic composition and
temperature. The final cooled product of a binary liquid
with no solid solution must contain both anorthite and diop-
side. To get there, we must have them both coexisting with a
melt at some point, and that melt has to be at the eutectic
point. Remember that solid-solution systems do not behave
this way. In them, crystallization is complete when the com-
position of the solid becomes equal to the bulk composition,
so the final liquid, and the temperature, depends on the bulk
composition.

Equilibrium melting is the opposite of equilibrium
crystallization. Any mixture of diopside and anorthite begins
to melt at 1274°C, and the composition of the first melt is al-
ways equal to the eutectic composition d. Once melting be-
gins, the system is invariant and will remain at 1274°C until
one of the two melting solids is consumed. Which solid is
consumed first depends on the bulk composition. If Xbulk is
between Di and d, anorthite is consumed first, and the liquid
composition will follow the liquidus with increasing temper-
ature toward Di until the liquid composition reaches Xbulk, at
which point the last of the remaining diopside crystals will
melt. If Xbulk is between An and d, diopside is consumed first,
and the liquid will progress up the liquidus toward An.

Note the discontinuities between either one-component
end-member and the binary mixture. For example, pure
anorthite melts at a single temperature of 1553°C. If we add
just a tiny amount of Di to this, the first melt occurs at
1274°C and has a composition equal to d. Of course, there
won’t be much of this melt. (Use the lever principle if you
don’t see why.) As temperature increases in this An99 mix-
ture, the amount of melt increases gradually and becomes
rapidly more anorthitic. Melting is extensive and complete
just below 1553°C.

Fractional crystallization has no effect on the path
followed by the liquid in eutectic systems without solid so-
lution. Unlike in the plagioclase or olivine systems, remov-
ing a solid of constant composition does not affect the
composition of either of the two final minerals or of the last
liquid. The compositions of the minerals are fixed, and the
liquid must reach the eutectic composition whether or not
the solids are removed. Only the composition of the final
rock is affected. Following equilibrium crystallization, the
final rock composition is the same as the bulk composition.
If fractional crystallization is efficient, the final rock compo-
sition is equal to the eutectic because earlier crystals are lost
and the last liquid is always the eutectic liquid.

Partial melting, however, does affect the path that the
liquid follows. Perfect fractional melting (removal of any
melt increment as soon as it forms) should not occur in na-
ture. As we shall see later, a critical amount of melt (perhaps
1 to 10%) must form before it can be physically removed
from the solid. A smaller amount will merely wet the min-
eral grain boundaries and remain adsorbed to the crystal sur-
faces. Nonetheless, if a few percent partial melt were almost
continuously removed from an initially solid sample of
diopside + anorthite, and the first melts were (necessarily) of
the eutectic composition d, the melt increments being re-
moved would continue to be of composition d, until one of
the solid phases was finally consumed by melting. Then the
remaining solid would be a one-component system. There-
fore, no melting would occur between 1274°C and the melt-
ing point of the remaining pure phase, so the composition
and the temperature of the melt being extracted would jump
discontinuously from d at 1274°C to either pure diopside at
1392°C or pure anorthite at 1553°C, depending on the initial
bulk composition and which phase is consumed first. Thus a
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